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ABSTRACT

Claudin (CLDN)-4 expression has been associated with malignancy in various 
cancers. When CLDN4 expression was examined in oral squamous cell carcinoma 
(OSCC), 22 out of 57 (39%) cases showed immunoreactivity in the nucleus. Nuclear 
CLDN4-positive cases showed a stronger correlation with cancer progression than the 
negative cases. Intratumoral anaerobic bacterial DNA examination revealed nuclear 
CLDN4 expression in 81% of Clostridium perfringens-positive cases. Treatment of 
human oral squamous cell carcinoma cell lines HSC3 and HSC4 with Clostridium 
perfringens enterotoxin (CPE), induced CLDN4 nuclear translocation to enhance 
epithelial-mesenchymal transition (EMT), stemness, cell proliferation and invasive 
ability. In addition, CPE treatment suppressed phosphorylation of yes-associated 
protein-1 (YAP1) and promoted YAP1 nuclear translocation, resulting in increased 
expression of YAP1 target genes; cyclin D1 and connective tissue growth factor. 
Moreover, it was revealed that the complex of YAP1, CLDN4 and zona occludens-2 
(ZO-2) was formed by CPE treatment, further suppressing YAP1 phosphorylation 
by LATS1 and activating it. Thus YAP activation in OSCC was regarded important in 
promoting malignant phenotypes. Our research suggested that the control of oral 
anaerobic bacteria may suppress YAP activation and in turn tumor progression.
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INTRODUCTION

More than 300 species of bacteria are found in the 
oral cavity, 10% of which are anaerobic in nature [1]. 
The number of bacteria in the oral cavity is determined 
by scraping the gingiva. Mostly the normal count of 
bacteria is about 1011 to 1012 cfu/ml and of these 0.1% 
are anaerobic [1]. Anaerobic bacteria in oral bacteria are 
regarded as the cause of periodontal diseases [2]. The 

number of anaerobes like Peptostreptococcus, Prevotella, 
and Fusobacterium are increased in the periodontal pocket 
of smokers and a strong correlation with periodontitis has 
been noted in such cases [3].

The anaerobic bacteria Clostridium is found in 
the plaque-associated bacterial flora in the oral cavity 
and is involved in the formation of dental caries [4]. It 
is also involved in the establishment of bacterial flora in 
the stomach and small intestine [1]. However, it is also 
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known to damage the intestinal mucosa and cause enteritis 
by binding tightly to claudin (CLDN)-3 and CLDN4 and 
inhibiting intestinal tight junction barriers [5, 6].

According to many studies CLDN4 is overexpressed 
in many epithelial malignancies and it has been correlated 
with cancer progression [7–14]. CLDN4 expression 
is considered as a marker of epithelial differentiation 
[15–17], and its reduced expression is associated with 
epithelial-mesenchymal transition (EMT) [18, 19]. It forms 
tight junctions, maintains the cancer microenvironment, 
accumulates growth factors, and inhibits the penetration 
of anticancer drugs in the cells [12–14, 20]. In contrast, 
CLDN4 proteins which do not form tight junctions, act as 
ligand for integrin signaling and promote survival signals 
and stemness as found in undifferentiated gastric cancer 
cells [14].

Expression of CLDN4 is also affected by 
inflammatory cytokines. For instance, TNF-α suppresses 
the expression of CLDN4 in colorectal cancer, and the 
level of TNF-α is increased by Clostridium perfringens 
type A enterotoxin (CPE) [13]. In gastric cancer, the 
expression of CLDN4 is modulated by Helicobacter 
pylori [14, 21]. Thus, expression of CLDN4 is thought to 
be affected by the presence of bacteria within the tumor 
environment.

The oral microbiome population might promote 
carcinogenesis by increasing oxidative stress in the oral 
cavity of people with adverse lifestyle habits such as 
smoking, alcohol drinking and betel chewing [22]. But it 
is still unclear what role the oral bacteria play exactly in 
the development of oral cancer.

CLDN along with occludin are important 
components of tight junctions. Tight junctions activate 
Hippo signaling through cell adhesion and suppress 
proliferation of cells [23, 24]. In contrast, zonula 
occludens (ZO)-1 and ZO-2, which are lining proteins 
in tight junctions, activate yes-associated protein (YAP) 
and transcriptional coactivator with PDZ-binding motif 
(TAZ) by inhibiting the Hippo signaling pathway [25, 26], 
promoting cancer cell growth and epithelial-mesenchymal 
transition (EMT) to enhance cancer metastasis [27–29].

