
Oncotarget7112www.oncotarget.com

Inhibitory effects of SEL201 in acute myeloid leukemia
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ABSTRACT

MAPK interacting kinase (MNK), a downstream effector of mitogen-activated 
protein kinase (MAPK) pathways, activates eukaryotic translation initiation factor 4E 
(eIF4E) and plays a key role in the mRNA translation of mitogenic and antiapoptotic 
genes in acute myeloid leukemia (AML) cells. We examined the antileukemic 
properties of a novel MNK inhibitor, SEL201. Our studies provide evidence that 
SEL201 suppresses eIF4E phosphorylation on Ser209 in AML cell lines and in primary 
patient-derived AML cells. Such effects lead to growth inhibitory effects and leukemic 
cell apoptosis, as well as suppression of leukemic progenitor colony formation. 
Combination of SEL201 with 5’-azacytidine or rapamycin results in synergistic 
inhibition of AML cell growth. Collectively, these results suggest that SEL201 has 
significant antileukemic activity and further underscore the relevance of the MNK 
pathway in leukemogenesis.
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INTRODUCTION

Acute myeloid leukemia (AML) is an aggressive 
hematological malignancy with relatively limited 
therapeutic options [1]. Abnormal activation of multiple 
signalling pathways, including mitogen-activated protein 
kinase (MAPK) pathways, is key in the pathogenesis 
and pathophysiology of AML. These pathways regulate 
different cellular processes including leukemic cell 
proliferation and survival in response to a variety of signals 
[2–5]. MAPK-interacting kinases 1 and 2 (MNK1/2) are 
downstream effectors of MAPK pathways and regulate 

multiple cellular processes through phosphorylation/
activation of the eukaryotic translation initiation factor 
4E (eIF4E) [6–9], a key component of the translation-
initiation complex [10, 11]. MNK1/2 phosphorylation of 
eIF4E at serine 209 triggers increased mRNA translation 
of mitogenic mRNAs that promote proliferation, cell cycle 
progression, and pro-survival processes [12–15]. eIF4E 
has been found to be overexpressed in a wide variety of 
human malignancies [16–20] and eIF4E phosphorylation 
on serine 209 is strongly associated with its transforming 
capacity [21, 13]. However, neither MNK activity, nor 
the phosphorylation of eIF4E appear to be essential for 
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normal development [12, 22, 23]. Given that MNK-
mediated eIF4E phosphorylation strongly contributes to 
tumorigenesis, lymphomagenesis, and tumor metastasis 
while being dispensable for development, pharmacological 
MNK1/2 inhibition may represent an attractive strategy 
for the treatment of leukemias [24, 21, 12].

Recently, a new ATP-competitive inhibitor of 
MNK1/2, SEL201, has been reported to selectively inhibit 
MNK1 and MNK2 activity, with a half maximal inhibitory 
concentration (IC50) of 10.8 nM and 5.4 nM, respectively, 
in in vitro kinase assays [25]. Importantly, SEL201 was 
shown to be orally bioavailable, safe and well tolerated in 
mice [26]. Moreover, SEL201 showed potent antitumor 
and anti-metastatic effects using KIT-mutant melanoma 
and breast cancer in in vitro and in vivo models [25, 26]. In 
the current study, we examined the antileukemic properties 
of SEL201 using AML models. We provide evidence that 
SEL201 suppresses eIF4E phosphorylation on Ser209 in 
AML cells and such effects appear to result in enhanced 
cellular apoptosis, and growth inhibitory responses. 
Notably, combination of SEL201 with 5′-azacytidine and 
rapamycin resulted in synergistic anti-leukemic effects  
in vitro.

