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CRIPTO overexpression promotes mesenchymal differentiation 
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ABSTRACT

Members of the EGF-CFC (Cripto, FRL-1, Cryptic) protein family are increasingly 
recognized as key mediators of cell movement and cell differentiation during 
vertebrate embryogenesis. The founding member of this protein family, CRIPTO, is 
overexpressed in various human carcinomas. Yet, the biological role of CRIPTO in 
this setting remains unclear. Here, we find CRIPTO expression as especially high in a 
subgroup of primary prostate carcinomas with poorer outcome, wherein resides cancer 
cell clones with mesenchymal traits. Experimental studies in PCa models showed that 
one notable function of CRIPTO expression in prostate carcinoma cells may be to 
augment PI3K/AKT and FGFR1 signaling, which promotes epithelial-mesenchymal 
transition and sustains a mesenchymal state. In the observed signaling events, 
FGFR1 appears to function parallel to AKT, and the two pathways act cooperatively 
to enhance migratory, invasive and transformation properties specifically in the 
CRIPTO overexpressing cells. Collectively, these findings suggest a novel molecular 
network, involving CRIPTO, AKT, and FGFR signaling, in favor of the emergence of 
mesenchymal-like cancer cells during the development of aggressive prostate tumors.
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INTRODUCTION

Epithelial-mesenchymal transition (EMT) and its 
reverse process mesenchymal-epithelial transition (MET) are 
essential during different stages of embryonic development, 
tissue remodeling and cancer progression [1, 2]. During 
the EMT process, polarized epithelial cells loose their 
epithelial properties while gaining phenotypic properties 
of mesenchymal cells. These include a down-regulation 
of epithelial (E)-cadherin expression and tight junctional 
proteins such as occludins, increased expression levels of 
the mesenchymal cytoskeleton component, vimentin, and/
or neuronal (N)-cadherin. In many types of tumors, EMT 
is believed to be an important step toward local invasion 
and subsequent tumor dissemination through lymphatic 
or hematogenous spread [2]. In addition, EMT may be 
important in the initiation or maintenance of a subpopulation 
of cancer stem cells [3]. However, the transient or 
metaplastic nature of EMT remains a major obstacle in 
conclusively demonstrating such processes in vivo either 
in primary or in secondary lesions. The task of identifying 
epithelial tumor cells that have undergone complete EMT 
is also complicated by the fact that they may resemble host 
tissue fibroblast or stromal cells. Additionally, numerous 
tumors may manifest EMT-like phenotypes through 
dedifferentiation rather than by a transdifferentiation [4]. 
Evidence is accumulating that EMT and MET are regulated 
by the activation of various signaling pathways and related 
growth factors such as FGFs, TGF-β, IGF, EGF and HGF, 
that are also known to perform essential biological roles 
during embryonic development and in normal adult tissues 
[1]. Prior work has also revealed that EMT may be influenced 
by several different embryonic signaling pathways [5, 6]. 
CRIPTO (also referred to as human Cripto-1, abbreviated 
CR-1) is the founding member of the EGF-CFC (Cripto, 
FRL-1, Cryptic) protein superfamily [7–9]. CR-1 and its 
orthologs are essential during embryogenesis acting as 
key regulators of embryonic stem cell differentiation [10, 
11], mesendodermal fate, cell movement [12–15], and 
establishment of the anterior/posterior axis [16]. CR-1 
functions as a membrane–associated protein to facilitate 
signaling by certain TGF-β subfamily of proteins such as 
Nodal, GDF3 and GDF1, while downregulating signaling 
by other ligands including activins and TGF-β1. CR-1 
may also engage biological functions that are independent 
of Nodal or GDFs such by activating the SRC, MAPK or 
AKT signaling pathways [9] likely through its propensity to 
directly bind, or stimulate in trans, various transmembrane 
proteins such as ERBB4, GRP78, NOTCH, Glypican-1 and 
conceivably other as yet unidentified proteins. In addition, 
CR-1 is overexpressed in several different types of human 
carcinomas [9], but its biological role in these malignancies 
remains unclear. It has been suggested that CR-1 functions 
in conjunction with Nodal in cancer stem cell populations to 
promote tumorigenesis in melanoma and testicular tumors 

[17, 18]. Under some circumstances, CR-1 can promote cell 
proliferation, migration, invasion, or stimulate angiogenesis 
[19, 20]. On the other hand, it can promote apoptosis [21], 
or inhibit cell proliferation [22]. EMT-like events have 
also been observed in mammary glands derived from 
MMTV-CR-1 transgenic mice, or in various immortalized 
mammary epithelial cells forced to overexpress CR-1 
(NOG-8, HC-11, NMuMG or MCF10A cells) [23–26]. A 
recent work provided some evidence that CR-1 promotes 
EMT in a specific population of non-small cell lung cancers 
mutated for EGFR [27]. Yet, it is unclear whether CR-1 
overexpression can also contribute to EMT or EMT-like 
programs in other human malignancies [19, 25, 28, 29]

