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ABSTRACT

Patients with advanced solid malignancies recurrent or resistant to standard 
therapy have limited treatment options. The role of molecular biomarkers for 
predicting immune checkpoint blockade (ICB) efficacy are not well characterized in 
these patients. Tumor mutational profiles of 490 patients with a variety of advanced 
solid tumors enrolled in a prospective protocol were analyzed to identify prognostic 
and predictive biomarkers. ICB therapy was defined as treatment with any CTLA-
4, PD-1, and/or PD-L1 monoclonal antibody. ICB treatment was associated with 
significantly improved overall survival compared to non-ICB therapy. Multivariate 
regression analysis including the two variables of tumor mutation burden (TMB) 
and ICB, and their interaction term, showed favorable survival associated with ICB, 
unfavorable survival associated with TMB without ICB treatment, and improved 
outcome with increasing TMB in ICB treated patients. Tumor TP53 mutation was 
associated with worse survival, but these patients still benefitted from ICB. A more 
comprehensive multivariate analysis including cancer type, specific gene mutations, 
and TMB revealed that ICB treatment was an independent predictor of improved 
overall survival. Therefore, ICB-based therapeutic trials are beneficial in patients with 
advanced solid malignancies, but the most benefit may be restricted to patients with 
the right combination of TMB and specific tumor histology and genotype.
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INTRODUCTION

Patients with advanced cancers who are initially 
resistant to frontline therapy or who develop recurrent 
disease have a finite survival [1], and choosing the right 

therapy within this window is crucial. We previously 
demonstrated that matched targeted therapy in this patient 
population is associated with better survival, but this 
benefit was realized for a small subset of patients [2]. One 
alternative approach to consider for this patient population 
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may be the use of immune checkpoint blockade (ICB), 
which has changed therapeutic strategies for the treatment 
of a number of solid tumors [3], especially non-small cell 
lung carcinoma, melanoma, and Merkel cell carcinoma 
[4–6]. When faced with patients with a variety of different 
advanced cancer types, it can be difficult to decide which 
specific patients should be treated with ICB.

In a prospective trial reported previously, a large 
next-generation sequencing (NGS) panel comprised of 
the entire coding regions of 409 cancer-related genes 
was employed to identify clinically actionable gene 
amplifications or mutations to help place patients onto 
matched targeted therapy trials [2]. Another potential 
use for such larger NGS panels is calculation of tumor 
mutation burden (TMB), a promising biomarker for 
prediction of response to immune checkpoint blockade [7]. 
TMB has been shown to predict response to ICB in patients 
with non-small cell lung carcinoma (NSCLC) [8, 9], 
melanoma [10], gastrointestinal (GI) and endometrial 
adenocarcinomas [11], as well as histology agnostic solid 
tumors [12]. It remains unclear what predictive and/or 
prognostic significance TMB has in patients with advanced 
stage, recurrent or treatment refractory solid malignancies.

Recently, patients with tumor mutations in certain 
DNA damage repair (DDR) genes such as POLE [13], 
base excision repair (BER) genes [14], and mismatch 
repair (MMR) genes [9] have been shown to respond to 
ICB. However, the potential ICB response in patients with 
tumor mutations in other DDR pathway genes is not yet 
well characterized. Recent literature proposes that certain 
non-small cell carcinomas with mutations in TP53 may 
have favorable response to ICB [15]. However, the effects 
of TP53 mutation as a modifier of ICB response is also not 
yet well described.

During the initial recruitment phase for this 
prospective protocol (2014–2015), the efficacy of ICB for 
melanoma and a few other cancer types was just beginning 
to be evaluated in clinical trials [16–19]. Therefore, ICB 
treatment of patients with higher TMB was not considered 
a matched targeted therapy for the trial [2]. During the 
course of retrospective review of the trial data, we 
noted that a number of patients were treated with ICB 
after enrollment onto the trial. We therefore wanted to 
determine if immunotherapy had utility in this difficult 
to treat patient population. We also sought to identify 
what clinical variables, if any, were associated with ICB 
treatment response. In this report, we describe a number 
of modifying factors that may be useful in the decision 
to treat with immune checkpoint blockade patients who 
have advanced solid malignancies that are recurrent or 
refractory to frontline therapies.

RESULTS

Of the 554 patients consented for study, 32 did 
not receive any treatment on study, and 32 patients 

were lost to follow up following enrollment. Therefore, 
all analyses are focused on 490 patients who received 
some type of treatment while on study, all of whom had 
AJCC 8th edition stage III or IV disease (or neurologic 
tumors of WHO grade III or IV). A wide variety of 
cancer types were represented in this study (Table 1 
and Supplementary Tables 1 and 2). Notably, only two 
melanoma patients were enrolled on this protocol. The 
mean number of somatic mutations per tumor was 5.4 
(median of 3, range 0–221). Table 1 summarizes the 
distribution of patient tumors by cancer type, number 
of reported mutations, and whether ICB was employed 
as a treatment while on study. Low TMB was relatively 
common in patients with adenoid cystic carcinoma 
of the salivary glands and non-medullary thyroid 
carcinoma. In contrast, cancers such as colorectal 
carcinoma, urothelial carcinoma, head and neck 
squamous cell carcinoma, endometrial carcinoma, and 
germ cell tumors (GCTs) rarely had low TMB, showing 
fewer than 10% of total cases having 0–1 mutations 
(Table 1). The relationship between histology and 
TMB was comparable to previous reports (Figure 1A), 
demonstrating high TMB in melanoma, squamous cell 
carcinoma of the lung, and urothelial carcinoma as 
well as low TMB in non-medullary thyroid carcinoma, 
thymoma and low grade serous gynecologic carcinoma. 
In comparison, when stratifying TMB by mutated gene 
or pathway, tumors with mutated DNA repair genes 
demonstrated relatively increased TMB (red, blue, 
and orange arrows, Figure 1B), whereas TP53 mutated 
tumors tended to demonstrate relatively lower TMB 
(black arrows).