In this study, we examined the role of the bacteria 
in the oral cavity, especially anaerobic bacteria, in the 
development of oral cancer through the action on CLDN 
protein. We showed that anaerobic bacteria impair tight 
junctions and promote cancer progression through YAP1 
activation in oral squamous cell carcinomas (OSCCs).

RESULTS

Expression of CLDN4 in OSCCs

Immunostaining was performed to examine the 
expression of CLDN4 in the samples collected from 57 
cases of OSCCs (Figure 1). In the squamous epithelium 
of the non-cancerous oral mucosa, the staining of the 

nucleus was observed in the basal region and the staining 
of the cell membrane was observed in the surface 
layer (Figure 1A). On the other hand, OSCCs showed 
CLDN4 immunoreactivity in the cytoplasmic membrane 
(Figure 1B), the cytoplasm (Figure 1C), and the nuclei 
(Figure 1D). In cases where clear expression was observed 
in the cell membrane, nuclear CLDN4 expression was not 
observed.

CLDN4 protein expression was semi-quantitatively 
determined by fluorescence intensity (Figure 1 and 
Table 1). No correlation was found between the 
differentiation grade, pathological stage, tumor 
progression and CLDN4 expression. In contrast, there was 
a correlation between lymph node metastasis and CLDN4 
expression in the nodal metastasis foci, which was higher 
than in the primary lesion.

Nuclear CLDN4 expression in OSCC cells

As observed in Figure 1, CLDN4 protein was 
frequently observed in the nuclei of OSCC cases. Cancer 
progression was compared between the cases in which 
nuclear CLDN4 was observed (including cases with 
positive expression in the nucleus and cytoplasm) and the 
cases in which CLDN4 expression was found in the cell 
membrane (Table 2). We observed that the progression, 
including tumor invasion and nodal metastasis, was more 
pronounced in nuclear CLDN4-positive cases than in 
cases where CLDN4 were observed in the cell membranes. 
Thus, CLDN4 expression in the nucleus was found to be 
associated with the progression of OSCC.

Production of nuclear CLDN4 by CPE

In nuclear CLDN4-positive cases, CLDN4 was not 
observed in the cell membrane (Figure 1), suggesting the 
possibility of some damage to the tight junction CLDN4. 
Since Clostridium perfringens enterotoxin (CPE) is a 
well-known factor that impairs CLDN4 [38], bacterial 
genome-specific sequences were amplified by PCR and 
examined for the presence of anaerobic bacteria in tumor 
tissues (Figure 2A). The presence of Peptostreptococcus, 
Prevotella, Fusobacterium, and Clostridium was examined 
in the tumor cells, and these anaerobic bacteria were 
found to thrive in the tumor cells in varying numbers. 
We examined the association of nuclear CLDN4 with 
Clostridium-negative and Clostridium-positive tumors. In 
22 Clostridium-positive tumors, 18 (82%) showed nuclear 
CLDN4, whereas Clostridium-negative tumors showed no 
nuclear CLDN4 (P < 0.0001).

Next, we examined whether CPE was involved in 
the production of nuclear CLDN4 using human OSCC 
cells (Figure 2B and 2C). Our analysis revealed that 
CLDN4 mRNA levels and protein levels were increased in 
the nuclear fraction by CPE treatment in both the cell lines 
(Figure 2C); however, CLDN4 levels in whole cell lysate 
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were decreased. These findings suggested that nuclear 
CLDN4 was produced by CPE.

The effects of nuclear CLDN4 on cancer cells by 
CPE treatment were also examined (Figure 2B). CPE 
treatment decreased the expression of E-cadherin in both 
the cell lines, while the mRNA expression of vimentin 
and CD44 increased suggesting EMT. We also examined 
E-cadherin mRNA expression in 2 nuclear CLDN4-
positive and 2 CLDN4-negative OSCCs in Figure 2D. 
Nuclear CLDN4-positive tumors showed decreased 
E-cadherin mRNA expression in comparison with the non-

neoplastic epithelium, whereas Nuclear CLDN4-negative 
tumors showed retained E-cadherin expression. Moreover, 
cell proliferation and invasive ability were enhanced by 
CPE (Figure 2E and 2F).