Recently, a number of studies have underscored 
the extraordinary plasticity of human prostate carcinoma 
(PCa) cells. Under various molecular and cellular 
perturbations, including aberrant activation of embryonic 
signaling pathways, these cells can transdifferentiate from 
epithelial to neuroendocrine-like cells [30], mesenchymal-
like [31], or stem-like cells [32, 33]. To date, expression 
of CR-1 remains relatively uncharacterized in PCa; and 
albeit some expression has been detected in certain PCa 
cell lines, the functionality of this expression has yet to 
be established [34, 35] (Supplementary table S1). Only 
one study did assess CR-1 expression in a limited number 
(n = 9) of PCa specimens by immunohistochemistry and 
reported that CR-1 was absent in the malignant cells of 
these samples [36]. Here, we employed human PCa cells to 
explore further the possibility that CR-1 might contribute 
to EMT processes in human PCa, and define the possible 
mechanisms involved in this phenotypic transition. In 
addition, we aimed to define CR-1 expression pattern in 
a panel of normal, benign and malignant prostate tissues.

RESULTS

CRIPTO is overexpressed in a subset of primary 
human prostate adenocarcinomas

We first assessed CR-1 mRNA expression by qRT-
PCR in a series of human prostate tissue samples (33 
cancerous and 7 normal) as well as in a panel of human 
normal and malignant prostate cell lines by qRT-PCR. 
CR-1 expression was especially high in a number of tumor 
specimens compared to non-malignant prostate specimens 
(Supplementary Figure S1A). Surprisingly, CR-1 mRNA 
transcripts were undetectable or poorly expressed, when 
compared to human tissues, in commonly used PCa 
cell lines and in several non-malignant immortalized 
prostate cell lines (Supplementary Figure S1B). Next, 
CR-1 expression was assessed immunohistochemically 
in pathological specimens consisting of 239 benign 
prostatic hyperplasia (BPH), and 211 PCa cases that 
were treated by surgical intervention. Significant CR-1 
protein was detected in 80 of 211 PCas (37.9%) but was 
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absent or marginally expressed in benign conditions such 
as BPH (Figure 1A–1C). The percentage of positively 
stained tumor cells was 67% on average and high levels 
of CR-1 in primary tumors was found to be associated 
with a higher risk of disease recurrence following surgery 
in univariate analyses (Figure 1D and Supplementary 
Table S2). The 3-year and 5-year recurrence-free survival 
was 71.8% and 65.6%, respectively, in patients with 
intermediate to high expression of CR-1 as compared to 
88.2% and 86.3%, respectively, in patients with null to low 
expression of CR-1. No association was noted between 
CR-1 and conventional clinico-pathological parameters 
(Supplementary Table S2). Noticeably, multivariate 
analysis using a COX model, including Gleason grade, 
pT stage, lymph nodes and surgical margin status as post-
operative co-variables, showed that CR-1 expression 
was an independent predictor of disease recurrence  
(p = 0.006; HR 3.01 [1.37–6.61])(Supplementary Table 
S3). In all, these data suggest CR-1 as a new biomarker 
with potential prognostic value for primary prostate 
cancer. We then investigated a possible link between 
CR-1 and EMT in human primary prostate tumors by 
examining expression of vimentin, a robust marker of 
mesenchymally-derived cells or cells undergoing an 
EMT. Dual immunofluorescence for CR-1 and vimentin, 
in most instances, showed the absence of vimentin in 
tumor cells while expression was found in the stromal 
contingent (Supplementary Figure S2A and S2B). In CR-1 
immunopositive cases, a proportion of tumor cells did 
not show vimentin expression in which CR-1 expression 
was confined to the tumor epithelial cells (Figure 1E, left 
panel). Nevertheless, these tumors also seemed to harbor a 
subpopulation of neoplastic cells where CR-1 expression 
did coincide with vimentin expression (Figure 1E, middle 
and right panels). Moreover, we found several instances of 
neoplastic cells displaying especially high CR-1 expression 
along with reduced levels of expression of E-cadherin 
(Figure 1F). These observations suggested a link between 
CR-1 and acquisition of mesenchymal traits in PCa, and 
that at least a subpopulation of prostate neoplastic cells 
exhibit a significant mesenchymal-like phenotype.

CRIPTO overexpression upregulates PI3K/AKT 
and ERK activities in 22Rv1 prostate cancer cells.

