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ABSTRACT
Uveal melanoma (UM) is a major intraocular cancer that is molecularly distinct 

from cutaneous melanoma. Approximately half of patients with UM eventually develop 
metastasis. The prognosis of metastatic UM is poor, with a median overall survival 
(OS) of less than a year. In this study, we sought to identify microRNAs (miRNAs) 
associated with metastasis and OS in UM. We analyzed the miRNA expression and 
clinical outcomes data from The Cancer Genome Atlas (TCGA) dataset for UM. 
Differential expression analyses were conducted for each miRNA with respect ever-
development of metastasis. Multiple survival analyses were done, using the Cox 
proportional hazards model, to evaluate interactions between miRNA expression, 
metastasis, and OS. A total of 22 miRNAs (3 upregulated and 19 downregulated) 
were differentially expressed between patients with vs. without metastatic UM. These 
22 miRNAs could be grouped into four clusters based on similarities in expression 
patterns. Of the 22 miRNAs differentially expressed with respect to metastasis, 
21 were significantly associated with OS. The expression of multiple miRNAs was 
significantly associated with metastasis and overall survival in patients with UM. 
Further investigation of these miRNAs as biomarkers and/or therapeutic targets is 
warranted in the push to improve outcomes for patients with metastatic UM.

INTRODUCTION

Uveal melanoma (UM) is the most common primary 
intraocular cancer occurring in adults [1, 2]. The mortality 
of UM patients is approximately 40–50%; the leading 
contributor to mortality is development of metastasis, 
which occurs in up to 50% of UM patients [3, 4]. For 
patients with metastatic UM, the 1-year survival rate is 
20%, the 5-year survival rate is less than 5%, and the 
median overall survival is only 6–12 months [1, 5–8]. 
There is no effective therapeutic intervention to treat 
metastatic UM [4].

While UM may bear histologic resemblance to its 
more-common cutaneous counterpart, it is considered 
molecularly distinct. In contrast to cutaneous melanoma, 
UM has a lower mutational burden [9] and lacks 
characteristic BRAF and NRAS mutations [9, 10]. Rather, 
most UM tumors contain GNAQ or GNA11 mutations 

[11], MAPK pathway activations [12], and cytogenetic 
abnormalities (monosomy 3 and trisomy 8q) [13].

Given the biologic uniqueness of UM, its propensity 
to metastasize, and the poor survival outcomes and lack of 
adequate treatment for metastatic UM, there is a great need 
to uncover the molecular mechanisms of metastasis in UM 
and to discover predictive and prognostic biomarkers so as 
to better optimize understanding and management of this 
challenging oncologic condition.

Several genetic mutations and gene expression 
alterations have been associated with the molecular 
mechanisms responsible for the progression of UM [14]. 
It has also been shown that epigenetic modifications 
including microRNAs (miRNAs) are associated with the 
pathology and progression of UM [14]. miRNAs are small, 
non-coding RNAs approximately 22 nucleotides in length. 
Each microRNA can play a crucial role in regulating the 
expression of multiple genes. miRNAs typically regulate 
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gene expression by altering mRNA stability or repressing 
translation of mRNA to protein. Several miRNAs play an 
important role (tumor suppressors or tumor promoters) in 
cancer development and progression including metastasis 
[15–20]. However, data are limited regarding the role 
of miRNAs in metastatic UM [21–23]. Therefore, the 
purpose of this study was to identify miRNAs associated 
with UM metastasis and overall patient survival.

RESULTS

Demographics, key clinical data, and differences 
in OS for patients with metastatic vs. non-
metastatic UM

Profiling data from 1,598 miRNAs was available for 
primary-site tumor samples from 80 patients with UM in 
TCGA. Of those patients, 50 (62.5%) had never developed 
metastasis, while 30 (37.5%) had ever developed 
metastasis. Key demographic and clinical data for UM 
patients with metastatic and non-metastatic UM were 
identified and compared across the two groups. Compared 
to those with non-metastatic UM, patients with metastatic 
UM more often had epithelioid histology, less often 
had spindle cell histology, and had a higher proportion 
of advanced (stage III–IV) disease at initial diagnosis 
(p-values all < 0.05). There was no significant difference 
between non-metastatic and metastatic UM with respect 
to age, gender, or tumor thickness (Table 1). Survival 
analysis for metastatic vs. non-metastatic UM showed a 
major difference (hazard ratio [HR] = 15.24; p-value = 
2.42 × 10−4) with respect to overall survival (OS) between 
those groups (Figure 1A).