Inhibition of Hippo suppression system by CPE

In contrary of CLDN4 mRNA, CPE decreased the 
expression of CLDN4 protein and E-cadherin mRNA, 
suggesting decrease of cell adhesion. Since Hippo 
signaling pathway is activated by cell adhesion and 

Figure 1: Expression of CLDN4 in oral squamous cell carcinomas. Immunohistochemical evaluation was carried out to identify 
CLDN4 using anti-CLDN4 antibody, 4D3. CLDN4 was visualized by peroxidase-diaminobenzidine (DAB) method (left column) or Cy5-
labeled secondary antibody (right column). Cy5 images were semi-quantified for evaluation of CLDN4 protein levels. (A) non-cancerous 
tongue epithelium (B) OSCC, G2, pT2pN0pM0, (C) OSCC, G2, pT3pN1pM0, (D) OSCC, G3, pT4PN2pM0. Bar, 100 μm.
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suppresses YAP, the effect of CPE on the Hippo-YAP 
system was examined (Figure 3).

In both HSC3 and HSC4 cell lines, the levels of 
phosphorylated YAP1 and phosphorylated LATS were 
reduced by CPE treatment (Figure 3A). Along with this 
the nuclear YAP1 increased, in turn inducing its target 
genes, cyclin D1 (CCND1) and connective tissue growth 
factor (CTGF) (Figure 3B). In contrast, when CLDN4 was 
knocked down, its mRNA almost disappeared, and CPE-
induced alterations in phosphorylated YAP1 and nuclear 
YAP1 were also abrogated (Figure 3C).

Next, the effect of the YAP inhibitors and anti-
CLDN4 antibody (4D3) on the activation of YAP1 

by CPE was examined (Figure 3D). CPE increased 
the nuclear YAP1 and CLDN4 and induced the YAP1 
target gene CCND1. When treated with verteporfin, 
which inhibits YAP1-TEAD interaction [39], nuclear 
translocation of YAP1 and CLDN4 was maintained; 
however, CCND1 expression was suppressed. In contrast, 
treatment with cytostatin, a dephosphorylation inhibitor 
of phosphorylated YAP1 [40], suppressed both nuclear 
translocation of YAP1 and CLDN4 and decreased 
CCND1 expression. In contrast, when treated with the 
4D3 antibody, CLDN4 nuclear translocation disappeared, 
and YAP1 nuclear translocation and CCND1 expression 
decreased.

Table 1: Expression of CLDN4 in oral squamous cell carcinomas

Tumor stages/Histological grades n CLDN4 intensity P
Primary 57 72 ± 10 0.006
Lymph node 8 161 ± 39
G1 10 54 ± 23 NS
G2 32 84 ± 16
G3 15 60 ± 14
pStage 1–2 34 50 ± 12 NS
pStage 3–4 23 89 ± 25
pT1-2 25 53 ± 12 NS
pT3-4 32 87 ± 16
pN0 40 68 ± 13 0.0098
pN1-2 17 81 ± 19

Tumor stages and histological grades were determined according to the guidelines of Union for International Cancer 
Control TNM classification system [60].
Abbreviations: NS, not significant.

Table 2: Relationship between nuclear and membrane CLDN4 expression and clinicopathological parameters

Tumor stage/Histopathological grade n CLDN4 expression P
Nuclear Membrane

n 22 35
G1 6 6 4 NS
G2 9 9 23
G3 7 7 8
pStage 1–2 14 7 22 0.0307
pStage 3–4 8 15 13
pT1-2 19 3 21 0.0008
pT3-4 3 19 14
pN0 13 9 25 0.029
pN1-2 9 13 10

Tumor stages and histological grades were determined according to the guidelines of Union for International Cancer 
Control TNM classification system [60].
Abbreviations: NS, not significant.
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Interaction between YAP1 and CLDN4

Since interaction between YAP1 and CLDN4 
was suggested above, immunoprecipitation was 
performed for these proteins and ZO-2, which had been 
reported to interact with YAP1 [25] (Figure 4A). When 

immunoprecipitation was performed with anti-YAP1 
antibody in the nuclear fraction to detect YAP1, CLDN4, 
and ZO-2, their levels were found to be increased 
following CPE treatment. When the same nuclear 
fraction was immunoprecipitated with 4D3 antibody to 
detect YAP1 and ZO-2, the protein levels were found 