RESULTS

In initial studies, we examined the effects of SEL201 
on eIF4E phosphorylation in AML cells. Treatment of the 
MV4-11, MM6 or U937 cell lines with SEL201 reduced 
phosphorylation of eIF4E on Ser209 in a dose and time-
dependent manner (Figure 1A–1C). Similar results were 
obtained when the effects of SEL201 on patient-derived 
primary AML cells were determined (Figure 1D and 1E). 
To define the functional relevance of inhibition of eIF4E 
phosphorylation by SEL201, we next performed cellular 
viability assays using AML cells. SEL201 treatment 
suppressed the cellular viability of MV4-11 and MM6 
cells with IC50 values of 0.4 µM and 1.8 μM, respectively 
(Figure 1F and 1G). Additionally, we evaluated the 
anti-leukemic effects of SEL201 on primitive leukemic 
progenitors in clonogenic assays in methylcellulose. 
SEL201 treatment resulted in significant inhibition 
of colony formation (CFU-L) derived from different 
leukemic lines, as well as in primary leukemic precursors 
from AML patients (Figure 2A–2D). On the other hand, 
SEL201 showed no suppressive effects on normal bone 
marrow (BM) derived CD34+ cells in myeloid colony 
formation (CFU-GM) assays (Figure 2E).

In addition to blocking tumor cell viability and 
proliferation, induction of programmed cell death 
(apoptosis) is an important effect of many antitumor 
agents [27]. We examined the pro-apoptotic functions of 
SEL201 in MV4-11 and MM6 cells using flow cytometry 
analysis. SEL201 treatment significantly increased 
the fraction of Annexin-V positive cells in a dose and 
time-dependent manner, compared to vehicle-treated 

cells (Figure 3). To further corroborate the induction 
of apoptosis by SEL201 in AML cells, we assessed the 
cleavage/activation of the apoptotic markers PARP and 
caspase 3 by immunoblotting. Treatment of MV4-11 cells 
with SEL201 resulted in cleavage of both caspase 3 and 
PARP, consistent with induction of apoptosis (Figure 3B).

Many patients with AML either do not respond 
to therapy or often relapse and develop resistance 
mechanisms to currently used therapies [28, 29], 
underscoring the need for the development of new 
treatments for AML patients. Targeting the mTOR and 
MNK-eIF4E pathways may provide important new 
opportunities for new cancer therapeutic approaches 
[30–33]. We evaluated the antitumor combinatorial effect 
of SEL201 with rapamycin that inhibits the activation of 
mammalian target of rapamycin complex 1 (mTORC1) 
[34]. Combination of SEL201 with rapamycin treatment 
resulted in synergistic inhibition of cell viability of 
MV4-11 cells (CI = 0.20) and U937 cells (CI = 0.35) 
(Figure 4A). In addition, the combination of SEL201 
with rapamycin significantly enhanced the suppressive 
effects on leukemic progenitor colony formation (CFU-L) 
from U937 cells in clonogenic assays in methylcellulose 
(Figure 4B).

In subsequent experiments we examined 
whether MNK1/2 inhibition by SEL201 could enhance 
the antileukemic properties of 5′-azacytidine, a 
hypomethylating agent with major clinical activity in 
AML and myelodysplastic syndromes (MDS) [35, 36]. 
The combination of 5′-azacytidine with SEL201 showed 
a synergistic effect with a CI value of 0.60 for U937 
cells, and an additive effect with a CI value of 1.0 for 
MV4-11 cells (Figure 4C). Additionally, the combination 
of SEL201 with 5′-azacytidine significantly enhanced 
inhibition of colony formation (CFU-L) of U937 cells 
in clonogenic assays in methylcellulose (Figure 4D). To 
evaluate whether the potent and synergistic antileukemic 
effects of combinatorial treatment of SEL201 with 
5′-azacytidine correlates with induction of apoptosis, 
we measured the induction of cellular apoptosis in 
U937 cells by flow cytometry analysis. We observed a 
significant increase in Anexin V-positive staining when 
U937 cells were treated with SEL201 in combination with 
5′-azacytidine, as compared to each drug treatment alone 
(Figure 4E).

DISCUSSION

MAPK pathways have been previously shown to be 
constitutively activated in malignant hematopoietic cells 
and control malignant cell proliferation, via downstream 
effectors, including activation of MNKs [37, 38]. When 
activated, MNKs phosphorylate eIF4E, which drives 
mRNA translation of pro-tumorigenic proteins, such as 
BCL-2, survivin, cyclin D1 and c-myc [11, 39]. Previous 
work has shown that MNK1/2 inhibition might block the 
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self-renewal capacity of leukemic cells, without affecting 
normal progenitor functions [40]. Additionally, eIF4E 
has been found to be overexpressed in M4/M5 subtypes 
of AML [41, 42]. Given its involvement in leukemia 
progression and dispensable role in normal hematopoiesis 
[40], eIF4E is an attractive therapeutic target in AML. 
Specific and direct targeting of eIF4E by anti-sense 
oligonucleotides has previously been used as an eIF4E 

targeting approach [43]. However, although originally 
promising, this approach reduced eIF4E expression, 
but did not substantially improve clinical responses in 
patients with advanced solid tumors, including colorectal 
cancer [44, 45]. Given that phosphorylation of eIF4E is 
crucial for its oncogenic activity, targeting MNK activity 
might constitute a better strategy for the treatment of 
malignancies. In fact, several studies have shown that the 