miRNAs differentially expressed in UM with 
respect to metastasis

To investigate the miRNAs associated with UM 
metastasis, we analyzed the expression of the 1,598 
miRNAs available in TCGA UM dataset. Differential 
expression analysis was done for each of those 1,598 
miRNAs between UM patients with (n = 30) and without 
(n = 50) metastasis. The volcano plot depicting the results 
of this differential expression analysis is shown in Figure 
1B. In total, we discovered 76 miRNAs (24 upregulated 
and 52 downregulated) significantly (adj. p-value < 0.05) 
dysregulated in patients with metastasis as compared to 
patients without metastasis (Supplementary Table 1). The 
22 most significantly (> 2-fold change and adj. p-value 
< 0.01) dysregulated miRNAs in patients with metastatic 
UM are listed in Table 2. A heatmap depicting the 
expression levels of these 22 miRNAs in individual UM 
patients is shown in Figure 2A. Out of the 22 miRNAs, 
3 are upregulated and 19 are downregulated in patients 
with metastasis. The upregulated miRNAs in patients 
with metastasis are miR-199a-5p (3.29-fold), miR-708-5p 

(2.29-fold), and miR-592 (2.05-fold). Similarly, the most 
downregulated miRNAs in patients with metastasis are 
miR-508-3p (0.06-fold), miR-509-3p (0.07-fold), miR-
508-5p (0.08-fold), miR-514a-3p (0.08-fold), miR-506-
3p (0.11-fold), miR-509-3-5p (0.12-fold), miR-513c-5p 
(0.14-fold), miR-513a-5p (0.17-fold), and miR-513b-5p 
(0.24-fold) as shown in Figure 3.

Cluster analysis of miRNAs differentially 
expressed in UM metastasis

A pairwise correlation was computed for the 22 
miRNAs significantly differentially expressed in patients 
with metastasis. The cluster analysis of the correlation 
matrix revealed 4 clusters of highly correlated miRNAs 
(Figure 2B). This analysis provides us the groups of 
miRNAs which are co-regulated in metastatic UM. 
Cluster-1 included 9 downregulated miRNAs including 
miR-508-3p, miR-509-3p, miR-508-5p, miR-514a-3p, 
miR-506-3p, miR-509-3-5p, miR-513c-5p, miR-513a-5p, 
and miR-513b-5p. These 9 miRNAs have highly correlated 
expression levels (average correlation coefficient = 0.95), 
indicating a probable common regulatory mechanism. 
Cluster-2 included 2 downregulated miRNAs: miR-221-
3p and miR-222-3p. The correlation coefficient between 
the expression of these miRNAs was 0.92. The Cluster-3 
included 5 miRNAs (miR-125b-5p, miR-125b-2-3p, let-
7c-3p, miR-140-5p, and miR-181b-5p), which are also 
downregulated in the patients with metastasis, indicating 
that these miRNAs have a protective role in UM. Cluster-4 
included miR-592, miR-708-5p, and miR-199a-5p, and 
these 3 miRNAs are upregulated in UM, therefore the 
miRNAs of this cluster have a negative correlation with 
the miRNAs of the other three clusters.

miRNAs associated with survival status in UM

Cox proportional hazard analysis found that 64 
miRNAs were significantly (adj. p-value < 0.001 and 
HR > 4 or HR < 0.2) correlated with patient survival 
(Supplementary Table 2). The 15 miRNAs most 
significantly associated with overall survival (OS) of 
patients (HR > 10 or HR < 0.10) are listed in Table 3; the 
Kaplan-Meier OS curves of these miRNAs are shown in 
Figure 4. Of the 22 miRNAs significantly differentially 
expressed in patients with metastasis, 21 were significantly 
(p < 0.05) associated with OS.

