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ABSTRACT
Osteoimmunology was coined about twenty years ago to identify a strict cross 

talk between bone niche and immune system both in physiological and pathological 
activities, including cancer. Several molecules are involved in the complex interaction 
between bone niche, immune and cancer cells. The Receptor Activator of NF-kB 
(RANK)/RANK Ligand (RANKL/Osteoprotegerin (OPG) pathway plays a crucial role 
in bone cells/cancer interactions with subsequently immune system control failure, 
bone destruction, inhibition of effect and metastasis outcome. The bidirectional cross 
talk between bone and immune system could became a potential target for anticancer 
drugs. Several studies evidenced a direct anticancer role with improved survival of 
bone-targeted therapies such as bisphosphonates and RANKL antagonist Denosumab. 
Conversely, initial data evidenced a possible anti-bone resorption effect of systemic 
anticancer drugs through and immunomodulation activity, i.e. new generation 
antiandrogens (Abiraterone) in prostate cancer. All data could open a future rationale 
of combined bone, immunologic and targeted therapies in cancer treatment.

BIDIRECTIONAL CROSSTALK BETWEEN 
IMMUNE SYSTEM AND BONE NICHE: 
“OSTEOIMMUNOLOGY” CONCEPT

The “Osteoimmunology” concept was first 
evaluated in 2000 to identify a new interdisciplinary 
field, involving bone and immune system cells both in 
physiological and pathological activities [1]. The real 
news is to consider bone niche as a dynamic and complex 
system: all cells involved in the process interact with each 
other to continuous cycles of remodeling during human 
growth, with consequent and adequate bone growth [2].

Several recent data confirmed that bone cells works 
not alone in the processes of maintenance and accrual 
of bone mass. Specifically, also immune system play a 

crucial role in bone pathophysiology: several immune 
cells and immune-related factors, such as Interleukins 
(i.e., IL-6, -11), Tumor Necrosis Factor (TNF)-a, Nuclear 
Factor of Activated T-cell, cytoplasmatic-1 (NFATc1) 
[3–9] interact with bone cells to the bone “equilibrium”. 
Surprisely, recent data demonstrated a bidirectional cross 
talk between immune system and bone cells, assuming 
a feedback mechanism. For example, Zhu and Miller in 
their works showed a direct activity of osteoblasts to of 
B-lymphocytes differentiation from hematopoietic stem 
cells [10], by an osteoblasts secretion of Interleukin (IL)-
7 and C-X-C motif chemokine Ligand (CXCL)12 [11]. 
On the other hand, many cytokines as IL-1, IL-15 and IL-
17f increase osteoblast activity [7]. In addition, osteoclasts 
regulate immune cells activity also indirectly through 
osteoblasts, by the secretion of cathepsin K and the T Cell, 
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Immune Regulator 1, ATPase, H+ transporting, lysosomal 
V0 protein A3 (Tcirg1) [12, 13].

In addition, several other immune cells and 
factors promote osteoclastogenesis, such as: neutrophils, 
synoviocytes, T-cells, Activated leucocytes, dendritic 
cells, stimulated stromal cells, Macrophage Colony 
Stimulating Factor (M-CSF), Natural Killer (NK)-cells; 
IL-1a, IL-1b, IL-7, IL-17, IL-15, IL-8, TNFa, IL-23, IL-
24, IL-34 [14–22]. The bone niche with immune cells is a 
real “place of call” for tumor and cancer stem cells (CSCs) 
[23]. We can find in bone marrow different immune 
cells, such as granulocytes, macrophages, dendritic 
cells (DC), NK cells, T and B lymphocyte subsets, and 
myeloid derived suppressor cells (MDSCs). In spite of 
their great number and variability in bone niche, immune 
cells appear not able to control the processes of cancer 
cells growth and metastatization [23]. Probably, it is due 
to the presence in bone niche of contextual immature 
and suppressor immune cell types, such as T regulatory 
cells and MDSCs. Specifically, Feuerer et al. demonstrate 
that infiltrating T regulatory cells produce RANKL, 
with immune system downregulation and osteoclast 
differentiation. This process lead to osteoclastogenesis 
and bone metastasis [24]. Moreover, NK cells showed 
an ambiguous role in bone niche. In several experiments 
in melanoma, prostate, and breast cancers, they present 
an antitumor activity [25]. On the other hand, several 
data showed that NK cells promote melanoma cells 
proliferation and CSC phenotype conversion into bone 
niche. Furthermore, B and T cells contribute to the 
process of osteoclastogenesis, by the production of 
different factors such as TNFα and RANKL [26].