Figure 1: SEL201 suppresses phosphorylation of eIF4E and inhibits cell proliferation in AML. (A) MV4-11, (B) MM6, 
(C) U937 cells or (D–E) AML patient-derived cells were incubated with SEL201 for 1 hour and 4 hours at final concentrations of either 
0.1 or 1µM. Equal amount of total cell lysates were resolved by SDS-PAGE. Blots were probed with the indicated antibodies. (F) MV4-
11, (G) MM6 cells were plated in 96 well plates and treated with increasing concentrations of SEL201 for 7 days. Viability was assessed 
using WST-1 assay. Data are expressed as a percentage of control (DMSO-treated) cells. Shown are the means ± SE of 3 independent 
experiments, each done in triplicate, and IC50 values are shown for each cell line.
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oncogenic activity of eIF4E can be targeted by inhibiting 
MNK1/2-induced phosphorylation of eIF4E at serine 
209 in different malignancies, including AML, which 
leads to potent anti-tumor responses in vitro and in vivo  
[30, 46–48]. Thus, the selective targeting of this pathway, 
alone or in combination with other therapies, could be a 
promising therapy for the treatment of AML.

In the current study, we examined the anti-leukemic 
effects of SEL201, a novel, orally bioavailable, well 
tolerated and safe in vivo, small-molecule inhibitor of 
MNK1/2 activity [25, 26]. SEL201 has been recently 
developed and has been reported to inhibit melanoma 
clonogenicity, cell migration, and metastasis formation 
[25], and to induce cell cycle arrest, inhibit proliferation 
and block invasion and metastasis of breast ductal 
carcinoma in situ [26]. Importantly, SEL201 does not 
appear to affect proliferation of normal, non-malignant 
melanocytes [25]. Our studies demonstrate that SEL201 
inhibits eIF4E phosphorylation in AML cell lines and 
primary AML cells, consistent with a direct effect 
through inhibition of MNK kinase activity. In previous 
studies blocking eIF4E phosphorylation was shown to 

suppress mRNA translation of oncogenic genes, leading 
to inhibition of cancer cells proliferation [26, 46, 47]. 
In our study, we show that SEL201 suppresses cellular 
proliferation, viability and clonogenicity in AML. Notably, 
SEL201 was also found to not suppress the clonogenic 
capability of normal bone marrow-derived CD34+ 
progenitor cells. Previous studies have shown that eIF4E 
activation promotes tumorigenesis by inducing expression 
of anti-apoptotic proteins, such as MCL-1 and survivin 
[12, 39, 49]. Consistent with this, we found here that 
inhibition of eIF4E phosphorylation by SEL201 correlates 
with induction of apoptosis in AML cells.

Cytarabine, an antimetabolic agent currently 
used for the treatment of AML, was previously shown 
to induce phosphorylation of eIF4E on serine 209, 
which could constitute a potential anti-cancer resistance 
mechanism activated during administration of this therapy 
[31]. Consistently, cercosporamide, an anti-fungal agent 
with MNK inhibitory effects, was shown to enhance the 
antileukemic effects of cytarabine in AML in vitro and 
in vivo models [30]. Additionally, ribavirin, an anti-viral 
guanosine analogue, identified as a direct eIF4E inhibitor, 