Target genes and pathways regulated by 
miRNAs associated with UM metastasis

A comprehensive search of experimentally validated 
target genes regulated by miRNAs found to be associated 
with UM metastasis was performed using Ingenuity 
Pathway Analysis software (QIAGEN, Redwood 
City, CA, USA). Further bioinformatics analyses 
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were performed to discover pathways and biological 
processes associated with these target genes. The top 
canonical pathways associated with these genes include 
p53 signaling, regulation of epithelial-mesenchymal 
transition pathway, cell cycle G1/S checkpoint regulation, 
ILK signaling, and PTEN signaling (Table 4). The top 
biological functions include apoptosis, necrosis, growth of 
tumor, cell proliferation, invasion, movement, migration, 
and cell cycle progression (Table 4). We also performed 

network analysis to discover the interactions between 
the target genes. The top-scoring network is shown in 
Figure 5. The network analysis revealed that the hub genes 
of the network are MYC, VIM, AR, ERBB2, HIF1A, FOS, 
KRAS, VEGF, PKA, ELAVL1, and GSK3B. These hub 
genes interact with many (> 15) nodes on the interaction 
network and are likely important for gene expression 
dynamics (mechanism). The top upstream regulators of 
the target genes are TP53, EGF, TGFB1, PTEN, MYC, 

Table 1: Demographics and key clinical data for patients with non-metastatic vs. metastatic UM
Non-Metastatic Metastatic

(n = 50) (n = 30) p-value
Age (mean ± SD) 60.65 ± 14.9 64.7 ± 12.12 0.207
Gender Female 22 13 1.000

Male 28 17
Tumor Thickness (mean ± SD) 10.2 ± 2.75 10.78 ± 2.92 0.207
Histologic Type Epithelioid 4 9 < 0.001

Mixed epithelioid/spindle 20 17
Spindle cell 26 4

Survival Survived 48 out 50 9 out of 30 < 0.001
Deceased 2 out 50 21 out of 30

Clinical Stage Stage IIA 2 2 0.023
Stage IIB 25 7
Stage IIIA 14 13
Stage IIIB 7 3
Stage IIIC 2 1
Stage IV 0 4

Figure 1: Survival and miRNA expression differences between patients who ever vs. never developed metastatic UM. 
(A) Kaplan-Meier survival curves showing a major difference in OS (HR = 15.24; p-value = 2.42 × 10−4) for UM patients with (n = 30) 
vs. without (n = 50) metastasis. (B) Volcano plot depicting differentially expressed miRNAs. The expression level of 1,598 miRNAs 
was compared between UM patients with metastasis (n = 30) and without metastasis (n = 50). In total, we discovered 76 significantly 
dysregulated miRNAs in metastatic patients, including 24 upregulated (red) and 52 downregulated (blue).
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SP1, ERBB2, FGF2, HGF, TP63, ESR1, E2F1, KRAS, 
and PI3K complex (Table 4). These upstream regulators 
are the predicted transcriptional regulators in the pathway.

DISCUSSION

The development of metastases plays an important 
role in UM patient prognosis. Molecular biomarkers 
associated with UM metastasis may help in accurately 
identifying high-risk patients and in discovering 
potential therapeutic targets for metastatic UM treatment. 
MicroRNAs are small single-stranded endogenous 
noncoding RNAs, which are involved in the post-
transcriptional regulation of expression of their targeted 
mRNAs. It has been established that aberrant expression 
of miRNAs leads to progression and metastasis of 
several cancers. In the past decade, several studies have 
examined the role of microRNAs in pathogenesis and 
progression of UM by utilizing plasma [24], serum [25], 
cell lines [26–29], and clinical tissue specimens [21–23, 
30]. Uveal melanoma is a very rare cancer, making it 
difficult to obtain a large number of samples from a single 
institution. TCGA is a landmark cancer genomics dataset 
which has molecularly characterized cancer and matched 
normal samples and is an especially important resource 

for rare cancers such as UM. TCGA also provides data on 
various clinical and demographic parameters associated 
with UM and analyzes this larger sample set with careful 
experimental design and proper control groups. The 
use of this larger sample size increases the statistical 
power of the analysis. Also, to minimize the false 
positives, we have used a very stringent cutoff to select 
differentially expressed miRNAs. This approach enabled 
us to identify several novel miRNAs potentially related 
to UM metastasis which may have clinical, biological, 
or mechanistic relevance to UM and may expand our 
understanding of UM tumor progression.

In this study, we found 22 miRNAs highly 
dysregulated (> 2-fold change and p < 0.01) in UM 
patients with (vs. without) ever-development of metastasis. 
21 (95%) of those miRNAs associated with metastasis 
were also significantly associated with poor OS. The 22 
miRNAs associated with metastasis could be divided into 
four distinct clusters based on highly correlated expression 
patterns within each cluster.