The turning point was in 1990, when the Receptor 
Activator of NF-kB (RANK)/RANK Ligand (RANKL)/
Osteoprotegerin (OPG) system was discovered with its 
critical role in regulating osteoclastogenesis and bone 
remodeling activity [27]. While the RANK receptor is 
present on the surface of mature osteoclasts, RANKL 
is produced in a soluble form by osteoblasts, stromal 
cells and immune cells. The soluble receptor OPG plays 
an antagonist role against RANK/RANKL interaction, 
blocking the activity and the maturation of osteoclast 
[28, 29]. The equilibrium between RANK and OPG is 
regulated by activity of several cytokines and systems, 
as interleukin (IL)-1, IL-6, TNF alpha, TNF receptor-
associated factors (TRAFs), PI3K, c-Src, Akt/PKB and 
mTOR [30, 31]. Several data evidenced that many of these 
factors are also involved in immune system regulation. 
Moreover, RANK/OPG balance plays a fundamental 
role in immune system activity: it increases lymphocyte 
development in lymph nodes, sustains the activation and 
the maturation of DC, and regulates the immune response 
mediated by T cells [32, 33].

Furthermore, pathological conditions show this 
close interaction between bone and immune system. 
Initial data evidenced that several bone diseases present 

an immunologic origin, such as rheumatoid arthritis, 
osteoarthritis and osteoporosis. There is a rise in the 
existence of these different skeletal diseases, which occur 
because of defective bone remodeling as a consequence 
of skewed immune system because of disruption of the 
homeostatic nexus between immune system and bone 
cells, that enhanced bone loss [34].

In 2014, Krevvata et al. evidenced a correlation 
between bone niche and cancer cells in acute myeloid 
leukemia (AML). In this case, osteoblasts promote the 
progression and transformation of the myeloid cells 
lineage in preneoplastic and neoplastic cells. Specifically, 
authors demonstrated that osteoblasts are able to slow 
down leukemia progression through an unfavorable 
microenvironment for leukemic blast growth. The “bone 
niche” concept becomes a “niche-induced leukemia” 
system: for the first time bone niche is evaluated as a 
dynamic system that include bone, immune and cancer 
cells [35].

ALTERATIONS OF BONE AND IMMUNE 
SYSTEM IN CANCER: PRECLINICAL 
DATA

Several preclinical data in the last years 
demonstrated that cells involved in bone microenvironment 
and immune system can promote tumor growth and 
progression. Bone represents a cancer cells sanctuary 
against anticancer therapies. Many authors suggested 
that the bone niche probably guarantees an evasion of the 
immune system by disseminated tumor cells. Furthermore, 
bone niche preserve cancer cells from anticancer drugs 
[36]. The process of hematopoiesis occurs in skeleton 
and is guaranteed by the bone niche, in which different 
cytokines, growth factors and adhesion molecules play 
a crucial role [37]. The same bone niche, however, with 
the involvement of the near microenvironment, became 
a “soil” for the development of several tumor cells, 
including primitive hematological cancers and metastatic 
solid tumors [38].