Figure 2: SEL201 exhibits suppressive effects on AML leukemic progenitors, but not on normal hematopoietic 
progenitors. (A) MV4-11, (B) MM6 and (C) U937 cells were plated in a methylcellulose culture assay system with increasing 
concentrations of SEL201, as indicated. Data are expressed as percentage of colony formation of control (vehicle-treated) cells, and 
shown are the means ± SE of four independent experiments for MV4-11 and U937 and three independent experiments for MM6. (D) The 
inhibitory effects of SEL201 on primary leukemic precursors from AML patients were assessed in clonogenic assays in methylcellulose. 
Data are expressed as percentage of colony formation of control (vehicle-treated) cells. Shown are the means ± SE from four independent 
experiments, using cells from four different patients with AML. (E) Normal human bone marrow-derived CD34+ cells were plated in 
clonogenic assays in methylcellulose with increasing concentrations of SEL201, and myeloid (CFU-GM) progenitor colony formation 
was assessed. Data are expressed as percentage of colony formation of control (vehicle-treated) cells and represent means ± SE of three 
independent experiments. One-way ANOVA analysis followed by Tukey’s test was used to evaluate statistically significant differences:  
**p < 0.01, ***p < 0.001, ****p < 0.0001.
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was shown to enhance the therapeutic effects of cytarabine 
in a clinical trial involving AML patients [41]. Further, 
drug inhibition of mTORC1 pathways was also shown 
to trigger phosphorylation of eIF4E via activation of a 
negative feedback prosurvival pathway [30, 31]. Thus, 

dual inhibition of mTORC1 and MNK-eIF4E pathways 
might represent an important strategy for the treatment of 
several types of cancer [30, 31, 33, 50, 51]. Here, we show 
that combination of SEL201 with the mTORC1 inhibitor 
rapamycin exhibits potent antileukemic properties in AML 

Figure 3: SEL201 induces apoptosis of AML cells. (A) MV4-11 cells were treated with SEL201 at the indicated doses for 24, 48 
and 72 hours. The percentage of apoptosis was determined by flow cytometry using Anexin V/DAPI staining. Shown are the means ± SE 
of three independent experiments. (B) MV4-11 cells were treated with vehicle or SEL201 at the indicated doses for 24 hours. Whole cell 
lysates were resolved by SDS-PAGE and immunobloted with the indicated antibodies. (C) MM6 cells were treated with SEL201 at the 
indicated doses for 48 hours and 72 hours. The percentage of apoptosis was determined using Annexin V/DAPI staining followed by flow 
cytometry analyses. One-way ANOVA analysis followed by Tukey’s test was used to evaluate statistically significant differences between 
treatments: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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cells lines and primary AML cells. Additionally, we also 
determined the effects of SEL201 with 5′-azacytidine. 
Azacitidine (5′-azacytidine) is a clinically approved 
hypomethylating agent that inhibits DNA methylation of 

tumor suppressor genes, enhancing their transcription, 
and has shown significant clinical benefits in patients 
with myeloid malignancies [35, 51, 52]. Our data show 
that combination of SEL201 with 5′-azacytidine results 

Figure 4: Enhanced antileukemic effects of MNK inhibition combined with rapamycin or 5'-azacytidine. (A) MV4-11 
and U937 cells were plated in 96 well plates and treated with SEL201 and/or rapamycin for 4 days. Viability was assessed using WST-1 
assay. Data are expressed as percentage of vehicle-treated cells (control). Shown are the means ± SE of five independent experiments for 
MV4-11 and four for U937. (B) U937 cells were plated in methylcellulose culture assay system in the presence of SEL201 and rapamycin 
alone or in combination, as indicated. Data are expressed as percentage of colony formation of control (vehicle-treated) cells, and shown 
are the means ± SE of four independent experiments. (C) MV4-11and U937 cells were plated in 96 well plates and treated with SEL201 
and 5′-azacytidine alone and in combination, as indicated, for 4 days. Viability was assessed using a WST-1 assay. Data are expressed as 
a percentage of vehicle-treated cells (control). Shown are the means ± SE of four independent experiments. (D) U937 cells were plated 
in methylcellulose culture assay system in the presence of SEL201 and 5′-azacytidine alone or in combination, as indicated. Data are 
expressed as percentage of colony formation of control (vehicle-treated) cells, and represent means ± SE of four independent experiments. 
(E) U937 cells were treated with SEL201 or 5′-azacytidine alone or in combination for 48 hours and 72 hours, as indicated. The percentage 
of apoptosis was determined using Annexin V/DAPI staining followed by flow cytometry analyses. Shown are means ± SE of three 
independent experiments. One-way ANOVA analysis followed by Tukey’s test was used to evaluate statistically significant differences 
between treatments: **p < 0.01, ***p < 0.001, ****p < 0.0001.
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in synergistic inhibition of leukemic cell viability and 
induction of apoptosis of U937, TP53 mutated, cells. In 
another study, ribavirin treatment was shown to increase 
5′-azacytidine-induced suppression of colony formation of 
primary AML specimens [53]. In conclusion, our study 
establishes that SEL201 has antileukemic properties 
against AML progenitor cells, and further supports the 
concept of MNK pathways as therapeutic targets in AML.