To mimic and study the situation of CR-1 
overexpression that is found in some prostate tumors and 
tumor cells, we ectopically overexpressed CR-1 in two 
widely used PCa cell lines, LNCaP and 22Rv1 both of 
which possess an epithelial phenotype and extremely low 
levels of endogenous CR-1. LNCaP was originally derived 
from a lymph node metastatic lesion of human PCa [37], 
while 22Rv1 cells were originally derived from a primary 
site of an advanced PCa that was serially transplanted 
in nude mice before final isolation [38, 39]. Because 

earlier studies have found in various non-prostatic cancer 
models that CR-1 can signal via phosphatidylinositol 
3-kinase (PI3K)/protein kinase B (AKT), and extracellular 
signal–regulated kinases 1/2 (ERK1/2) [9], we looked 
for perturbations of these kinases following transient 
overexpression of CR-1. Immunoblot analysis revealed 
elevated phosphorylation of AKT(Ser473) and ERK1/2(Thr202/

Tyr204) in CR-1 transfected 22Rv1 cells but there was no 
change observed in activation of AKT or ERK1/2 in 
CR-1 transfected LNCaP cells (Figure 2A). To evaluate 
the effects of CR-1 overexpression in the long term, we 
then established stable transfectants from the pooled 
transiently transfected 22Rv1 cells. Stable overexpression 
of CR-1 in the cells (22Rv1/CR-1) was also associated 
with a significant up-regulation of phospho-AKT and 
phospho-ERK1/2 as compared to control transfectants 
(22Rv1/vector) (Figure 2B). By contrast, we could not 
find evidence of increased phosphorylation of SRC(Tyr416), 
or of SMAD-2 at Serines 465/467 as typical readout for 
TGFbeta-related signal transduction including Nodal 
signaling (Figure 2B). In further experiments wherein 
cells were treated with the SRC inhibitor SU6656 or 
with ALK4/5/7 inhibitor SB431542, we could not find 
any inhibitory effects on the activation of ERK and AKT 
(data not shown). To exclude the possibility that aberrant 
activities of AKT and ERK1/2 resulted from non-specific 
events related to cell derivation, we then used different 
siRNAs to decrease human CR-1 expression in stably 
transfected 22Rv1/CR-1 cells. We found that a reduction 
of CR-1 levels was sufficient to attenuate phospho-
AKT and phospho-ERK1/2 levels compared to control 
conditions (Figure 2C). Together, these results suggest 
that ectopic overexpression of CR-1 in 22Rv1 cells can 
increase transduction signals from AKT and ERK, with 
no apparent impact on other canonical and non-canonical 
TGF-beta superfamily smad2/3-dependent signaling 
pathways [40].

A role for CRIPTO in epithelial to mesenchymal 
transition in prostate cancer cells.

In 2D cultures, morphological changes were 
manifest with cells stably expressing CR-1 (22Rv1/CR-
1) exhibiting a more mesenchymal-like morphology 
that was absent in the 22Rv1/vector or parental cells, 
suggestive of an EMT phenotype facilitated by CR-1 
overexpression (Figure 3A). Western blot analyses 
indicated that CR-1 overexpressing 22Rv1 cells have 
reduced levels of E-cadherin and in contrast to vector-
transfected cells, express significant amounts of vimentin 
(Figure 3B). A qRT-PCR analysis likewise demonstrated 
a clear overrepresentation of mesenchymal-associated 
markers (VIM, CDH2 (N-cadherin), CD44, PAI1 and FN1) 
in 22Rv1/CR-1 cells (Figure 3C). Immunofluorescence 
analysis confirmed increased vimentin expression and 
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Figure 1: CRIPTO is expressed in a subset of aggressive human prostate cancers, and wherein resides a subpopulation 
of tumor cells with mesenchymal-like traits. (A) Bar graph illustrating the repartition of CR-1 in human prostate carcinoma (cancer), 
normal prostate (normal) or benign prostate hyperplasia (BPH) cases. (B) Representative TMA elements immunostained with antibody to 
CR-1. Immunostaining shows absence of staining (1), intermediate staining in the cancer cells (2), and weak or marginal staining in the 
adjacent benign epithelial cells (black arrows), and strong granular staining (3) in PCa cells. The staining pattern is quite homogenous, 
granular, and in a perinuclear location. CR-1 does not appear to be expressed in the stroma. Scale bar, 50 μm. (C) Absence of immunostaining 
observed in BPH (1) and normal prostate (2) epithelial cells. Scale bar, 100 μm. (D) Kaplan–Meier estimate of the distribution of disease-
free survival according to the CR-1 status in 136 patients. (E) Dual immunofluorescence on human PCa tissue sections identifies cancer 
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a loss in E-cadherin expression in 22Rv1/CR-1 cells 
(Figure 3D) accompanied by loss of β-catenin at cell-
cell contacts (Figure 3E). Moreover, reduction of CR-1 
levels with CR-1-targeted siRNAs led to a diminution 
in vimentin expression and an elevation of E-cadherin 
levels as assessed by Western blot analysis (Figure 3F). 
Taken together, these results indicate that in vitro CR-1 
overexpression promotes EMT program in 22Rv1 PCa 
cells. To substantiate this finding, we sought to examine 
the effect of knocking-down CR-1 in VCaP cells which 
are known to exhibit a predominant epithelial phenotype 
with some mesenchymal attributes [41], while also 
expressing moderate levels of endogenous CR-1 mRNA 
(Supplementary Figure S1B). Consistent with the 
hypothesis that CR-1 sustains a mesenchymal phenotype 
in PCa cells, downregulation of CR-1 with CR-1-targeted 
siRNAs led to reduction of some mesenchymal-associated 
markers including VIM, CDH2, and CD44 (Figure 3G)

FGFR signaling contributes to the biological 
effects of CRIPTO on ERK1/2 activation in 
prostate cancer cells that is independent of AKT.