In 31 (6.3%) patients, PD-L1 expression was 
assessed by immunohistochemistry on a wide variety 
of tumors; 5 (16.1%) tumors were positive, defined 
as expression in >1% of tumor cells. Mismatch repair 
(MMR) was assessed by immunohistochemistry in 
21 (4.3%) patients, 2 (9.5%) of whom showed MMR 
deficiency. PCR-based microsatellite instability (MSI) was 
performed on 20 (4.1%) patient tumors 2 of which were 
MSI-High. Most of the MMR and MSI assessments were 
performed for patients with colorectal adenocarcinoma. 
ICB treatment was not significantly associated with tumor 
PD-L1 positivity (p > 0.99), presence of tumor MSI-high 
(p = 0.10), or presence of MMR deficiency (p = 0.43) 
(data not shown).

One hundred and three of 490 (21%) treated patients 
received ICB while on study (Table 1). ICB treatment was 
associated with significantly longer overall survival (p < 
0.0001) (Figure 2). ICB was most commonly attempted in 
patients with non-small cell lung carcinoma and renal cell 
carcinoma, and adenoid cystic carcinoma. In contrast, ICB 
was given to fewer than 10% of patients with colorectal 
cancer, breast carcinoma, high grade serous carcinoma, 
glioma, endometrial carcinoma, and germ cell tumors. 
None of these ICB treated patients had melanoma. Of 
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Figure 1: Distribution of TMB (RMs /Mb) stratified by original histologic diagnosis and by gene mutation profile. (A) 
Dot plots with medians (blue) and interquartile ranges (red). Abbreviations: ADCA: Adenocarcinoma; ACC: Adrenal Cortical Carcinoma; 
ENT: Ear Nose Throat; GCT: Germ cell Tumor; LG: Low Grade; HG: High grade; IDC: Invasive Ductal Carcinoma; NEC: Neuroendocrine 
Carcinoma; NM: Non-Medullary Thyroid Carcinoma; NOS: Not Otherwise Specified; RCC: Renal Cell Carcinoma; SCC: Squamous Cell 
Carcinoma. Since response to ICB was not interrogated in these relationships, all 554 patients were included in this analysis, regardless of 
treatment status. (B) Distribution of TMB (RMs /Mb) stratified by individual somatic gene mutation. Tumors with somatic mutations within 
these genes or gene panels were plotted against a standardized TMB logarithmic scale with medians and interquartile ranges shown. The 
red arrow highlights the relatively high TMB seen in mismatch repair (MMR) gene mutated tumors. The blue arrows indicate tumors with 
mutations in other DNA repair pathways. The orange arrow indicates ATM mutated tumors. TP53 mutated tumors demonstrated relatively 
lower TMB (black arrows). Both stratifications yield a p < 0.0001 in one-way ANOVA analysis. TMB - Tumor Mutation Burden; RM - 
Reported Mutations; Mb – Megabase; DDR (DNA Damage Repair) = BER, CHEK, FA, MMR, NER, RER. MMR (Mismatch Repair) =  
MLH1, MSH2, MSH6, PMS1, PMS2; RER (Recombination Repair) = ATM, ATR, XRCC2, RAD50, WRN, PARP1, NBN, MRE11A; FA 
(Fanconi anemia pathway) = FANCA, FANCC, FANCD2, FANCF, FANCG, PALB2, BRIP1; NER (Nucleotide Excision Repair) = ERCC2, 
4, 5, XPC, XPA; BER (Base Excision Repair) = SMUG1, MUTYH; CHEK (Checkpoint Kinases) = CHEK1, CHEK2. Since response to ICB 
was not interrogated in these relationships, all 554 patients were included in this analysis, regardless of treatment status.
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the 103 ICB treated patients, 18 (17.4%) were tested for 
PD-L1 IHC expression, MMR deficiency, and/or MSI 
instability. Four (3.9%) patients were found to be PD-L1 
IHC positive (>1%) or had MMR deficient or MSI-High 
tumors (data not shown). The remaining patients were 
treated with ICB empirically.

We next sought to identify factors that were 
associated with ICB treatment response and/or resistance. 
Recursive partitioning for classification and tree methods 
(described in the methods section) were used to determine 
the optimal cut-points for TMB, which were the following 
three groups: 0–1 mutation, n = 134; 2–12 mutations, 
n = 326; and 13–221 mutations, n = 30. In patients 
not receiving ICB, there was a continuous decrement 
of survival with increasing TMB (p = 0.0008 Log-rank 
(Mantel-Cox) test, p = 0.0002 Log rank test for trend) 
(Figure 3A). Patients not receiving ICB with low TMB 
(0–1 RMs) had significantly better survival compared 
with the remainder of the non-ICB treated patients  
(HR = 0.643, 95% CI [0.508–0.815]) (Figure 3A, 3B). 
Among ICB treated patients, however, a different 
pattern emerged with patients at the extreme ends of the 
TMB spectrum having relatively favorable outcomes. 
Again, patients with low TMB (0–1 reported mutations) 
demonstrated better relative survival (HR = 0.535, 95% 
CI [0.331–0.866]) (Figure 3C and 3D). Patients with 

high TMB (>12 reported mutations), however, showed a 
trend towards improved survival when treated with ICB  
(HR = 0.586, 95% CI [0.275–1.246]) (Figure 3C and 
3D) (p = 0.0035 Log-rank (Mantel-Cox) test, p = 0.211 
Log rank test for trend). Patients with high TMB tumors 
exhibited the greatest benefit when treated with ICB 
(HR = 0.273, 95% CI [0.116–0.643]) (Figure 3E and 
Supplementary Figure 1). Univariate analysis using 
Cox proportional hazards model demonstrated that ICB 
therapy was associated with significantly improved 
survival (HR = 0.542, 95% CI [0.436–0.675], p < 0.0001). 
Increasing TMB (expressed as the square root of 
reported mutations) was associated with poorer survival  
(HR = 1.058, p = 0.0289, Figure 3F). An interaction term 
between ICB therapy and the square root of reported 
tumor mutations in the multivariate analysis revealed that 
these two variables were not independent (p = 0.0207). 
Rather, increasing number of mutations appeared to 
have a favorable association with survival when patients 
were treated with ICB (Figure 3F). For non-ICB treated 
patients, the HR associated with 1 unit increase in the 
square root of TMB was 1.150 (95% CI: 1.075–1.230, p < 
.0001), while for ICB treated patients, the HR associated 
with 1 unit increase in the square root of TMB was not 
statistically significant (0.997 [95% CI: 0.901–1.102, p = 
0.946]). In the multivariate model, the estimates for the 