Figure 2: Effect of Clostridium perfringens enterotoxin (CPE) in human OSCC cell lines. (A) Intratumoral bacterial DNAs 
were detected by PCR. Peptostreptcoccus (Pept); Prevotella (Prev); Fusobacterium (Fuso); C. perfringens (Clos); ACTB, β-actin. (B) 
Gene expression in HSC3 and HSC4 human OSCC cells treated with CPE (10 μg/ml). CDH1, E-cadherin; VIM, vimentin; GAPDH, 
glyceraldehyde-3-phosphate dehydrogenase. GAPDH, loading control. (C) Nuclear translocation of CLDN4 in CPE-treated OSCC cells. 
Whole, whole cell lysate; Nuclear, nuclear fraction. β-actin, loading control for whole cell lysate; lamin, loading control for nuclear protein; 
GAPDH, a marker for cytoplasmic protein. (D) CDH1 expression in nuclear CLDN4-positive and negative OSCCs. T, tumor tissue; N, 
non-neoplastic epithelium; CDH1, E-cadherin; GAPDH, glyceraldehyde-3-phosphate dehydrogenase. GAPDH, loading control. (E, F) 
Effect of CPE on cell proliferation (E) and in vitro invasion (F). Bar, S. D. from 3 independent trials.

http://www.oncotarget.com
http://www.oncotarget.com


Oncotarget314www.oncotarget.com

to be increased following CPE treatment. Furthermore, 
when the whole cell lysates were immunoprecipitated 
with 4D3 antibody to detect YAP1 and ZO-2, ZO-2 
was also detected in CPE-untreated and CPE-treated 
cells; however, YAP1 was detected in only CPE treated 
cells. When nuclear fractions of cells treated with 4D3 
antibody were precipitated with anti-YAP1 antibody to 
detect YAP1, CLDN4, and ZO-2 in CPE-treated OSCC 
cells, CLDN4 and ZO-2 were not detected. YAP1 was 
reduced by 4D3 treatment (Figure 4B). In order to 
examine whether CLDN4 on the cell membrane surface 
translocate to the nuclei, 125I was added to the culture 

medium simultaneously with the CPE treatment to label 
the protein on the cell membrane surface (Figure 4C). 
When the nuclear fraction was precipitated with the 
4D3 antibody, an autoradiographic signal was detected 
in consistent with the signal detected with the 4D3 
antibody. In order to examine the role of CLDN4 on 
YAP1 activation, in vitro phosphorylation of YAP1 was 
examined with or without CLDN4 (Figure 4D). YAP1 was 
phosphorylated by LATS1 with or without ZO-2, whereas 
mixture of YAP1, ZO-2 and CLDN4 showed reduction of 
YAP1 phosphorylation. In contrast, mixture of YAP1 and 
CLDN4 showed no reduction of YAP1 phosphorylation.

Figure 3: Effect of CPE on YAP1 activation in OSCC cells. (A) Phosphorylation of YAP1 and LATS1 in whole cell lysates of 
CPE (10 μg/ml)-treated OSCC cells. (B) Effect of CPE on expression of nuclear YAP1 (nYAP) and cyclin D1 (CCND1) and connecting 
tissue growth factor (CTGF). (C) Effect of CLDN4 knockdown on YAP1 activation. pYAP, phosphorylated YAP1. (D) Effect of YAP1 
inhibitors and anti-CLDN4 antibody (4D3). VP, verteporfin; CS, cytostatin. Whole, whole cell lysate; Nuclear, nuclear fraction; lamin, 
loading control for nuclear protein; GAPDH, loading control for whole cell lysate.
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DISCUSSION

In this study, OSCCs showing nuclear CLDN4 
expression were found more strongly correlated with 
cancer progression than those showing cell membrane 
CLDN4 expression. Previous studies have shown that 
CLDN4 forms tight junctions that preserve the cancer 
microenvironment to accumulate growth factors and 
maintain extracellular pH in an acidic range [12–14, 20]. 
Tight junctions also inhibit the penetration of anticancer 
drugs into this microenvironment and develop resistance 
against anticancer drugs [12–14, 20]. Among the 57 cases 
of oral cancer examined in this study, intraoral CLDN4 
was found in 22 (39%) of them. It was also observed that 
expression of cell membrane CLDN4 was never detected 
in nuclear CLDN4-positive cases. We assumed that this 

might be because cytoplasmic membrane CLDN4 damage 
was associated with CLDN4 nuclear translocation.