Fibroblast growth factor (FGF) receptor 1 has been 
implicated in EMT in bladder cancer and PCa progression 
[42–44]. RT-PCR analysis indicated the presence of 
FGFR1 and FGFR3 mRNA as the most abundantly 
expressed FGFRs in 22Rv1 and 22Rv1/CR-1 cells 
(Figure 4A). In Xenopus, the ortholog of CR-1, FRL-1 

(FGF receptor ligand 1) could potentially signal through 
the FGF receptor with respect to mesoderm induction in 
a manner that was independent of any detectable physical 
interactions between these two proteins [13]. Moreover, 
because FGFR receptors often operate through ERK and 
AKT, we reasoned that human CR-1 could indirectly 
influence FGFR signaling as a possible mechanism 
to increase ERK and/or AKT activation in the CR-1 
transfected 22Rv1 cells. To test this, western blot analysis 
was made against phospho-(activated) FGFR from 22Rv1 
cells transiently transfected with CR-1 or control vectors. 
The data revealed an increase in intensity of a 150/160-
kDa band in CR-1 transfected cells in conjunction with an 
up-regulation of phospho-ERK and phospho-AKT levels 
while the 120/130-kDa phospho-FGFR bands remain 
unaffected (Figure 4B). Inspection of FGFR1 expression 
indicated a clear band at 150/160-kDa, but marginal 
expression at ~120/130-kDa, whereas FGFR3 appeared to 
be mainly represented by proteins with molecular weights 
of 130-kDa or smaller (Figure 4C). Thus in this setting, 
CR-1 may preferentially modulate FGFR1 activity but 
not FGFR3. Treatment of CR-1 transfected 22Rv1 cells 
with the FGFR inhibitor PD166866 (5μmol/L) attenuated 
the signal from the phospho-FGFR1 species as well as 
phospho-ERK levels but did not affect phospho-AKT 
levels (Figure 4B) suggesting regulation of ERK activity 
through FGFR1 signaling but little or marginal effects on 
AKT activity. Similar results were obtained when using 
TKI258 (1μmol/L) or PD166866 (5 μmol/L) as FGFR 
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inhibitor in treating 22Rv1/CR-1 cells (Supplementary 
Figure S3).

In testing various FGFR1 expressing cell lines from 
different tissue types, we also found that CR-1 overexpression 
can have varied effects, from negative to positive effects 

on FGFR signaling suggesting that CR-1 may be a general 
modulator of this signaling pathway (Supplementary Figure 
S4). Moreover, reducing ectopic or endogenous expression 
of CR-1 in 22Rv1/CR-1 and VCaP cells resulted in a down-
regulation of FGFR1 expression and/or activity in these cells 
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consistent with the notion that CR-1 can positively regulate 
FGFR1 signaling in PCa cells (Figure 4D). We noted no 
significant effects on phospho-AKT levels while phospho-
ERK was reduced in CR-1-siRNA treated VCaP cells again 
suggesting a lack of effect of FGFR signaling on AKT 
activation in PCa cells. Altogether, these observations suggest 
that FGFR activity can be promoted by CR-1 expression 
thereby influencing ERK activity but with no apparent direct 
effects on AKT activity.

CRIPTO mediated EMT is compromised by 
targeted inhibition of MAPK, AKT or FGFR 
activity