Table 1: Distribution of tumor mutational burden and ICB treatment by cancer type Since response to ICB was 
interrogated in these relationships, only the 490 treated patients were included in this analysis

Reported Mutations (n; %) Treatment (n; %)
Patients (n, %) 0–1 2–12 >12 ICB Non-ICB

Cancer Type
Colorectal Adenocarcinoma 87 17.8 2 2.3 80 92.0 5 5.7 5 5.7 82 94.3
Sarcoma, High Grade 64 13.1 26 40.6 36 56.3 2 3.1 13 20.3 51 79.7
Breast Carcinoma 38 7.8 7 18.4 30 78.9 1 2.6 2 5.3 36 94.7
Serous Carcinoma, High Grade 37 7.6 10 27.0 27 73.0 0 0.0 0 0.0 37 100.0
Non-Colorectal GI Carcinoma 33 6.7 10 30.3 21 63.6 2 6.1 6 18.2 27 81.8
Non-Small Cell Lung 
Carcinoma 29 5.9 8 27.6 18 62.1 3 10.3 15 51.7 14 48.3

Renal Cell Carcinoma 28 5.7 8 28.6 20 71.4 0 0.0 16 57.1 12 42.9
Thyroid carcinoma 20 4.1 14 70.0 6 30.0 0 0.0 4 20.0 16 80.0
Adenoid Cystic Carcinoma 17 3.5 12 70.6 5 29.4 0 0.0 9 52.9 8 47.1
Urothelial Carcinoma 15 3.1 0 0.0 11 73.3 4 26.7 5 33.3 10 66.7
Head & Neck Squamous 12 2.4 1 8.3 10 83.3 1 8.3 4 33.3 8 66.7
Prostate Adenocarcinoma 12 2.4 4 33.3 7 58.3 1 8.3 3 25.0 9 75.0
Glioma, High Grade 9 1.8 2 22.2 5 55.6 2 22.2 0 0.0 9 100.0
Endometrioid Carcinoma 7 1.4 0 0.0 6 85.7 1 14.3 0 0.0 7 100.0
Germ Cell Tumor 5 1.0 0 0.0 5 100.0 0 0.0 0 0.0 5 100.0
Other 77 15.7 30 39.0 39 50.6 8 10.4 21 27.3 56 72.7
Overall 490 100 134 27.3 326 66.5 30 6.1 103 21.0 387 79.0

www.oncotarget.com


Oncotarget604www.oncotarget.com

coefficients of ICB treatment, the square root of reported 
tumor mutations, and an interaction term between 
ICB therapy and the square root of reported tumor 
mutations were -0.465 (p = 0.0085), 0.140 (p < 0.0001), 
and −0.143 (p = 0.0207), respectively. To summarize, 
initial multivariate analysis demonstrated that both ICB 
treatment and TMB were both correlated with overall 
survival, and that there appeared to be an interaction 
between these two variables.

We next determined if any specific cancer types 
were over-represented in the highest TMB group. Of the 
490 patients who received treatment while on study, 30 
(6.1%) had tumors in the group with the highest TMB 
(>12 mutations). These 30 patients had a wide variety of 
different cancer types (Table 2), suggesting that cancer 

type was not necessarily an accurate predictor of high 
TMB and response to ICB. Interestingly, five of nine 
patients (55.5%) who received ICB are still alive as of 
January 2019, whereas 19 of 21 (90.5%) patients who did 
not receive ICB have died of disease.

This prospective protocol specifically enrolled 
cancer patients with recurrent or advanced disease in 
which front-line therapy had failed. TP53 mutations were 
the most common somatic mutation in this patient cohort 
(190/490 [38.8%] patients; Table 3), so we investigated 
whether TP53 mutations were prognostic. Across all treated 
patients, TP53 mutation was associated with a statistically 
significant decrease in overall survival (Figure 4A). 
Patients with TP53 mutated tumors, however, still realized 
the survival benefit of ICB treatment (Figure 4B). In fact, 