CPE is known as a factor that impedes tight 
junctions. Clostridia that produce CPE are part of the 
intestinal microflora and their numbers increase with 
age. However, Clostridium has also been reported to 
be associated with dental caries in the oral cavity [4]. 
Likewise, the presence of anaerobic bacteria such as 
Peptostreptococcus, Prevotella, and Fusobacterium in oral 
flora exacerbate periodontal disease [2, 3, 41].

Since the detection of Clostridium by culture methods 
is insufficient [42], we employed PCR-amplification of 
bacterial DNA to determine the frequency of Clostridium 
in oral flora. In general, Clostridium spp. are detected in the 
bronchial lavage of pneumonia patients by 16S ribosomal 
DNA-based bacterial flora analysis [43–46]. From these 

Figure 4: Effect of CPE on interaction of CLDN4 and YAP1 in OSCC cells. (A) Effect of CPE (10 μg/ml) on protein interaction 
among CLDN4, YAP1 and ZO-2 was examined by immunoprecipitation. (B) Nuclear translocation of CLDN4, YAP1 and ZO-2 in CPE-
treated OSCC cells with or without 4D3 treatment. (C) CLDN4 nuclear translocation in the 131I-surface labeled OSCC cells. Nuclear 
fraction was immunoprecipitated with 4D3 for detection with 4D3 and autoradiography (AR). (D) In vitro phosphorylation assay using 
recombinant human YAP1, ZO-2, CLDN4 and LATS1. Reaction solution was subjected to immunoblotting. Whole, whole cell lysate; 
Nuclear, nuclear fraction; CB, Coomassie blue; lamin, loading control for nuclear protein; GAPDH, loading control for whole cell lysate.

http://www.oncotarget.com
http://www.oncotarget.com


Oncotarget316www.oncotarget.com

literature [43–46], we decided to detect four types of 
bacteria including Clostridium as anaerobic bacteria that 
are commonly found in the oral cavity using a similar 
approach. In the present study, tumor tissue was examined 
because the patient’s saliva could not be available. In the 
future, it is desired to clarify the relationship between 
bacterial flora and tumor progression through studies 
using saliva, which is easy to obtain without any pain for 
patients.

CLDN4 is bound to ZO-1 and ZO-2 in tight 
junctions [47]. Since CPE implicates homotypic binding of 
CLDN4 [38], it is thought to internalize in the cytoplasm 
through binding to ZO-1 or ZO-2. In addition, ZO-2 has 
binding properties with YAP1 through PDZ domain, and 
promotes nuclear translocation of YAP1. Our results 
suggested that the CLDN4-ZO-2 complex, which was 
internalized in the cytoplasm by CPE, further promoted 
YAP1 nuclear translocation by binding to YAP1. It was 
shown that YAP1 is less susceptible to phosphorylation 
by LATS1 when present in YAP1-ZO-2-CLDN4 or YAP1-
ZO-2 complex. It is possible that the addition of CLDN4 
to the YAP1-ZO-2 complex masks the phosphorylation 
site of YAP1.

Our data showed that YAP1-ZO-2-CLDN4 
complex might activate YAP1. Tight junction-Hippo 
system contains molecular redundancy; CLDN3 instead 
of CLDN4, TAZ instead of YAP1, and ZO-1 instead of 
ZO-2 might form a complex protein reacting to CPE. For 
this reason, TAZ, ZO-1, and CLDN3 were examined in 
the nuclear fraction of OSCC cells treated with CPE as in 
Figure 3A, but were not detected (Supplementary Figure 
1A). In addition, TAZ, ZO-1 and CLDN3 were examined 
by immunoprecipitation with the same anti-YAP1 antibody 
as in Figure 4A, but were not detected (Supplementary 
Figure 1B). In addition, TAZ was not detected in the 
precipitate from 4D3 antibody (Supplementary Figure 
1B). These results suggested that a complex of YAP1-
ZO-2-CLDN4 was formed preferentially for CPE. This 
specificity needs further study.