Cluster-1 included the 9 most downregulated 
miRNAs including miR-508-3p, miR-509-3p, miR-508-
5p, miR-514a-3p, miR-506-3p, miR-509-3-5p, miR-
513c-5p, miR-513a-5p, and miR-513b-5p. For miR-
508-3p, a recent study showed that decreased expression 

Table 2: The 22 most significantly dysregulated miRNAs in patients with metastatic UM
miRNA accession ID miRNA target name Fold- change Adj. p-value HR Adj. p-value Concordance

Down-regulated miRNAs

MIMAT0002880 hsa-miR-508-3p 0.062 1.19 × 10−4 0.08 4.77 × 10−7 0.780

MIMAT0002881 hsa-miR-509-3p 0.065 1.19 × 10−4 0.10 3.25 × 10−6 0.766

MIMAT0004778 hsa-miR-508-5p 0.081 1.56 × 10−4 0.10 2.27 × 10−6 0.770

MIMAT0002883 hsa-miR-514a-3p 0.082 1.69 × 10−4 0.09 6.38 × 10−7 0.778

MIMAT0002878 hsa-miR-506-3p 0.105 1.56 × 10−4 0.10 4.88 × 10−6 0.760

MIMAT0004975 hsa-miR-509-3-5p 0.118 4.20 × 10−4 0.11 1.57 × 10−5 0.747

MIMAT0005789 hsa-miR-513c-5p 0.139 8.61 × 10−4 0.11 8.88 × 10−6 0.752

MIMAT0002877 hsa-miR-513a-5p 0.171 1.09 × 10-3 0.09 1.10 × 10−5 0.727

MIMAT0005788 hsa-miR-513b-5p 0.239 8.55 × 10-3 0.07 8.42 × 10−5 0.688

MIMAT0000278 hsa-miR-221-3p 0.319 1.09 × 10-3 0.39 0.039 0.607

MIMAT0000279 hsa-miR-222-3p 0.370 1.09 × 10-3 0.28 5.09 × 10–3 0.645

MIMAT0000097 hsa-miR-99a-5p 0.378 1.03 × 10-3 0.24 1.22 × 10–3 0.713

MIMAT0000064 hsa-let-7c-5p 0.403 3.83 × 10−4 0.27 3.19 × 10–3 0.694

MIMAT0005924 hsa-miR-1270 0.430 1.09 × 10-3 0.17 1.82 × 10−4 0.704

MIMAT0000423 hsa-miR-125b-5p 0.433 3.03 × 10-3 0.24 1.31 × 10–3 0.711

MIMAT0004603 hsa-miR-125b-2-3p 0.447 2.56 × 10-3 0.46 0.075 0.641

MIMAT0026472 hsa-let-7c-3p 0.464 6.82 × 10-3 0.28 3.84 × 10–3 0.693

MIMAT0000431 hsa-miR-140-5p 0.488 4.13 × 10-3 0.15 7.81 × 10−5 0.685

MIMAT0000257 hsa-miR-181b-5p 0.494 5.17 × 10−4 0.14 3.46 × 10−5 0.718

Up-regulated miRNAs

MIMAT0003260 hsa-miR-592 2.047 3.02 × 10-3 4.71 4.49 × 10−4 0.723

MIMAT0004926 hsa-miR-708-5p 2.292 6.82 × 10-3 4.55 6.28 × 10−4 0.682

MIMAT0000231 hsa-miR-199a-5p 3.286 5.15 × 10-3 5.50 1.95 × 10−4 0.669
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was significantly associated with metastasis, while 
overexpression suppressed the epithelial-mesenchymal 
transition process, in patients with triple-negative breast 
cancer [31]. Another study found that miR-508-3p and 

miR-509-3p were downregulated in renal cell carcinoma 
tissues, while overexpression of those miRNAs suppressed 
renal cell carcinoma proliferation, invasion, and migration 
in vitro [32]. In ovarian cancer patients, increased 