Next, we sought to assess the effects pharmacological 
blockade of PI3K and MAPK/ERK kinase (MEK), two 
upstream activators of AKT and ERK1/2, respectively. 
Inhibition of PI3K using LY294002 (10 μmol/L) or of 
MEK using U0126 (10 μmol/L) resulted in a decrease of 
phospho-AKT and phospho-ERK levels, respectively, an 
increase in E-cadherin levels, and a reduction in vimentin 
expression (Figure 4E). In addition, cells that were exposed 
to the FGFR inhibitor PD166866 (5 μmol/L) continued to 
express substantial levels of phospho-AKT but had reduced 
levels of phosphorylated ERK1/2 in conjunction with 
an up-regulation of E-cadherin expression and a down-
regulation of vimentin expression. Interestingly, both FGFR 
and PI3K inhibitors attenuated the signal from the phospho-
FGFR1 suggesting regulation of FGFR1 by PI3K/AKT 
through direct or indirect mechanisms (Supplementary 
Figure S5). As CR-1 is a known co-receptor for the TGF-β 
protein Nodal, pharmacological inhibition of Nodal 
receptors, ALK4/7 was also investigated using SB432541. 
Treatment of the 22Rv1/CR-1 cultures with SB432541 had 
no noticeable effect on phosphorylation of ERK or AKT, 
nor did this significantly affect expression of vimentin  
(Figure 4E), although we noted a small increase in E-cadherin  
expression. These results were further confirmed at the 
mRNA level (Figure 4F). Collectively, this data indicates 
that 22Rv1/CR-1 cells have enhanced AKT and ERK/
MAPK activities by upstream stimulation of the FGFR1, 
and PI3-kinase activities, and that pharmacological 
inhibition of these pathways impedes CR-1-mediated 
effects in PCa cells.

Several E-box binding transcription factors (TFs) 
known to regulate EMT [1] are up-regulated in the 22Rv1/
CR-1 cells as compared to control cells (Supplementary 
Figures S6A and S6B). This includes ZEB1 (11-fold), 
ZEB2 (15-fold), SNAI1/SNAIL (4-fold), SNAI2/SLUG 
(12-fold), TWIST1 (2.5-fold). To further define the 
molecular pathways that operate downstream of the FGFR, 
PI3K/AKT and ERK activation, we examined expression 
levels of these EMT-TFs in the inhibitor-treated 22Rv1/
CR-1 cells. PI3K inhibition alone or in combination with 
MEK inhibition, reduced ZEB2 and TWIST1 mRNA 

levels by approximately 2-fold and ZEB1 level to a lower 
extent (Figure 4G). SNAI1 and SNAI2 levels remained 
relatively unchanged under these same conditions. The 
TGF-β. ALK4/5/7 inhibitor had no significant effects 
on expression of any of these genes (Figure 4G). FGFR 
inhibition and MEK inhibition decreased TWIST1 mRNA 
level but had little to no effect on ZEB1 and ZEB2 mRNA 
levels. To further test the contribution of FGFR1 and 
FGFR3 receptors, we knocked-down FGFR1 or FGFR3 
expression in the cells and examined expression levels 
of EMT-TFs, CDH1 (E-cadherin) and vimentin. FGFR1 
knockdown was associated with a down-regulation of 
TWIST1 and SNAI1 expression as well as an upregulation 
of E-cadherin expression and a decrease in vimentin 
expression (Figure 4H–4I). By contrast, targeting FGFR3 
had little to no effect on TWIST1, SNAI1, E-cadherin or 
vimentin expression in the 22Rv1/CR-1 cells suggesting 
that FGFR1 has an important role in enforcing the 
mesenchymal phenotype in CR-1 overexpressing PCa 
cells (Figure 4H–4I).

In an attempt to confirm the contribution of the 
respective EMT-TFs in the phenotype of the cells, we 
performed transient knockdown of SNAI1, SNAI2, 
TWIST1, ZEB1 or ZEB2, and evaluated vimentin and 
E-cadherin (CDH1) within 72h post-transfection. In 
siRNA-transfected cells, ZEB2 silencing led to significant 
reduction in vimentin expression levels, and targeting 
ZEB2 and TWIST1 was consistently accompanied by an 
increase in E-cadherin at the RNA and protein levels that 
could not be recapitulated by depletion of SNAI1 or SNAI2 
(Figure 4J and Supplementary Figure S7). Collectively, 
these results support a model in which ZEB2 and TWIST1 
are predominantly involved in regulating the mesenchymal 
phenotype in the CR-1 overexpressing PCa cells.

CRIPTO/AKT/FGFR stimulates cell growth, 
migration and invasion that are compromised 
by pharmacological inhibition of ERK, AKT or 
FGFR

We then investigated the behavior of 22Rv1/
vector and 22Rv1/CR-1 cells in terms of cell migration, 
invasion and growth in 2D or 3D cultures. The two PCa 
lines had comparable growth rate in normal monolayer 
cultures (Figure 5A). When seeded at low density, the 
size of colonies derived from the 22Rv1/CR-1 cells were 
substantially larger than those generated from 22Rv1/
vector cells (Figure 5B). In addition, the 22Rv1/CR-1 
cells were able to form more colonies when grown in 
soft agar (Figure 5C). Migration and invasive assays 
showed that the 22Rv1/CR-1 cells were much more 
motile (Figure 5D) and invasive (Figure 5E) than control-
transfected cells within 48hrs. Moreover, treatment with 
the FGFR, PI3K or MEK inhibitors substantially reduced 
invasion, migration and colony formation capacities of 
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22Rv1/CR-1 as opposed to minor effects in the 22Rv1/
vector control cells (Figures 5F–5J). These data further 
implicate FGFR, ERK1/2, and PI3K/AKT components 
as key signaling molecules linked to CR-1-mediated 
biological effects.