Figure 2: Immune checkpoint blockade (ICB) therapy is associated with improved overall survival. Patients treated with 
ICB while on study (red) demonstrated improved overall survival compared to patients treated with any other non-ICB therapy while 
on study (black) (HR = 0.542, 95%CI [0.436 to 0.675], p < 0.0001). In the above tables, 0–1 RM (reported mutations) is equivalent to 
0–0.573/Mb tumor mutation burden (TMB), 2–12 RM (reported mutations) is equivalent to 1.146–6.877/Mb TMB, and >12 RM (reported 
mutations) is equivalent to >6.88/Mb TMB. Since response to ICB was interrogated in these relationships, only the 490 treated patients 
were included in this analysis.
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Figure 3: Relationship of ICB treatment and tumor mutation burden on overall survival. When examining patients who 
never received ICB, higher TMB was associated with worse overall survival (A and B). In contrast, in patients who received ICB therapy, 
the lower and upper extremes of TMB were associated with better overall survival (C and D). Patients with TMB>12 demonstrated the 
most benefit when treated with an ICB regimen (E). Panel (F) summarizes the univariate and multivariable regression of the effects of ICB 
therapy, the square root transformation of reported mutations (RM), and the interaction between these two variables. In both the univariate 
and multivariate analyses, ICB therapy was associated with favorable survival and the square root of RM was associated with unfavorable 
survival. The interaction between these two variables (that is, increasing RM in the setting of ICB treatment) was associated with favorable 
survival. Hazard ratios of the three TMB groups were compared internally to all other patients within this patient cohort. HRs are –Log2 
transformed so that a HR of 2 equals 1.0 and a HR of 0.5 equals -1.0. ****p-value < 0.0001; ***p-value < 0.001; **p-value < 0.01, *p-value  
< 0.05. In the above charts and tables, 0–1 RM (reported mutations) is equivalent to 0–0.573/Mb tumor mutation burden (TMB). 2–12 
RM (reported mutations) is equivalents to 1.146–6.877/Mb TMB and >12 RM (reported mutations) is equivalent to >6.88/Mb TMB. Since 
response to ICB was interrogated in these relationships, only the 490 treated patients were included in this analysis.
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the HR of ICB treatment in TP53 mutated patients (HR 
= 0.565, 95%CI [0.389 to 0.821], n = 190, p = 0.0027, 
Figure 4B) versus that in TP53 wild type patients (HR = 
0.543, 95%CI [0.414 to 0.718], n = 300, p < 0.0001) was 
comparable (Figure 5). Therefore, the presence of a TP53 
mutation should not, by itself, discourage ICB treatment. 
However, only 29/190 (15.3%) TP53-mutated patients 
were treated with ICB, a significantly lower proportion 
compared to that of TP53 wild type patients (74/300 
[24.7%]; Fisher Exact test p = 0.0126, Figure 6).

When comparing survival of the 490 treated patients 
in this study, mutations in a few other genes, specifically 

APC, LRP1B, and PIK3CA, were also associated with 
worse survival in all protocol patients by univariate 
analysis (Table 3). However, if comparing all patients 
irrespective of treatment, only tumors with any TP53 or 
PIK3CA mutation demonstrated relatively worse survival 
(Figure 7). There were insufficient numbers of ICB 
treated patients with these tumor mutations to perform 
sub-analyses of ICB versus no ICB treatment. However, 
tumors with mutations in TP53, APC, CSMD3, PKHD1, 
ATM, RNF213, and KMT2D demonstrated improved 
overall survival when treated with ICB versus no ICB 
treatment (Figure 8) (N = 490). In addition, tumors with 

Table 2: Summary of patients with highest TMB in study cohort

Primary site and diagnosis Reported 
mutations

Treatment with immune 
checkpoint blockade

Death from 
disease

Glioma, High Grade, Frontal Lobe, Brain 143 No Yes
Melanoma, Cutaneous 59 No Yes
Endometrial Endometrioid Adenocarcinoma 46 No Yes
Endometrial Carcinoma, Undifferentiated 43 No Yes
Lung Small Cell Carcinoma 29 No Yes
Optic Nerve Pilocytic Astrocytoma 23 No Yes
Colorectal Adenocarcinoma 23 No Yes
Bladder Urothelial Carcinoma Cell Bladder 21 No Yes
Breast Adenocarcinoma 20 No No
Bladder Urothelial Carcinoma 20 No Yes
Nasal Squamous Cell Carcinoma 20 No Yes
Angiosarcoma, Scalp 18 No Yes
Colorectal Adenocarcinoma 18 No Yes
Endometrial Adenocarcinoma, Endometrioid 17 No Yes
Colorectal Adenocarcinoma 14 No Yes
Melanoma of Unknown Primary 14 No Yes
Small Intestinal Adenocarcinoma 14 No Yes
Colorectal Adenocarcinoma 13 No No
Prostatic Adenocarcinoma 13 No Yes
Small Intestinal Adenocarcinoma 13 No Yes
Lung Adenocarcinoma with Small Cell Features 13 No Yes

Urothelial Carcinoma of Kidney, Micropapillary 221 Tremelimumab, 
Durvalumab Yes

Squamous Carcinoma, Cutaneous 114 Nivolumab No
Pituitary Gland Adenocarcinoma 76 Pembrolizumab No
Lung Adenocarcinoma 36 Nivolumab, Durvalumab Yes
Angiosarcoma, Scalp 23 Pembrolizumab No
Bladder Urothelial Carcinoma 21 Nivolumab No
Colorectal Adenocarcinoma 20 Nivolumab Yes
Lung Squamous Cell Carcinoma 17 Ipilimumab Yes
Parathyroid Adenocarcinoma 13 Pembrolizumab No
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Table 3: Multivariate analysis for overall survival in study cohort of 490 treated patients Since response to ICB was 
interrogated in these relationships, only the 490 treated patients were included in this analysis

N
Univariate Multivariate

HR p-value HR p-value
Female 256 0.868 0.1644 N/A N/A
ICB Treatment 103 0.542 <0.0001 0.621 0.01520
Cancer Type

Colorectal Carcinoma (CRC) 87 1.858 <0.0001 1.375 0.12947
Sarcoma, High Grade 64 0.776 0.0789 0.663 0.02481
Breast Carcinoma 38 1.145 0.5014 N/A N/A
Serous Carcinoma, High Grade 37 1.602 0.0249 1.073 0.74109
Non-CRC Gastrointestinal 33 1.615 0.0444 1.358 0.16198
Non-Small Cell Lung 29 1.144 0.5319 N/A N/A
Renal Cell Carcinoma 28 1.186 0.4428 N/A N/A
Non- Medullary Thyroid 20 0.466 0.0003 0.265 0.00087
Adenoid Cystic Carcinoma 17 0.500 0.0009 0.368 0.00513
Urothelial Cell Carcinoma 15 0.983 0.9517 N/A N/A
Head & Neck Squamous 12 1.644 0.1809 1.222 0.54366
Prostate Carcinoma 12 1.193 0.6112 N/A N/A
Glioma 9 1.424 0.3932 N/A N/A
Endometrial Carcinoma 7 1.086 0.8352 N/A N/A
Germ Cell Tumors 5 3.353 0.1044 1.572 0.38098
Other 77 0.702 0.0057 0.619 0.00504