Figure 2: Heatmap and correlation clustering of the miRNAs significantly differentially expressed with respect to 
ever-development of metastatic UM. (A) Heatmap representing the expression of the 22 most highly dysregulated miRNAs in UM 
metastasis. Out of these 22 miRNAs, 3 are upregulated and 19 are downregulated in patients with metastasis. Each column represents one 
patient and rows represent miRNAs. (B) Pairwise correlations for the 22 miRNAs significantly differentially expressed in UM patients 
with metastasis. The cluster analysis of the correlation matrix revealed 4 major clusters of highly correlated miRNAs. Cluster-1 included 
9 downregulated miRNAs, Cluster-2 included 2 downregulated miRNAs, Cluster-3 included 5 downregulated miRNAs, and Cluster-4 
included the 3 upregulated miRNAs.
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expression of miR-508-3p, miR-508-5p, miR-509-3p, 
and miR-508-5p was correlated with improved clinical 
outcomes [33]. Data from our study suggests that this 
miRNA cluster functions as a tumor suppressor as it is 

markedly downregulated in UM patients with metastasis. 
Further, the highly correlated expression levels (average 
correlation coefficient = 0.95) of these 9 miRNAs suggests 
a probable common regulatory mechanism. Therefore, 

Figure 3: Boxplots showing the distribution of the miRNA expression of the 9 most downregulated miRNAs in patients 
who ever developed metastasis compared to patients without metastasis.
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these miRNAs as well as their target genes may have 
therapeutic potential to inhibit tumor metastasis and 
progression.

Cluster-2 included 2 miRNAs, miR-221-3p and 
miR-222-3p, which were both downregulated in UM 
patients with metastasis. In a recent study, miR-221-
3p and miR-222-3p were also downregulated in gastric 
cancer cells with high metastatic potential [18].

Cluster-3 contained 5 downregulated miRNAs with 
respect to metastasis in UM: miR-125b-5p, miR-125b-
2-3p, let-7c-3p, miR-140-5p, and miR-181b-5p. Similar 
to our findings, a recent study also found that miR-140-
5p was abnormally downregulated in melanoma tissues 
and cells [23]. Overexpression of miR-125b-5p inhibited 
cell proliferation, migration, and invasion in esophageal 
squamous cell carcinoma [17]. Five hub miRNAs 
including miR-125b-5p, miR-145-5p, let-7c-5p, miR-218-
5p, and miR-125b-2-3p were also found to be related to 
the prognosis of colorectal cancer [15]. Of these miRNAs, 
miR-125b-5p and miR-125b-2-3p were also significantly 
associated in our study as part of the third cluster.

Cluser-4 included the three most significantly 
upregulated miRNAs, including miR-592, miR-708-5p, and 
miR-199a-5p. Previous studies have also shown that miR-
199a regulates melanoma metastasis related genes and may 
provide new therapeutic targets [19, 21]. In a recent study, 
higher expression of miRNA 199a was observed in UM with 
liver metastasis [22]. Using a genome-wide microarray based 
approach, another study found that expression of miRNA-
199a was one of the most significant discriminators of low 
metastasis and high metastasis risk of UM patients [21].

The additional bioinformatic analyses we performed 
identified the target genes and pathways regulated by the 

miRNAs found to be associated with UM. Several key 
transcription regulators (TP53, MYC, SP1, TP63, E2F1), 
growth factors (EGF, TGFB1, FGF2, HGF) and other 
key regulators including PTEN, ERBB2, ESR1, KRAS 
and PI3K-complex were found as key targets using this 
analysis. Previous studies have also reported constitutive 
activation of these oncogenic pathways in primary UM 
[34, 35]. Biological functions related to metastasis 
including cell cycle progression, cell proliferation, 
invasion, movement and migration were significantly 
enriched in the target genes.

With the recent advancement of molecular 
technologies, miRNAs have newfound potential to serve 
as viable therapeutic tools. Molecular approaches such 
as AMOs (anti-miR oligonucleotides), LNA anti-miRs, 
antagomirs, miRNA sponges, and S-miRs (small molecule 
inhibitors to target specific miRNAs) are available to 
inhibit the miRNAs overexpressed in cancer [36–40]. 
On the other hand, molecular approaches to restore the 
decreased expression of miRNAs downregulated in 
cancer are also available and include miRNA mimics 
(double-stranded synthetic RNAs that mimic endogenous 
miRNAs) and miRNA expression vectors. Several studies 
have used miRNA replacement therapy in experimental 
models [41–43]. Additionally, in a recent study, aptamer-
miRNA conjugates were used as a novel tool for targeted 
delivery of miRNAs [44]. Several miRNA-based therapies 
are already in clinical trials, for example, miR-16 mimics 
are under phase 1 clinical trials for patients with recurrent 
thoracic cancer [45].