DISCUSSION

EMT has been observed in a number of different 
types of carcinoma cells [1, 4]. Despite an extensive 
amount of experimental data, the relevance of EMT is 
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still disputed by the fact that cancer cells undergoing 
EMT are hardly detectable in biological fluids or in tissue 
specimens. To our knowledge, this report represents first 
demonstration for the existence of a population of CR-1 
expressing human PCa cells that manifests mesenchymal-
like characteristics within primary tumors. We conclude 
that this CR-1 high expressing population may represent at 
least one subtype of PCa mesenchymal-like cells.

Whereas we interpret our findings as supportive of 
the idea that CR-1 mediates EMT process within some 
primary tumors, it remains unproven whether CR-1 can 
play a similar role in a metastatic context. Future work 
should focus on determining if CR-1 directly participates 
in metastatic progression, or if it predisposes to metastatic 
spread and the development of pertinent in vivo models 
is now warranted. By analogy to what occurs during 
development, it is conceivable that there may be multiple 
rounds of EMT and MET in the life of a cancer cell 
(primary versus metastatic sites) and that are potentially 
controlled by signals which are diverse and produced 
by different microenvironments [2, 45]. Presently, we 
speculate that CR-1 might initiate EMT early in the course 
of cancer progression. This may reflect a scenario also 
seen in developing embryos where mouse Cr-1, or zebrafih 
cripto, oep, likely participate in early EMT processes 
allowing ectodermal epiblast cells to migrate through the 
primitive streak during gastrulation [12, 14, 16].

With respect to the mechanisms involved, we found 
that overexpression of CR-1 in 22Rv1 PCa cells enhanced 
the activity of AKT, and ERK1/2 downstream of the 
FGFR1. We identified CR-1 as a positive regulator of 
FGFR1 signaling and this signaling seems to operate in the 
CR-1 overexpressing cells to support their mesenchymal 
state with a reduced role for FGFR3. Consistent with 
our data, recent work using mouse embryos showed that 
conditional inactivation of mouse Cripto-1 can lead to 
perturbation of Fgfr1 expression along with defects in 
mesoendoderm development [15]. In bladder cancer cells, 
FGFR3 expression directly correlates with an epithelial-like 

state whereas FGFR1 expression correlates with a more 
mesenchymal-like state [44].

Another intriguing aspect emerging from our study 
is the possibility that some mesenchymal-like cancer 
cells may be using PI3K/AKT-signaling to regulate 
FGFR signaling, an effect evocative of recent studies 
which established the role of PI3K/AKT in upregulating 
the expression and/or activity of certain RTKs such as 
ERBB3 [46, 47]. This could underlie a complex regulatory 
network in place between FGFR1, FGFR3, or some RTK 
receptors, and PI3K/AKT with impact on controlling the 
mesenchymal state in the cells.

Recent studies also highlight the potential roles 
of N-cadherin and receptor tyrosine kinases (RTKs) 
in mediating EMT and FGFR functions [48] and such 
regulatory events have yet to be studied in the context 
of PCa. In contrast to that found for ERK, the ability of 
CR-1 to activate AKT was not exerted through FGFR 
signaling. Our observation that SRC activity was not 
significantly affected by CR-1 overexpression also 
contrasts with prior work suggesting that increased SRC 
activation is necessary for cripto-dependent activation of 
ERK and AKT [9, 25, 27]. This suggests that there may 
be context-dependent regulation of different intracellular 
effector pathways by CR-1. The limited role of Src in this 
setting could be explained by important perturbations 
occurring at cell-cell contacts. Moreover, our unpublished 
observations seem to indicate that GRP78 (HSPA5) 
which is a known binding partner of CR-1 that can signal 
through SRC has limited functions in the current model 
[49]. ERBB4 was downregulated in CR-1 overexpressing 
cells and Glypican-1 (GPC1), a putative binding partner 
of CR-1, was found to be marginally expressed in the 
PCa cell lines [50, 51]. This also argues for the existence 
of context-dependent activation of SRC, ERK and AKT 
that might explain, some contradictory reports that have 
demonstrated differential effects of CR-1 in modulating 
cell proliferation, survival/apoptosis or transformation 
properties [19, 21, 22, 49, 52].

CRIPTO
overexpression

FGFR1PI3K/AKT

ZEB2

ZEB1

TWIST1

epithelial-like state mesenchymal-like state

 prostate
cancer cell  prostate

cancer cell EMT

Figure 6: Working model of the regulatory role of CRIPTO in regulating epithelial-mesenchymal transition in human 
prostate cancer cells. Aberrant CR-1 expression can increase the activation of AKT and FGFR1, leading to deregulation of prostate 
epithelial differentiation towards a mesenchymal state that is coordinated by ZEB1, ZEB2 and TWIST1.
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Given the growing interest in targeting FGFR and 
PI3K/AKT as therapeutic target in cancer [53, 54], future 
studies should explore these questions and the potential 
relationships between different signaling pathways during 
cancer progression.