Mutated Gene
TP53 190 1.367 0.0034 0.838 0.20043
TP53 Gain of Function 51 1.837 0.0013 1.372 0.08231
TP53 Frame Shift 23 1.808 0.0298 1.283 0.30556
TP53 Stop Codon 32 0.809 0.2749 N/A N/A
APC 80 1.515 0.0048 0.861 0.51652
KRAS 75 1.275 0.0962 0.726 0.06485
LRP1B 35 1.768 0.0144 1.709 0.01308
PIK3CA 25 2.371 0.0022 1.531 0.05730
NF1 22 1.217 0.4431 N/A N/A
ATM 21 0.850 0.4893 N/A N/A
SMAD4 21 1.648 0.0789 1.220 0.44884
ARID1A 19 1.061 0.8169 N/A N/A

Reported Mutations
-0–1 RM 134 0.613 <0.0001 1.305 0.50289
-2–12 RM 326 1.593 <0.0001 1.487 0.21770
>12 RM 30 0.961 0.8501 N/A N/A
Sqrt RMs 490 1.058 0.0289 1.083 0.28354
(ICB) x (√RM) 103 N/A N/A 0.931 0.33880
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Figure 4: Impact of TP53 tumor mutation on survival and ICB treatment. (A) TP53 mutation was associated with worse 
survival across the patient cohort (HR = 1.367, 95%CI [1.109 to 1.686], n = 490, p = 0.0034, Figure 4A). (B) Retained efficacy of ICB 
in TP53 mutated tumors. The HR of ICB treatment in TP53 mutated patients (HR = 0.565, 95%CI [0.389 to 0.821], n = 190, p = 0.0027, 
Figure 4B) was comparable to the HR in patients with TP53 wildtype tumors (HR = 0.543, 95%CI [0.414 to 0.718], n = 300, p < 0.0001, 
Figure 5). Since response to ICB was interrogated in these relationships, only the 490 treated patients were included in this analysis.

mutations in DNA damage repair genes demonstrated 
improved survival with ICB versus to non-ICB therapy 
(HR = 0.402 95%CI [0.217 to 0.746], n = 12 vs n = 47, 
p = 0.0039) (Figure 9). Interestingly, the improvement in 
hazard ratio of patients without a tumor mutant DR gene 
when treated on ICB was less than that seen in patients 
with tumors with mutated DR genes when treated with 

ICB was (HR = 0.564 95%CI [0.446 to 0.712], n = 91 
vs n = 340, p<0.0001), though still highly significant. 
When comparing survival of the 490 treated patients in 
this study, univariate analyses showed that specific cancer 
types, such as colorectal adenocarcinoma, high grade 
ovarian/peritoneal serous carcinoma, and non-colorectal 
GI carcinoma were associated with a poorer survival 
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Figure 6: Relationship between TP53 mutation status and likelihood of ICB therapy. Only 29/190 (15.3%) TP53-mutated 
patients were treated with ICB, a significantly lower proportion compared to that of TP53 wild type patients 74/300 (24.7%). The Fisher’s 
exact test statistic yields a p-value of 0.0126. Since response to ICB was interrogated in these relationships, only the 490 treated patients 
were included in this analysis.

Figure 5: Tumors with mutations in TP53 demonstrate improved overall survival when treated with icb, similar to tp53 
wildtype tumors. Tree plot of hazard ratios demonstrates retained efficacy of ICB in TP53 mutated tumors. The HR of ICB treatment 
in TP53 mutated patients (HR = 0.565, 95%CI [0.389 to 0.821], n = 190, p = 0.0027) was comparable to the HR in patients with TP53 
wildtype tumors (HR = 0.543, 95%CI [0.414 to 0.718], n = 300, p < 0.0001). This suggested that presence of TP53 Mutation is not a contra-
indication to ICB Treatment. HRs are –Log2 transformed so that a HR of 2 equals 1.0 and a HR of 0.5 equals -1.0. ****p-value < 0.0001;  
***p-value < 0.001; **p-value < 0.01, *p-value < 0.05, #p-value < 0.10. Since response to ICB was interrogated in these relationships, only 
the 490 treated patients were included in this analysis. HRs for groups with small numbers of patients are provided for completeness only.
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Figure 7: Summary of impact of individual gene mutations on survival. TP53 gain-of-function (GOF) and frameshift (FS) 
mutations and PIK3CA mutations were associated with worse survival, while tumors with no mutations demonstrated more favorable 
survival. HRs are –Log2 transformed so that a HR of 2 equals 1.0 and a HR of 0.5 equals -1.0. ****p-value < 0.0001; ***p-value < 0.001; 
**p-value < 0.01, *p-value < 0.05. Since response to ICB was not interrogated in this relationships, all 554 patients were included in this 
analysis regardless of treatment status.