It has been reported that while the combination of 
YAP1-ZO-2 promotes cell death [46], the combination of 
YAP2-ZO-2 enhances tumor promoting activity [47] In our 
immunoprecipitation study, contrary to previous findings, 
ZO-2 and YAP1 formed a tumor-promoting complex and 
no ZO-2-YAP2 complex was observed (DNS). Regarding 
this difference, our results suggested that the formation 
of a complex of YAP1-ZO-2 and CLDN4 had some pro-
tumoral effect. Tumor-promoting role of YAP is attributed 
to the induction of tumor-promoting gene expression via 
TEADS [40]. According to our findings, the expression of 
cyclin D1 and CTGF has a definite association with the 
formation of YAP1-ZO-2-CLDN4 complex.

Our results showed that Cl. perfringens might be 
a potent accelerator of malignant phenotype in OSCC. 
In a number of previous studies, Clostridium sp. have 
shown a strong relationship with cancer. For instance, Cl. 

septicum is known to be associated with colorectal cancer. 
It functions as an immunosuppressant and is frequently 
detected in the blood of colorectal cancer patients [48, 49]. 
The association between Clostridium in the blood and Cl. 
perfringens, and colorectal cancer risk has been reported 
as P = 0.13 and P = 0.17, respectively [48]. Inhibition 
of Cl. leptum subgroup by antibiotics has been reported 
to inhibit tumorigenesis in azoxymethane-dextran sulfate 
colon carcinogenesis model through reduction of aberrant 
DNA methylation [50]. In addition, colon carcinogenesis 
caused by a high-fat diet is associated with an increase 
in the intestinal bacterium Clostridium subcluster XIVa 
[51]. Another anaerobic bacteria, Bacteroides fragilis, 
promotes colon carcinogenesis by its enterotoxin through 
activation of Wnt signal by β-catenin nuclear translocation 
with E-cadherin cleavage and secretion of inflammatory 
cytokines [52]. Thus, anaerobic bacteria have shown a 
good association with colorectal cancer. However, there 
is no report of an association between anaerobic bacteria 
and cancer in tissues other than the colorectum. However, 
in our study, the activation of YAP1 by CPE promoted 
cell proliferation, invasion ability, stemness, EMT, and 
consequent cancer malignancy. Further it is needed to 
examine the association of Cl. perfringens with oral 
carcinogemesis.

CPE is regarded as a therapeutic tool for epithelial 
malignant tumors by utilizing the damage of CLDN4 and 
CLDN3 [11, 53, 54]. The 50%-inhibitory concentration 
of CPE for colon cancer cell lines was between 50-100 
ng/ml [53]. The concentration of CPE used in this study 
was 10 ng/ml and no cytotoxicity was observed (DNS) 
at this concentration. Our data suggested that such low 
concentration of CPE was not cytotoxic to cancer cells and 
instead promoted malignant phenotypes.

YAP has been reported to be involved in the 
development and progression of lung cancer, liver cancer, 
and various other cancers [55–58]. However, recently, its 
involvement in squamous cell carcinoma and head and 
neck cancer has attracted attention [55]. Some studies 
have also shown an association between YAP and radiation 
resistance and poor prognosis [29, 59]. In head and neck 
cancer, YAP correlated with poor prognosis and resistance 
to treatment, suggesting a potential molecular target 
[29]. Our study inferred that Clostridium induced YAP1 
activation, which in turn suggested that the suppression 
of Clostridium by antibiotics and/or oral hygiene might 
contribute to the suppression of carcinogenesis and cancer 
progression. Extensive clinical studies are required to 
prove this hypothesis in future.

MATERIALS AND METHODS

Surgical specimens

We reviewed the pathological diagnosis and clinical 
data of 57 patients diagnosed with OSCCs from 2004 to 
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2016, in the Department of Molecular Pathology, Nara 
Medical University, Japan. As written informed consents 
were not obtained from the patients, any identifying 
information was removed from the samples prior to 
analysis, in order to ensure strict privacy protection 
(unlinkable anonymization). All procedures were 
performed in accordance with the Ethical Guidelines for 
Human Genome/Gene Research issued by the Japanese 
Government and were approved by the Ethics Committee 
of Nara Medical University (approval number 937).

Human OSCC cell lines

HSC-3 and HSC-4 human OSCC cell lines were 
purchased from Dainihon Pharmaceutical Co. (Tokyo, 
Japan). Cells were cultured in Dulbecco’s modified 
Eagle’s medium (DMEM) supplemented with 10% fetal 
bovine serum (FBS) at 37° C in 5% CO2. Cell growth was 
assessed using tetrazolium (MTT) dye assay, as previously 
described [30].