Another aspect emerging from this study is that 
perturbation of oncogenic signaling pathways (PI3K/
AKT, FGFR/MAPK) which are activated downstream of 
CR-1 can impair the EMT program and the expression of 
EMT-TFs such as TWIST1, ZEB1 and ZEB2. Inhibition 
of the expression of these EMT-TFs, can disrupt 
EMT in PCa cells. Hence we suggest that one notable 
function of CR-1 is to augment AKT as well as FGFR/
ERK signaling which can promote EMT and sustain a 
mesenchymal-like phenotype by regulating ZEB1, ZEB2, 
and TWIST1 expression. This data continues to support 
a role for EMT in prostate cancer progression [31] as 
well as the pivotal roles of TWIST1 and ZEB factors in 
cancer cells from various tissues [6, 55–57]. Certainly 
one confounding aspect in this model is the seeming 
less prominent role for SNAI1 and SNAI2. Nonetheless, 
we envision these two variables may be at play in the 
potential cross-talk involving FGFRs and PI3K/AKT. 
Another potential explanation comes from the complex 
interactions that may occur in our model, between CR-1 
and other components of the TGF-beta signaling pathway 
or molecules that interfere with TGF-beta signaling [40, 
49, 58, 59]. Pharmacological inhibition of the receptors 
for Nodal signaling, ALK4/7, had limited effects in our 
experimental conditions. Our preliminary investigations 
also indicate that Nodal mRNA level is relatively low 
in CR-1 expressing VCaP and 22Rv1/CR-1 cell lines 
(Supplementary Figure S8). Nevertheless, we should 
consider the possibility that Nodal might function in 
conjunction with CR-1 at a specific time or in certain 
tumor subpopulations that may have cancer stem-like 
properties and that have the capacity to promote tumor 
development [17, 18, 60, 61]. Clearly this is an area in 
which more research is required.

One important challenge in the area of PCa research 
is to develop novel methodologies and biomarkers that 
can better assess aggressiveness of prostate tumors [62]. 
This endeavor could help guide therapy for individual 
patients, and avoid unnecessary risk for those that do 
not need treatment. In this study, we identified CR-1 as 
a novel candidate marker to predict disease recurrence in 
patients primarily managed by surgery. Further evaluation 
is warranted and should interrogate larger and independent 
cohorts. In addition, because PSA biochemical recurrence 
does not always appear to be an accurate predictor of 
cancer specific death in men with PCa [63], the impact 
of CR-1 expression on overall survival has yet to be 
addressed. At least, this first study suggests that CR-1 
may be useful in addition to current prognostic tools 
for predicting local treatment outcome. In other human 
malignancies, with the possible exception of breast 

cancer [64], it is still unclear as to whether CR-1 may 
have prognostic significance. Moreover, the mechanisms 
and factors that contribute to CR-1 overexpression have 
yet to be identified. Clearly, further research regarding 
the selective expression of CR-1 in certain malignancies 
may be valuable for unraveling its multifaceted role in 
development and in cancer.

METHODS

Cell culture and reagents

22Rv1, VCaP and LNCaP cell lines were obtained 
from the American Type Culture Collection (Manassas, VA)  
and authenticated at this site. Cells were maintained in 
 RPMI-1640 medium supplemented with 10% FBS. 22Rv1 
stable transfectants were generated using the CR-1 cDNA 
cloned into the p3XFLAG-Myc-CMV-25 expression vector  
(Sigma Aldrich, St Louis, MO), or empty vector, and 
transfection by Lipofectamine 2000 (Life Technologies, 
Grand Island, NY) followed by G418 selection at 400 μg/mL  
for three to four weeks. LY294002 and U0126 were 
purchased from LC Laboratories (Woburn, MA), PD166866 
and SB431542 were from Sigma Aldrich.

RNA preparation, cDNA synthesis and 
Quantitative Real-Time PCR

Total RNA extraction was performed using RNeasy 
Mini Kit from Qiagen (Valencia, CA) and subjected 
to DNase treatment (DNA-free kit; Life technologies). 
Reverse transcription was performed using Maxima™ 
Reverse Transcriptase (Thermo Scientific, Waltham, MA) 
followed by qPCR using iTaq SYBR Green supermix 
(Bio-Rad, Richmond, CA) on an Applied Biosystems 
7900 Real Time PCR system (Applied Biosystems, Foster 
City, CA). Sequences of the oligonucleotide primers are 
provided in Supplementary Table S4.