Figure 8: Effect of individual mutations and ICB treatment on survival. Patients with tumors with mutations in TP53, APC, 
CSMD3, PKHD1, ATM, RNF213, or KMT2D had improved overall survival when treated with ICB. HRs are –Log2 transformed so that a 
HR of 2 equals 1.0 and a HR of 0.5 equals -1.0. ****p-value < 0.0001; ***p-value < 0.001; **p-value < 0.01, *p-value < 0.05. Since response 
to ICB was interrogated in these relationships, only the 490 treated patients were included in this analysis.
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(Table 3), whereas non-medullary thyroid carcinoma and 
adenoid cystic carcinoma were associated with improved 
survival in protocol patients (Table 3). However, when 
comparing all patients irrespective of treatment, only 
squamous cell carcinoma of the head and neck and germ 
cell tumors demonstrated significantly worse relative 
survival, whereas non-medullary thyroid carcinoma and 
adenoid cystic carcinoma again had relatively favorable 
survival (Figure 10). There were insufficient ICB-treated 
patients to examine impact of ICB in each of these cancer 
types, but gynecologic, non-colorectal GI, and urothelial 
carcinomas demonstrated improved overall survival 
when treated with ICB compared to non-ICB therapy on 
study (Figure 11A). Aggregating these three tumor types 
together into a composite clinical group highlights the 
benefit of ICB therapy versus a non-ICB therapy (HR 
= 0.424, 95%CI [0.263 to 0.684], n = 15 vs n = 98, p 
= 0.0004), demonstrating the ability to enrich for ICB 
response (Figure 11B). Breakdown of this composite 
group by TMB also showed variation among TMB groups 

(Figure 11C). Interestingly, the data indicate significant 
responses to ICB in the middle and high TMB groups.

Our initial simplified multivariate analysis 
demonstrated that both ICB treatment and tumor 
mutation burden were associated with overall survival. 
A more complex multivariate analysis that included 
treatment type, cancer type, specific gene mutations, and 
TMB, treatment with ICB remained strongly associated 
with better overall survival (Table 3). A few other 
factors, such as presence of specific tumor histologies 
(adenoid cystic carcinoma and non-medullary thyroid 
carcinoma; favorable), and presence of LRP1B mutation 
(unfavorable), retained their respective associations with 
survival (Table 3). Notably, in the more comprehensive 
multivariate analysis, TMB by itself was not associated 
with survival after taking into account a number of other 
histologic and genetic mutational variables. These results 
therefore suggest that the relationship between high 
TMB and beneficial response to ICB therapy may be 
more complex than previously thought. Tumor type and 

Figure 9: Tumors with mutations in DNA damage repair genes demonstrate improved survival with ICB versus non-
ICB therapy. Although limited sample sizes prevent strong inferences, these patients show consistent response to ICB. The None Rptd 
(None Reported) group includes patients with no reported mutations in any of the panel (including DNA repair) genes. DDR (mutation in 
any DNA damage repair gene) group includes MMR, FA, BER, NER, RER, or CHEK. MMR (mutation in any mismatch repair gene) group 
includes MLH1, MSH2, MSH6, PMS1, or PMS2; RER (mutation in any recombination repair gene) group includes ATM, ATR, XRCC2, 
RAD50, WRN, PARP1, NBN, or MRE11A; FANC (mutation in any Fanconi anemia pathway gene) group includes FANCA, FANCC, 
FANCD2, FANCF, FANCG, PALB2, or BRIP1; NER (mutation in any nucleotide excision repair gene) group includes ERCC2, ERCC4, 
ERCC5, XPC, or XPA; BER (mutation in any base excision repair gene) group includes SMUG1 or MUTYH; CHEK (mutation in any 
checkpoint kinase gene) group includes CHEK1 or CHEK2. HRs are –Log2 transformed so that a HR of 2 equals 1.0 and a HR of 0.5 equals 
-1.0. ****p-value < 0.0001; ***p-value < 0.001; **p-value < 0.01, *p-value < 0.05, #p-value < 0.10. Since response to ICB was interrogated in 
these relationships, only the 490 treated patients were included in this analysis. HRs for groups with small numbers of patients are provided 
for completeness only.
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mutations in individual genes may be modifiers of the 
impact high TMB has on ICB treatment response.

DISCUSSION

In patients with stage III/IV advanced solid 
malignancies refractory to standard treatment, our data 
argue for inclusion of ICB treatment as a therapeutic 
consideration. We found worsening survival outcomes 
with increasing TMB which may be reversed by treatment 
with ICB. Our data suggest that increasing TMB may 
actually be associated with improved survival in the ICB 
treated subgroup of patients. This complex relationship 
between TMB, ICB treatment, and survival highlights the 
importance of tumor mutational profiling in this patient 
population. Such molecular profiling not only identifies 
potential targets for matched targeted therapy [2], it can 
identify patients with tumors with higher TMB who may 
be more optimal candidates for ICB. Failure to recognize 
this potential positive impact of ICB on survival in 
this difficult to treat patient population could therefore 
represent an important lost opportunity.

The limitations of this study include the fact 
that the treatments for this patient population were not 
randomized. We cannot exclude the potential for selection 
bias in choosing to give ICB therapy to patients who may 
already be more likely to demonstrate prolonged survival. 
However, this report does suggest that ICB-based trials 
may be more likely to provide benefit in a wider spectrum 
of cancer types in patients who have advanced disease.

Prior evaluations of the prognostic value of TMB 
have mainly focused upon a “hypermutated” group (>8 

to 17 /Mb), showing high TMB as a good prognostic 
biomarker [20]. This hypermutated group typically 
consists only of 5–20% of a given cancer patient 
population. The majority of patients with solid tumors 
(80–95%) fall within the TMB “low” group (<8 to 17 /
MB). Within this larger group of TMB low patients, 
increasing TMB may reflect increasing tumor complexity 
and heterogeneity leading to treatment refractoriness 
to conventional therapy and unfavorable outcomes. In 
contrast, tumors with very low TMB (0–1 /Mb) may have 
less intra-tumoral heterogeneity, and patients may respond 
more favorably to conventional therapy. The NGS panel 
in our study was 1.745 Mb, somewhat larger than most 
commercially available NGS panels. Our data argue for 
the utility of a larger NGS panel to identify TMB at a more 
granular level, especially on the lower end of the TMB 
spectrum. In fact, a number of studies have emphasized 
the utility of larger panels in this range in order to obtain 
sufficient sensitivity, especially when interrogating tumors 
with less than 10 somatic mutations per Mb [21–23].