In addition, tumor cells are able indirectly to reduce 
their immunogenicity by bypassing tumor immune 
surveillance mechanism. Although we know little about 
the immune system remodeling by bone homeostasis, 
some possible mechanisms begin to be demonstrated. In 
the bone niche, cancer cells are able to overbalance the 
RANKL/OPG ratio to osteoclastogenesis, favoring bone 
resorption and metastases implant. The osteoclastogenesis 
process leads bone niche to down regulation of immune 
system pathway, in a vicious circle that enhances 
tumor bone spread. Several works demonstrated these 
processes: i) RANK-expressing tumor cells/RANKL 
activation determines tumor metastatization; ii) T-cell 
suppression in bone-tumor niche helps bone lysis and 
tumor cells implantation; iii) T-cell suppression reduces 
osteoblastogenesis and bone stabilization; iv) Osteoclast 
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factors enhance tumor spread through the inhibition of 
the T cells proliferation; v) Bone niche immune cells, as 
macrophages, can participate in antitumor responses after 
anticancer therapy, with elimination of circulating tumor 
cells and reduction of bone cancer cells implantation; 
vi) RANKL/RANK/OPG pathway actually represents a 
negative prognostic factor in cancer development [39–43] 
(Figure 1).

Prostate cancer is one of tumors that has been 
analyzed more frequently as regards bone, cancer and 
immune cell activity. Tumor cells increase the RANKL/
OPG ratio indirectly in the bone with the release of different 
factors such as PTHrP, IL-1, IL-6 (osteoclast differentiation 
and survival activity) and directly with osteoclast precursors 
interaction and co-activation. In addition, cancer cells 
produce osteoblast differentiation inhibitors such as 
dickkopf-1 (DKK-1) and activin A [44, 45].

Recently, other molecules, such as PGE2, have 
been identified as possible “actors” in the processes of 
bone resorption and cancer metastatization, especially 
in patients with prostate cancer. Probably, tumor cells 
wedged in bone niche deregulates bone remodeling and 
manifests as osteolytic lesions that may cause skeletal 
related events (SREs). According these data, PGE2 could 

became a possible future therapeutic target in the treatment 
of prostate cancer [45].

In addition, multiple myeloma (MM) is a 
hematologic malignance that depend from the clonal 
expansion of malignant plasma cells within the bone 
marrow. This disease is often associated with adverse 
SREs. The bone lesions in MM are always lytic and 
it depends their ability to promote the processes of 
bone resorption. The principal mechanism is the 
displacement of the RANKL/OPG ratio to the process 
of osteoclastogenesis [46]. For example, Schramek et 
al. recently demonstrated that aberrant RANK/RANKL 
signaling in mammalian tissues promote bone resorption 
and the rapid development of progestin-mediated breast 
cancer. This process is amplified by a synergistic immune 
cells deregulation, mediated by cytokines such as TNF-
alpha and IL-6 [47]. The aberrant activity RANK/RANKL 
pathway promotes the bone niche invasion by the RANK-
expressing mammary epithelial cells. Moreover, the 
RANK/RANKL upregulation promotes antiapoptotic 
processes in response to DNA damage. The blockade of 
RANK/RANKL signaling in mice experiments (using 
genetic ablation of Rank or RANKL-Fc) inhibits the 
development of mammary tumors [48].

Figure 1: An example of interaction between bone, immune and cancer cells: osteoclastogenesis, mechanism of bone 
resorption and potential targets of biphosphonates and denosumab. The complex process of osteoclastogenesis in cancer is 
regulated by an interaction between bone, immune and cancer cells. Cancer cells promote this process in two ways: 1) indirectly, stimulating 
osteoblast to activate the RankL/Rank pathway (bone osteoclastogenesis) and deregulating immune cells activity against osteoclasts; 2) 
directly, stimulating osteoclastsogenesis by upregulation of IL-1, IL-6, PTHrP, GM-CSF. After cancer cells signals, immune system cells 
activate osteoclastogenesis by upregulation of TNFa, IL-1a, IL-1b, IL-7, IL-8, IL-23. Once activated, osteoclasts protect their growth 
with the inactivation of immune system by TGF-beta production. Bisphosphonates (i.e. Zoledronic Acid) inhibit osteoclast formation, 
recruitment and adhesion to bone shift the balance towards OPG production by osteoblasts and induce osteoclasts apoptosis. Denosumab is 
a fully human monoclonal antibody with anti-RANKL activity, thus inhibiting osteoclast activation by Rank receptor. Initial data evidenced 
a possible role in immune system preservation by B cell/T cell differentiation and dendritic cell survival.
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For this reason, RANK/RANKL/OPG system 
became a future therapeutic target, with possible 
prevention of bone resorption and decreasing of the 
number of SREs. Interestingly, direct antitumor effect 
through reactivating immune system cells. For the first 
time we can consider a bone target therapy as a possible 
systemic anticancer effect.