A major limitation of this study was a lack of 
experimental validation of the findings with either a 
separate dataset from patient samples or through in vivo or 

Table 3: The 15 miRNAs most significantly associated with overall survival for patients with UM
miRNA accession ID miRNA target name HR Adj. p-value Concordance Fold change Adj. p-value

miRNAs with Hazard 
Ratio < 0.10

MIMAT0022717 hsa-miR-873-3p 0.041 9.73 × 10−7 0.721 0.66 0.107

MIMAT0015087 hsa-miR-514b-5p 0.062 2.71 × 10−5 0.702 0.25 0.011

MIMAT0005788 hsa-miR-513b-5p 0.070 8.42 × 10−5 0.688 0.24 0.009

MIMAT0022702 hsa-miR-514a-5p 0.071 9.56 × 10−5 0.686 0.27 0.048

MIMAT0002879 hsa-miR-507 0.082 2.70 × 10−4 0.676 0.30 0.045

MIMAT0002880 hsa-miR-508-3p 0.083 4.77 × 10−7 0.780 0.06 0.0001

MIMAT0002883 hsa-miR-514a-3p 0.085 6.38 × 10−7 0.778 0.08 0.0002

MIMAT0015020 hsa-miR-548v 0.087 1.19 × 10−5 0.715 0.53 0.013

MIMAT0002877 hsa-miR-513a-5p 0.087 1.10 × 10−5 0.727 0.17 0.001

MIMAT0004778 hsa-miR-508-5p 0.096 2.27 × 10−6 0.770 0.08 0.0002

MIMAT0002881 hsa-miR-509-3p 0.099 3.25 × 10−6 0.766 0.07 0.0001

miRNAs with Hazard Ratio > 10

MIMAT0000269 hsa-miR-212-3p 17.126 3.64 × 10−7 0.715 1.68 0.045

MIMAT0001635 hsa-miR-452-5p 11.806 1.32 × 10−6 0.729 1.60 0.079

MIMAT0004514 hsa-miR-29b-1-5p 10.898 3.80 × 10−6 0.681 1.49 0.045

MIMAT0004482 hsa-let-7b-3p 10.184 3.42 × 10−6 0.753 1.79 0.003
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in vitro experiments. Further, as with other investigations 
primarily based on data from TCGA, our analyses used 
retrospectively obtained data and TCGA UM patient 
population may not be fully generalizable to some UM 
patient populations with demographic or clinical features 
under-represented in TCGA.

In conclusion, this study identified, in primary-
site tumor samples, altered miRNA expression patterns 
associated with ever-development of metastasis in 
patients with uveal melanoma. We found several known 
tumor suppressor miRNAs to be downregulated in 
UM patients with metastasis. These results support the 
increasingly accepted concept that miRNAs play a major 
role in metastasis. Our finding of 95% overlap between (a) 
miRNAs associated with UM metastasis and (b) miRNAs 
associated with poor survival in patients with UM warrants 
further investigation those overlapping miRNAs. Future 

evaluation of the 21 overlapping miRNA as prognostic 
biomarkers and/or therapeutic targets may be a step 
toward improved outcomes for those with metastatic UM, 
a patient population that suffers from high mortality and a 
lack of effective treatment options.

MATERIALS AND METHODS

Dataset

The Cancer Genome Atlas (TCGA; RRID: 
SCR_003193) is one of the foremost data repositories 
providing molecular characterization of more than 20,000 
primary cancers, including unprecedented amounts of 
miRNA sequence data (~11,000 libraries) across 33 cancer 
types [20]. We therefore chose TCGA as the dataset for 
this investigation. We utilized this high-quality data for 

Figure 4: Survival plots, with respect to high vs. low expression, for the miRNAs associated with metastasis that were 
the most significantly associated with OS for UM. (A) The 11 miRNAs that were most (HR < 0.10) protective for OS when highly 
expressed. (B) The 4 miRNAs that were associated with the highest (Hazard Ratio > 10) risk of death.
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our study to analyze the differential miRNA expression 
between patients with and without metastasis. For the sake 
of this analysis, “metastasis” refers to metastasis at either 
initial presentation/diagnosis or recurrence (i. e., ever-
development of metastasis).

TCGA miRNA expression data was generated using 
the Illumina HiSeq/GA miRseq and was reported as counts 
normalized to reads per million mapped reads (RPM). The 
uveal melanoma miRNA dataset was downloaded from 
UCSC Xena browser [46].