Antibody and reagents

The anti-human CLDN4 extracellular domain 
antibody, 4D3, was developed by immunizing rats with 
a plasmid vector encoding human CLDN4 [12]. CPE 
was purchased from Sigma, USA (Sigma, St. Louis, MO, 
USA).

Immunohistochemistry

Consecutive sections of 4 μm of OSCC were 
immunohistochemically stained using 0.2 µg/ml of 4D3 
antibody by a previously described immunoperoxidase 
technique [31]. Secondary antibodies (peroxidase-
conjugated and cy5-conjugated anti-mouse IgG rabbit 
antibodies, Medical and Biological Laboratories, 
Nagoya, Japan) were used at a concentration of 0.2 µg/
ml. Tissue sections were color-developed with diamine 
benzidine hydrochloride (DAKO, Glastrup, Denmark) 
and counterstained with Meyer’s hematoxylin (Sigma, 
USA). Primary antibody was also detected by fluorescence 
microscopy (All-in-one fluorescence microscopy, BZ-
X800, Keyence Japan, Osaka, Japan). Fluorescence 
intensity was measured according to the manufacturer’s 
instructions. The fluorescence intensity in the non-
cancerous squamous cell epithelium was standardized and 
set to 100. For a negative control, non-immunized rat IgG 
(Santa-Cruz Biotechnology, Santa-Cruz, CA, USA) was 
used as the primary antibody.

Immunoblot analysis

Whole-cell lysates of OSCC cells were prepared as 
previously described elsewhere [32]. Lysates (20 μg) were 
subjected to immunoblot analysis using sodium dodecyl 
sulfate polyacrylamide gel electrophoresis (SDS-PAGE, 

12.5%), followed by electrotransfer onto nitrocellulose 
filters. The filters were incubated with primary antibodies, 
followed by peroxidase-conjugated IgG antibodies 
(Medical and Biological Laboratories). Anti-tubulin 
antibody was used to assess the levels of protein loaded 
per lane (Oncogene Research Products, Cambridge, 
MA, USA). The immune complex was visualized 
using an Enhanced Chemiluminescence Western-
blot detection system (Amersham, Aylesbury, UK). 
Antibodies for CLDN4 (4D3), YAP1, phosphorylated 
YAP1 (pS127), zona occludens-2 (ZO-2), GAPDH 
(glyceraldehyde-3-phosphate dehydrogenase), cyclin 
D1 (CCND1), connective tissue growth factor (CTGF) 
(Abcam, Cambridge, UK), large tumor suppressor kinase 
1 (LATS1), phosphorylated LATS (pThr1079) (Cell 
Signaling Technology, Beverly, MA, USA), β-actin, 
lamin (Zymed Laboratories Inc., South San Francisco, 
CA, USA), (Proteintech Group Inc., Rosemont, IL, USA) 
were used as primary antibodies.

Bacterial DNA amplification

Bacterial DNA was extracted from OSCC specimen 
(10 thin-sliced paraffin-embedded tumor specimen, 
depraffinized, and hydrated) using the QIAamp DNA 
mini kit (Qiagen, GmbH, Hilden, Germany) according 
to the instructions of the manufacturer. The extracted 
DNA samples were stored at −20° C. PCR was carried out 
for 35 cycles and each cycle consisted of the following 
steps; denaturation (94° C for 5 min), annealing (50° C 
for 1 min) and primer extension (72° C for 1.5 min). 
Amplified PCR products were analyzed by 1.5% agar 
gel electrophoresis in Tris–Borate-EDTA buffer. The gel 
was stained with 0.5 μg/ml ethidium bromide. The primer 
sets used for the amplification of bacterial DNA for the 
following bacteria were as follows; Peptostreptococcus 
productus, forward, 5′-AAC TCC GGT GGT ATC AGA 
TG-3′ and reverse, 5′-GGG GCT TCT GAG TCA GGT 
A-3′ [33]; Fusobacterium prausnitzii, forward, 5′-AGA 
TGG CCT CGC GTC CGA-3′ and reverse, 5′-CCG AAG 
ACC TTC TTC CTC C-3′ [33]; Prevotella nigrescens, 
forward, 5′-GTG TTT CAT TGA CGG CAT CCG ATA 
TGA AAC-3′ and reverse, 5′-CCA CGT CTC TGT GGG 
CTG CGA-3′ [34]; Clostridium perfringens (CPE gene), 
forward, 5′-TCC CCT TTC TAG ATA ACG ATT AAC 
AC-3′ and reverse, 5′-GTT AGC ATG CTG TTT TCT 
AAG TTA AAA CC-3′ [35]. Primers were synthesized by 
Sigma Genosys (Ishikari, Japan).