BONE TARGETED DRUGS HAVE A 
ROLE IN ANTICANCER SYSTEMIC 
THERAPY THROUGH IMMUNE SYSTEM 
ACTIVATION

Bisphosphonates were the first drug class that 
demonstrates the ability to inhibit osteoclast formation, 
recruitment and adhesion to bone shift the balance towards 
OPG production by osteoblasts and induce osteoclasts 
apoptosis (Table 1). The first effect was to prevent 
pathological bone resorption with a dramatic SREs 
reduction [49].

Clezardin et al. in a recent study also demonstrated 
the existence of direct and indirect antitumor activity. 
Bisphosphonates counteract the tumor proliferation in 
bone niche reducing the release of bone-derived growth 
factors and cytokines. In addition, other mechanism could 
be the inhibition of tumor cell adhesion and invasion, and 
the apoptosis of cancer cells (bidirectional bone/cancer 
cells interaction) [50]. The latest data regarding third 
generation bisphosphonates evidenced also an indirect 
antitumor effect via immune system regulation. zoledronic 
acid and pamidronate activate T cells surveillance in 
bone niche and blood, with antiangiogenic and immune-
modulatory mechanism [51]. Fournier et al. showed that 
zoledronic acid at therapeutic dose promotes the activity 
of T cells and the blockade of osteoclast-mediated bone 
resorption (“dual inhibition”) [52].

Breast cancer, MM and prostate cancer are the tumors 
with zoledronic acid activity which have been studied more 

[53]. Several data confirmed that zoledronic acid in advanced 
breast cancer patients prevents the bone loss induced 
by aromatase inhibitor use, bone metastases, SREs and 
reduced survival [54]. Recent data also evidenced a possible 
synergistic effect of zoledronic acid with chemotherapy 
(such as cisplatin) in metastatic triple negative breast cancer, 
with results in the prolongation of progression free survival 
(PFS) and overall survival (OS). Specifically, zoledronic acid 
stimulates the number of T cells and monocytes, and inhibits 
the process of osteoclast-mediated bone resorption (bone/
cancer/immune cells interaction) [55]. Recent data suggest 
that bisphosphonates could exert a protective activity to bone 
reducing the bone niche invasion and metastatization by cancer 
cells. It represent a clear anticancer activity in postmenopausal 
breast cancer women treated with adjuvant hormonal therapy, 
hypothesizing that an early use in adjuvant setting could 
provide the greatest benefits [56]. In addition, in renal cell 
cancer, lung cancer and hepatocellular carcinoma recent data 
evidence a systemic activity of bisphosphonates to prolong 
patient survival and increase quality of life [57–59, 64].

Recently, a new drug blocking RANK/RANKL/
OPG pathway exerts bone control with the prevention 
of bone resorption and destruction: denosumab, a fully 
human monoclonal antibody (anti-RANKL), authorized 
for the treatment/prevention of SREs in bone metastases 
from MM, breast, prostate cancer and Ewing Sarcoma. 
Better than zoledronic acid, denosumab decreases the 
number of SREs, delays SREs onset, reduces bone 
pain and prevents immune system preservation by the 
differentiation and survival of B cell, T cell and DCs 
(both in bone niche and blood) [60, 65]. Initial preclinical 
data evidenced a possible role in systemic tumor control 
with better progression and overall survival, but strongly 
results are warranted. In addition, in this case the 
systemic anti-cancer effect seems due to a better immune 
system regulation, T-cell activation and immunogenic 
chemokine’s increase [61]. Current clinical studies are 
evaluating to a greater extent the effect of denosumab on 
survival and other biomarkers.