The optimal approach to identify cancer patients 
who are most likely to benefit from immunotherapy 
remains controversial. PD-L1 Immunohistochemical 
assessment in solids tumors has demonstrated a moderate 
association with response to ICB (PD-L1 positive: 48% 
vs PD-L1 negative: 15%) [24]. However, in renal cell 
carcinoma [24], PD-L1 estimation has not been associated 
with response to ICB. PD-L1 expression has only modest 
overlap with TMB high tumors, capturing approximately 
45% of tumors with higher TMB [25]. In fact, PD-L1 
expression by immunohistochemistry has been shown 
to be somewhat independent of TMB in non-small cell 

Figure 10: Impact of tumor histology/type on patient survival. Patients with head and neck squamous cell carcinomas (ENT SCC) 
and germ cell tumors (GCT) had less favorable survival. Patients with non-medullary thyroid carcinomas and adenoid cystic carcinomas 
(AdCC) demonstrated longer survival. HRs are –Log2 transformed so that a HR of 2 equals 1.0 and a HR of 0.5 equals -1.0. ****p-value 
< 0.0001; ***p-value < 0.001; **p-value < 0.01, *p-value < 0.05. Since response to ICB was not interrogated in these relationships, all 554 
patients were included in this analysis regardless of treatment status.
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lung carcinoma [26]. Mismatch repair deficiency and 
high levels of microsatellite instability are now approved 
indications for ICB therapy [27]. Mismatch repair and 
microsatellite instability testing have been limited 
largely to gastrointestinal and endometrial carcinomas 
due to low identification rates in other tumor types [27]. 
Microsatellite instability testing captures only 10–30% of 
TMB high tumors [25, 28]. In colorectal carcinoma, the 
overlap between mismatch repair deficiency and TMB 
is strong, but this is not true in endometrial, ovarian, 
cervical and neuroendocrine carcinomas [25]. Given 
that PD-L1 immunohistochemistry, mismatch repair 
immunohistochemistry, and microsatellite instability are 
relatively simple clinical laboratory assays that are widely 
available, a simplified approach might include utilization 

of these tests first. If they are negative, then the more 
complex assessment of TMB via a large scale NGS panel 
could be pursued.

A better understanding of the impact of individual 
gene alterations on patient outcomes with ICB treatment 
is emerging. For example, in KRAS-mutant lung 
adenocarcinoma, STK11/LKB1 mutation is associated 
with resistance to ICB treatment [29]. Co-mutations of 
TP53 and KRAS in lung adenocarcinoma are reported 
to correlate with improved efficacy of ICB therapy 
[30]. Mutations of LRP1B are associated with increased 
TMB and survival in melanoma and non-small cell 
lung carcinoma patients given immunotherapy [31]. 
Loss of tumor PTEN protein expression in melanoma is 
associated with worse ICB outcomes and reduced tumor 

Figure 11: Impact of tumor type/site and ICB treatment on survival. (A) Patients with gynecologic adenocarcinomas, non-
colorectal GI cancers, and urothelial carcinoma had improved overall survival when treated with ICB. Note that patient numbers are 
relatively small in the ICB treatment groups for most of the tumor types. Since response to ICB was interrogated in these relationships, only 
the 490 treated patients were included in this analysis. (B) If aggregated together into a composite clinical group (urothelial carcinomas, 
non-colorectal gastrointestinal carcinomas, and gynecologic carcinomas), the composite benefit of ICB therapy versus a non-ICB therapy 
(HR = 0.424, 95%CI [0.263 to 0.684], n = 15 vs n = 98, p = 0.0004) may be enriched by isolating on these tumor types. (C) A tree plot 
of hazard ratios of ICB treatment within this composite group of tumors is shown and stratified by number of reported mutations. HRs 
are –Log2 transformed so that a HR of 2 equals 1.0 and a HR of 0.5 equals -1.0. ****p-value < 0.0001; ***p-value < 0.001; **p-value < 0.01, 
*p-value < 0.05.
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infiltration by CD8+ T cells [32]. TP53 mutation was 
the most common molecular alteration in our patient 
population and was associated with worse survival, 
similar to its known association with unfavorable 
outcome in solid and hematologic malignancies [33–36]. 
Our data demonstrate that while TP53 mutations are 
associated with unfavorable survival, the effect of ICB 
therapy is not diminished by the presence of this gene 
mutation. This is concordant with previous data showing 
PD-L1 expression may be increased in TP53 and KRAS 
mutated non-small cell lung carcinomas [30]. Our data 
also suggest that tumor mutations in a broad array of 
DNA repair genes is associated with better response 
to ICB therapy. Such DNA repair pathways include 
mismatch repair (MMR), base excision repair (BER), 
nucleotide excision repair (NER), recombination repair 
(RER), and Fanconi anemia (FA).

Finally, in the expanded multivariate analysis, 
treatment with ICB retained its association with improved 
survival, independent of all other variables in the model. 
The loss of significance of TMB in the multivariate analysis 
may be due to high correlation of TMB with cancer type 
and/or specific mutational profiles [28, 37]. Our findings 
may corroborate the observation that the ability of TMB 
to predict ICB benefit is dependent upon histologic type 
of cancer [38]. If true, this argues for the use of histology 
specific TMB cutoffs as well as modifications based on 
mutational profile in future clinical practice.

Taken together, although our initial multivariate 
analysis demonstrated that both ICB treatment and tumor 
mutation burden were associated with overall survival, a 
more complex multivariate analysis that included treatment 
type, cancer type, specific gene mutations, and TMB, 
demonstrated only treatment with ICB remained strongly 
associated with better overall survival (Table 3). A few 
other factors, such as presence of specific tumor histologies 
(adenoid cystic carcinoma and non-medullary thyroid 
carcinoma; favorable), and presence of LRP1B mutation 
(unfavorable), retained their respective associations with 
survival (Table 3). Notably, in the more comprehensive 
multivariate analysis, TMB was not associated with 
survival after taking into account histologic and genetic 
mutational variables. These results therefore suggest that 
the relationship between high TMB and beneficial response 
to ICB therapy may be more complex than previously 
thought and that tumor type and mutations in individual 
genes should also be considered when constructing clinical 
models predictive of response to ICB.