Protein preparation and western blot analysis

Protein lysates were prepared as previously 
described in RIPA [65]. Western blot analysis was 
performed with antibodies specific for beta-actin, Flag 
(Sigma Aldrich), GAPDH (Life technologies), CR-1, 
E-cadherin (Epitomics), vimentin (Dako, Trappes, France), 
p-SRC, SRC, p-SMAD2, p-ERK1/2, ERK1/2, p-FGFR1-4, 
p-AKT, AKT (Cell Signaling), FGFR3, FGFR1, SMAD2 
(Santa Cruz, CA, USA).

In vitro assays

The following siRNAs from Thermo Scientific 
were used in this study and transfected with lipofectamine 
2000: ON-TARGET plus Non-Targeting Pool (D-
001810), ON-TARGET plus to SNAI1 (L-010847), SNAI2  
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(L-017386), ZEB1 (L-006564), ZEB2 (L-006914), 
TWIST1 (L-006434), FGFR1 (L-003131), FGFR3 (L-
003133), or individual siRNAs composing SMARTpool 
ON-TARGET plus to TDGF1 (L-004832).

Soft agar assays were performed as previously 
described [65]. For Colony formation assays, 500 cells 
were seeded at low confluence in 60-mm plastic Petri 
dishes, and grown in standard medium. After 14 days, 
colonies were stained with crystal violet, counted, and 
the diameters of the colonies measured. For wound 
closure assays, a wound (~500 μm) was scratched into 
confluent cultures. Wound regions with an identical width 
were marked, and wound closure was measured using 
photographs of 10 randomly selected wound areas at the 
time points indicated. Invasion assays were performed as 
previously [65] with small modifications. 9 x 104 cells/
well that were resuspended in 0.5 mL of RPMI FBS free 
medium were placed into Matrigel-coated Transwell insert 
containing 8-μm filters with the bottom well filled with 
RPMI 10% FBS. When indicated, inhibitors or vehicle 
were added to the serum containing media. After 48 h, the 
filters were fixed and stained with Crystal Violet 0.5% for 
30 min, and invaded cells quantified.

Patient samples

The prostate samples have been collected as part 
of an Institutional Review board- approved protocol at 
Henri Mondor Hospital (France). The cohort consisted 
of 256 patients who had undergone radical prostatectomy 
for clinically localized prostate cancer, and 239 benign 
prostatic hyperplasia (BPH) cases from patients that were 
surgically treated for BPH. The study also included a few 
specimens derived from normal prostates of young donors. 
Specimens were reviewed by a referee genitourinary 
pathologist (Y.A).

Immunohistochemical analyses

Paraffin-embedded tissues were sectioned at 5  μm 
thickness and evaluated by immunohistochemistry 
(IHC) on tissue microarrays. After antigen retrieval 
using microwave heating, CR-1 protein expression was 
assessed following ABC immunohistochemistry using 
a human CR-1 mouse monoclonal antibody (R&D 
Systems, Minneapolis, MN) as previously described 
[66], omitting the proteinase K treatment. Specificity 
of the antibodies in prostate tissues was verified in 
immunocompetitive experiments (Supplementary 
Figure S9). Granular staining was considered and 
scored as null (0), weak (1), moderate (2) or strong (3). 
At least two interpretable cores were required to include 
a case for analysis. The percentage of positive tumor 
cells in each core was estimated and a case considered 
with intermediate to high expression of CR-1 when 

greater than 25% of the epithelial cells displayed 
positive immunoreactivity (score 1–3). We considered 
the other cases as null to low expression. For dual 
immunofluorescence staining, samples were processed 
as above but using as secondary antibodies, anti–mouse 
Alexa Fluor 488 (Life technologies) and biotinylated 
anti-rabbit antibodies (Jackson ImmunoResearch, 
Suffolk, UK) with subsequent incubation with 
Streptavidin-Fluoprobes 647H (Interchim, Montluçon, 
France). Rabbit primary antibodies used in co-
expression studies were from Epitomics (Burlingame, 
CA; anti-E-cadherin, anti-vimentin). Slides were 
mounted using Vectashield mounting medium 
containing DAPI (Vector Laboratories, Burlingame, 
CA, USA) for microscopic inspection. Microscopic 
images were obtained under a 60x oil immersion 
objective using a Zeiss Axioplan2 microscope (Carl 
Zeiss, Le Pecq, France)

Statistical analysis

Statistical tests used a two-tailed α = 0.05 level of 
significance and were performed using SPSS 13.0 for 
Windows. For in vitro studies, comparisons between 
groups were performed using the Wilcoxon or Mann-
Whitney tests. For in situ studies, the chi-square test or 
Fisher’s exact test were applied to assess associations 
between groups and clinicopathological variables. 
Recurrence-free survival curves were generated by the 
Kaplan-Meier method and compared using the log-rank 
test. The day of surgery represent the starting point of 
analysis while biochemical recurrence was defined as 
first detectable elevation of PSA above 0.20 ng/mL. 
Multivariate analysis was carried out using the Cox 
procedure.
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