Table 1: Bisphosphonates (zoledronic acid) and denosumab in patients with bone metastases: 
current demonstrated efficacy in different cancer types
Zoledronic acid Multiple myeloma [48, 49]

Breast cancer [48, 49, 50]
Lung cancer [64]
Renal cell carcinoma [53]
Prostate cancer [49]

Denosumab Multiple myeloma [58]
Breast cancer [59, 60]
Prostate cancer [59, 60, 62, 63]
Hepatocellular carcinoma [55]
Ewing Sarcoma [65]
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ANTICANCER DRUGS PLAY EFFECT 
AGAINST BONE DISRUPTION THROUGH 
IMMUNOMODULATION: FIRST SMALL 
STEPS

On the other hand, considering the bone/cancer cells 
interaction as a bidirectional process, some authors first 
evaluated a possible converse scenario: a bone disease 
control using the systemic anticancer drugs. Certainly, a 
better control of systemic cancer disease delays metastases 
onset, including bone. Recently authors evidenced 
an indirect bone disease control by new generation 
antiandrogens, such as the CYP17 inhibitor Abiraterone 
in prostate cancer [62]. In all clinical studies, Abiraterone 
demonstrates a better control of systemic disease also 
thanks to bone resorption control (prolonged radiographic 
progression free survival), SREs reduction (time to first 
SRE), better quality of life with reduced bone pain. 
Laboratory data evidenced a possible bone niche control 
by immune system activation, such as T-cells increase, 
DCs control and immune-stimulatory cytokines. Detti et 
al. recently also evidenced a possible synergistic activity of 
abiraterone with radiotherapy in bone metastases control 
in patients with advanced prostate cancer. Radiotherapy in 
bone niche activates immune system control and exposes 
immune cells to abiraterone activity. The result is the block 
of the bone/cancer cells pathway, with osteoclastogenesis 
reduction and bone stabilization [63]. We are only at 
the beginning of this new aspect of osteoimmunology 
and further data are necessary to better clarify this bone 
disease control through immunomodulation.

CONCLUSIONS

Osteoimmunology is a new field in the last years, 
with a great relevance to the control of bone homeostasis. 
Its discovery has changed the therapeutic scenario in 
cancer bone disease. Until the 2000s, bone niche has been 
evaluated as an “impenetrable sanctuary” for anti-cancer 
drugs. Its infiltration by cancer cells has represented a 
defeat for oncologic treatments, an early progression 
signal with poor prognosis. After a correct knowledge 
of the dynamic system of bone niche and bone/immune 
cells pathways, the osteoimmunology concept has allowed 
to develop different potential mechanisms involved 
in pathologic operation of bone remodeling system. 
Actually, the effects on bone of several immune cells 
(such as macrophages, granulocytes and innate immune 
pathways) remain unclear. A better understanding of 
the molecular interaction between the three actors of 
this dynamic system (bone, immune and cancer cells) is 
almost necessary. A bidirectional process between cancer 
cells and bone niche components could explain a possible 
both locoregional (bone) and systemic cancer control. We 
could hypothesize that the immune system represents a 

“bond”, a bridge between bone niche cells and cancer 
cells. An adequate knowledge of this complex equilibrium 
can represent a potential therapeutic target to control not 
only bone metastases, but also systemic cancer pathology. 
Moreover, after the recent advent of immunotherapy in 
anticancer drugs scenario, all data could open a future 
rationale of combined bone, immunologic and targeted 
therapies in cancer treatment.
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