Table 4: Top canonical pathways, biological functions and upstream regulators
Canonical pathways p-value

1. Molecular Mechanisms of Cancer 1.58 × 10-19

2. Senescence Pathway 2.51 × 10-18

3. p53 Signaling 1.00 × 10-16

4. Pancreatic Adenocarcinoma Signaling 1.26 × 10-14

5. Glioblastoma Multiforme Signaling 1.00 × 10-12

6. Aryl Hydrocarbon Receptor Signaling 3.16 × 10-12

7. Regulation of the Epithelial-Mesenchymal Transition Pathway 3.16 × 10-12

8. Chronic Myeloid Leukemia Signaling 6.30 × 10-12

9. Cell Cycle: G1/S Checkpoint Regulation 7.94 × 10-12

10. ILK Signaling 1.99 × 10-11

11. PTEN Signaling 2.51 × 10-11

12. Colorectal Cancer Metastasis Signaling 3.98 × 10-11

13. IL-8 Signaling 5.01 × 10-11

14. Glucocorticoid Receptor Signaling 1.94 × 10-10

15. Cyclins and Cell Cycle Regulation 1.58 × 10-09

Diseases or functions annotation p-value

1. Apoptosis 1.43 × 10-37

2. Necrosis 1.54 × 10-37

3. Growth of tumor 1.65 × 10-37

4. Cell proliferation of tumor cell lines 1.89 × 10-37

5. Invasion of cells 2.06 × 10-35

6. Cell movement of tumor cell lines 3.85 × 10-34

7. Migration of cells 1.55 × 10-32

8. Growth of malignant tumor 1.76 × 10-32

9. Cell movement 7.82 × 10-32

10. Migration of tumor cell lines 9.59 × 10-32

11. Cell cycle progression 1.68 × 10-31

12. Invasion of tumor cell lines 1.97 × 10-31

Upstream regulator Molecule type p-value

1. TP53 transcription regulator 2.21 × 10-31

2. EGF growth factor 4.00 × 10-30

3. TGFB1 growth factor 5.81 × 10-30

4. PTEN phosphatase 1.18 × 10-29

5. MYC transcription regulator 2.56 × 10-28

6. SP1 transcription regulator 4.87 × 10-27

7. ERBB2 kinase 2.54 × 10-26

8. FGF2 growth factor 9.69 × 10-26

9. HGF growth factor 1.66 × 10-24

10. TP63 transcription regulator 3.09 × 10-23

11. ESR1 ligand-dependent nuclear receptor 4.44 × 10-23

12. E2F1 transcription regulator 6.48 × 10-23

13. KRAS enzyme 4.26 × 10-22

14. PI3K (complex) complex 5.69 × 10-22
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The dataset includes miRNA expression data 
from each sampled tumor, as well as corresponding 
demographic and clinical information such as patient 
survival and presence of metastases. For statistical 
analyses, expression values were log2 transformed to 
achieve a normal distribution. All statistical analyses were 
performed using the R language and environment for 
statistical computing (R version 3.5.2; R Foundation for 
Statistical Computing; https://www.r-project.org; RRID: 
SCR_001905).

Differential expression analysis

miRNA expression observations were normalized and 
differential miRNA expression between metastatic and non-
metastatic tumors was analyzed for all evaluable miRNAs 
in TCGA UM dataset using the LIMMA package (RRID: 

SCR_010943) [47]. P-values were adjusted using the false 
discovery rate (FDR) method. Also, to minimize the false 
positives, a cut-off of fold change > 2 and adj. p-value < 
0.01 was used to select the differentially expressed miRNAs.

Survival analysis

The survival difference between patients with 
vs. without metastatic UM in this TCGA dataset was 
calculated using the Cox proportional hazard model [48]. 
Independently, we performed survival analyses for each 
miRNA in the UM TCGA dataset. For each miRNA, 
subjects were separated into high-expression or low-
expression groups relative to the median expression 
value. Cox proportional hazard models were fitted for 
each miRNA. The p-values for HRs were computed and 
adjusted using the FDR method.

Figure 5: The network of target genes of miRNAs associated with metastasis in UM. The network was generated using IPA 
software.

https://www.r-project.org
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Bioinformatics analyses

Ingenuity Pathway Analysis (IPA) software was 
used to identify the target genes of miRNAs found to be 
associated with UM metastasis. Bioinformatics analyses 
of the target genes were performed using the IPA software 
for identification of enriched canonical pathways and 
biological functions. The prediction of upstream regulators 
was also done using the IPA software.
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