Reverse transcription-polymerase chain reaction 
(RT-PCR)

To assess human CLDN4 mRNA expression, RT-
PCR was performed with 0.5 µg total RNA extracted 
from HSC3 and HSC4 cells using an RNeasy kit (Qiagen, 
Germantown, MD, USA). The primer sets used were as 
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follows; CLDN4, forward, 5′-CTC CAT GGG GCT ACA 
GGT AA-3′ and reverse, 5′-AGC AGC GAG TCG TAC 
ACC TT-3′ (NCBI reference sequence: NM_001305.4); 
CDH1, forward, 5′-TGC CCA GAA AAT GAA AAA GG-
3′ and reverse, 5′-GTG TAT GTG GCA ATG CGT TC-3′ 
(Z13009.1); vimentin (VIM), forward, 5′-GAG AAC TTT 
GCC GTT GAA GC-3′ and reverse, 5′-TCC AGC AGC 
TTC CTG TAG GT-3′ (NM_003380.3); CD44, forward, 
5′-CAT TCA AAT CCG GAA GTG CT-3′ and reverse, 
5′-GTT GCC AAA CCA CTG TTC CT-3′ (FJ216964.1). 
Primers were synthesized by Sigma Genosys. The 
GAPDH mRNA was also amplified for use as an internal 
control (GenBank Accession No. NM_001101).

Protein extraction

For preparing whole cell lysate, HSC3 and HSC4 
cells were washed twice with cold PBS, harvested and 
lysed with 0.1% SDS-added RIPA-buffer (Thermo 
Fisher Scientific, Tokyo, Japan) [32]. Cell fractions were 
extracted by using a Cell Fractionation Kit (Abcam, 
Cambridge, MA, USA), according to the manufacturer’s 
instructions [36]. Protein assay was performed using 
a Protein Assay Rapid Kit (Wako Pure Chemical 
Corporation, Osaka, Japan).

Immunoprecipitation

Immunoprecipitation was performed according to 
the method described previously [37]. Briefly, whole cell 
lysates were pre-cleaned in lysis buffer with protein A/G 
agarose (Santa Cruz) for 1 h at 4° C and subsequently 
centrifuged. The supernatants were incubated with 
antibodies against YAP1 (Abcam) or CLDN4 (4D3) or 
ZO-2 and protein A/G agarose for 3 h at 4° C. Precipitates 
were collected via centrifugation, washed five times 
with lysis buffer, solubilized with sample buffer (Sigma, 
40 µg), and subjected to an immunoblot analysis with 
antibodies against CLDN4 (4D3), YAP1 (Abcam) or 
ZO-2 (Abcam).

Cell surface labeling

Cell surface proteins were iodized with Na131I 
(Amersham, Aylesbury, UK) with iodination reagent (Pierce, 
Rockford, IL, USA) in HSC3 and HSC4 cells, which were 
added into the culture media and incubated with cells for 
1 h. Then cells were washed with cold PBS for 3 times. 
Cells were subjected to protein extraction mentioned above.

In vitro phosphorylation assay of recombinant 
proteins

Recombinant human YAP1 protein (Abcam, 
1 μg) was mixed with recombinant human ZO-2 protein 
(Abcam, 1 μg) and/or recombinant human CLDN4 protein 
(Abcam, 1 μg) in a kinase buffer (20 mM Tris-HCl (pH 

7.5), 5 mM MgCl2, 5 mM MnCl2, 1×phosphatase inhibitor, 
1×protease inhibitor mixture) and incubated at 30° C for 
30 min. Then recombinant human LATS1 protein (Abcam, 
1 μg) and 20 μM ATP were added into the above given 
recombinant protein mixture and incubated at 30° C for 
30 min. The reaction was stopped by adding 7 μl of 5× 
SDS sample dye, boiled at 100° C for 5 min, and subjected 
to SDS-PAGE.

Statistical analysis

Statistical significance was calculated using chi-
square, Fisher’s square test, and Kruskal-Wallis test with 
InStat software (GraphPad, Los Angeles, CA, USA). 
Statistical significance was defined as a two-sided p-value 
of < 0.05.
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