MATERIALS AND METHODS

Cells and reagents

U937 cells were grown in RPMI 1640 medium with 
10% fetal bovine serum (FBS) and antibiotics. MV4-11 
cells were cultured in IMDM medium with 10% FBS 
and antibiotics. MM6 cells were grown in RPMI 1640 
medium supplemented with 10% FBS, 10 µg/ml human 
insulin, 1 mM sodium pyruvate, 1mM nonessential amino 
acids, and antibiotics. Peripheral blood or bone marrow 
from patients with AML were collected after obtaining 
informed consent as approved by the institutional review 
board of Northwestern University. Mononuclear cells 
were isolated following Histopaque density gradient 
separation (Sigma-Aldrich). For immunoblotting analysis 
the mononuclear cells were cultured overnight in IMDM 
medium supplemented with 20% FBS prior to drug 
treatment. SEL201 was provided by Selvita S. A. (Ryvu 
Therapeutics S. A.). 5′-azacytidine and rapamycin were 
purchased from Sigma-Aldrich (St. Louis, MO, USA).

Cell lysis and immunoblotting

For immunoblotting experiments, cells were 
treated with either vehicle-DMSO (control) or SEL201 
at indicated doses and time points. Cells were lysed in 
lysis buffer (50 mM Hepes pH 7.3, 150 mM NaCl, 1.5 
mM MgCl2, 1 mM EDTA pH 8.0, 100 µM NaF, 100 
µM Na4P2O7, 0.5% Triton X-100, and 10% glycerol) 
supplemented with protease and phosphatase inhibitors. 
Equal amounts of total cell lysates were resolved by SDS-
PAGE and processed for immunoblotting essentially as in 
our previous studies [54, 55]. Antibodies against phospho-
eIF4E (Ser209) (#9741), cleaved Caspase-3 (#9661) 
Caspase 3 (#9662), PARP (#9542), were from Cell 
Signaling. Antibodies against eIF4E (sc-9976), HSP-90 
(sc-7947) were from Santa Cruz Biotechnology, and anti-
GAPDH (#374) antibody was purchased from Millipore.

Cell viability assays

Cell viability assays were performed as previously 
described using WST-1 Reagent (Sigma-Aldrich) [46, 56]. 
For combination therapy, the effect of drug interaction on 
cell viability was measured by calculating the combination 
index (CI) using CompuSyn. The CI values were 
calculated as previously described [56].

Clonogenic leukemic progenitor assays in 
methylcellulose

This assay was performed as described in previous 
studies [46]. Peripheral blood was collected from patients 
with AML after obtained informed consent approved by 
the Northwestern University Institutional Review Board. 
To assess the effect of SEL201 on leukemic progenitor 
colony formation (CFU-L), mononuclear cells were 
plated in methylcellulose in the presence of vehicle-
DMSO (control) or increasing doses of SEL201 and the 
indicated agents. Human normal bone marrow CD34+ cells 
(ATCC) were used to assess CFU-GM colony formation 
in clonogenic assays in methylcellulose (Stemcell 
Technologies) in the presence or absence of SEL201 at 
the indicated doses.

Analysis of apoptosis by flow cytometry

MV4-11 and MM6 cells were treated with either 
vehicle-DMSO (control) or SEL201 at the indicated 
times and doses. U937 were treated with vehicle-DMSO 
(control) or SEL201 and/or 5′-azacytidine for 48 and 72 
hours. Samples were processed and analyzed as previously 
described [46, 56].

Statistical analysis

All statistical analyses were performed using 
GraphPad Prism 6.0 software as described previously  
[46, 56].
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