MATERIALS AND METHODS

Patient population

As described previously (2), patients were enrolled 
prospectively into an IRB-approved institutional protocol, 
PA14–0099, between May 7, 2014, and October 5, 2015. 

Written informed consent from all patients participating in 
this trial was obtained prior to enrollment. Key enrollment 
criteria included: 1) any adult patient with pathologic 
documentation of a single solid malignancy; 2) completion 
of frontline and any standard treatments that extended life 
by at least 3 months; 3) Eastern Cooperative Oncology 
Group performance status of 0 or 1; 4) no active brain 
metastases; and 5) previous tumor testing using a smaller 
sequencing panel and that showed no clinically actionable 
mutations or the patient had progressed on a matched 
therapy targeting a previously identified actionable 
finding. Electronic medical records were reviewed for 
specific treatment on study, including any type of ICB 
treatment. ICB therapy on study was defined as treatment 
with any CTLA-4 (ipilimumab, tremelimumab), PD-1 
(nivolumab, pembrolizumab, spartalizumab, cemiplimab), 
and/or PD-L1 (atezolizumab, durvalumab) monoclonal 
antibody after the trial consent date.

Molecular testing

Molecular testing was performed on formalin-
fixed, paraffin-embedded (FFPE) tissue of patient tumors 
using a NGS panel that covers the entire coding regions 
of 409 cancer-related genes (15,992 amplicons; 1.745 
Mb) as previously detailed [39]. Subtraction of germline 
single nucleotide polymorphisms (SNPs) was performed 
for each patient using a paired normal control specimen 
derived from either peripheral blood mononuclear cells 
or normal FFPE tissue from the same patient. For each 
patient tumor, TMB was calculated as the sum of reported 
somatic mutations (including SNV and indels), and not 
counting intronic or silent mutations. TMB can also be 
expressed as mutations /Mb by dividing the number of 
reported mutations by the panel footprint of 1.745 Mb. 
Supplementary Table 3 summarizes the number of reported 
tumor mutations and the corresponding TMB (mutations/
MB). TP53 somatic mutations were the most common 
in this patient population, and they were further sub-
categorized as gain-of-function, frameshift, and/or stop 
(nonsense). Gain-of-function mutations may gain novel 
functions through protein–protein interactions with the 
transcription factors NF-Y, VDR, PML, Sp1, and Ets2 [40].

Mismatch repair and PD-L1 
immunohistochemistry and microsatellite 
instability analyses

Mismatch repair protein immunohistochemistry was 
performed according to methodology previously described 
[41]. Briefly, immunohistochemistry of mismatch repair 
proteins was performed using standard techniques for 
MLH1 (G168–15 1:25; BD Biosciences Pharmingen), 
MSH2 (FE11, 1:100; Calbiochem), MSH6 (44, 1:300; 
BD Biosciences Pharmingen), and PMS2 (Alb-4, 1:125; 
BD Biosciences Pharmingen). Immunohistochemistry 
was scored as mismatch repair protein intact or deficient 
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using light microscopic examination. Complete absence of 
mismatch repair protein expression was required in order 
for a case to be designated as mismatch repair deficient. 
Stromal cells served as an internal positive control. For 
PD-L1 immunohistochemistry, staining and analysis 
were performed using clones 28–8 and 22C3 (Dako). 
Any positive staining in tumor cells observed by light 
microscopy was considered PD-L1 positive. PCR-based 
microsatellite instability analysis was performed using 6 
National Cancer Institute (Bethesda, MD) recommended 
microsatellites with the addition of TGFβR2 as previously 
described [42].

Statistical analyses

Survival was calculated from date of study consent 
to date of death or last known encounter within the medical 
record. GraphPad Prism 8.1.2 software (La Jolla, CA) was 
used to plot histograms and Kaplan-Meier survival curves 
and to calculate p-values for Mantel-Haenszel hazard 
ratios (HRs) with 95% confidence intervals and log-rank 
tests for trend. Recursive partitioning for classification and 
tree methods [43] were used to determine the optimal cut 
points for reported mutations in the ICB treated group. 
With the determined cut points above, Kaplan-Meier 
curves were plotted for ICB-treated, non-ICB treated, and 
all patients on study, and the p-values from the log-rank 
tests were provided. Cox proportional hazard models were 
utilized for univariate and multivariate analyses on the 
time-to-event endpoint of overall survival. For multivariate 
analysis, variables with p-values less than 0.2 from the 
univariate model were considered for model fitting and 
stepwise model selection, and the variables with p-values 
less than 0.05 were considered statistically significant in 
the final model. To determine the best functional form of 
the continuous covariates in the model with ICB and tumor 
mutation burden, the martingale residuals were plotted for 
the variable tumor mutation burden along with locally 
weighted scatterplot smoothing after a Cox model with 
other variable (s) was fitted. The smoothed curve was not 
linear, suggesting that transformation of tumor mutation 
burden was necessary. Since the distribution of tumor 
mutation burden was positively skewed, and there were 
many zero and small values for tumor mutation burden, 
the square root transformation of tumor mutation burden 
was utilized. Correction for multiple comparisons was not 
performed due to the retrospective exploratory nature of 
this analysis. All tests were two-sided. P-values less than 
0.05 were considered statistically significant. In addition 
to GraphPad Prism, the analyses were performed using R 
version 3.5.3 (2019–03-11) and SAS 9.4 (SAS, Cary, NC).

Ethics approval

This study protocol (PA14–0099) was approved 
by the MD Anderson Cancer Center Institutional Review 

Board. Written consent from all patients participating in 
this trial was obtained prior to enrollment.
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