
Oncotarget1750www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No.3

Cisplatin-selected resistance is associated with increased motility 
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ABSTRACT
Atypical teratoid/rhabdoid tumor (ATRT) is a malignant pediatric brain tumor with 

great recurrence after complete surgery and chemotherapy. Here, we demonstrate 
that cisplatin treatment selects not only for resistance but also for a more oncogenic 
phenotype characterized by high self-renewal and invasive capabilities. These 
phenomena are likely due to STAT3 upregulatoin which occurred simultaneously with 
higher expression of Snail, an activator of epithelial–mesenchymal transition (EMT), 
in ATRT-CisR cells. STAT3 knockdown effectively suppressed Snail expression and 
blocked motility and invasion in ATRT-CisR cells, while overexpressing Snail reversed 
these effects. Chromatin immunoprecipitation assay indicated that STAT3 directly 
bound to Snail promoter. Moreover, STAT3 knockdown effectively suppressed cancer 
stem-like properties, synergistically enhanced the chemotherapeutic effect, and 
significantly improved survival rate in ATRT-CisR-transplanted immunocompromised 
mice. Finally, immunohistochemistrical analysis showed that STAT3 and Snail were 
coexpressed at high levels in recurrent ATRT tissues. Thus, the STAT3/Snail pathway 
plays an important role in oncogenic resistance, rendering cells not only drug-
resistant but also increasingly oncogenic (invasion, EMT and recurrence). Therefore, 
the STAT3/Snail could be a target for ATRT treatment.

INTRODUCTION

Atypical teratoid/rhabdoid tumor (ATRT) is a rare, 
fatal pediatric tumor of the central nervous system (CNS) 
that typically occurs in patients under 3 years of age [1]. 

Patients with ATRT have a poor prognosis and a short 
survival that ranges from approximately 16 to 24 months 
[2, 3]. ATRT contains a unique heterogeneous combination 
of cells, including rhabdoid cells and peripheral epithelial 
and mesenchymal elements. Due to the histological 
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similarity on magnetic resonance imaging (MRI) of ATRT 
and medulloblastoma, ATRT is easily misclassified as a 
primitive neuroectodermal tumor/medulloblastoma [1, 4]. 
Radiation is not a treatment option for ATRT patients because 
neuroradiation causes significant neurocognitive deficiency in 
children or infants with ATRT [5]. The standard therapeutic 
treatment for ATRT patients involves surgical resection 
and chemotherapy, which slightly improves the relatively 
low disease-free survival outcome [2, 3]. Although brain 
tumors rarely metastasize to distant organs, ATRT displays 
aggressive behavior that promotes tumor dissemination, 
including intracranial and spinal cord invasion [6].

Cisplatin (cis-diamminedichloroplatinum; CDDP)-
based chemotherapy regimens are the standard treatment 
for ATRT patients who have received surgical resection [7]. 
However, during the course of chemotherapy, resistance 
to chemotherapeutic drugs often develops and causes the 
tumor to recur. High recurrence rates and drug-resistance 
potential have been reported in ATRT even after completion 
of combined therapy [8, 9]. It has been reported that 
chemotherapy can increase oncogenic phenotype, such as 
invasiveness and cancer stem cell (CSC)-derived self-renewal 
capabilities [10]. Moreover, oncogenic resistance, associated 
with activation of pathways of cell proliferation and 
suppression of apoptosis, confers resistance to the growth-
inhibitory carcinogenic environment, eventually causes to the 
aggressive manners of cancer malignancy [11]. For example, 
Bcr-Abl, a fusion of Bcr-Abl that results in the constitutively 
active kinase Bcr–Abl, renders cells resistant to apoptosis 
caused by DNA damaging drugs and simultaneously renders 
a cell leukemogenic [12]. Furthermore,  chemotherapy-
induced tumor progression, a type of selection for oncogenic 
resistance, renders cells resistant to chemotherapy and 
simultaneously promotes its oncogenic potential [11]. 
However, the interplay between cisplatin-selected resistance 
and ATRT recurrence is still unclear.

The epithelial-mesenchymal transition (EMT) in 
cancer induces a triad of cancer features: invasion and 
metastasis; stem cell properties; and drug resistance [13]. 
In hepatomas, activation of EMT and hedgehog signaling 
are associated with chemoresistance and invasion [14]. 
Certain EMT transcription factors, such as Snail and 
Slug, have been reported to induce radioresistance and 
chemoresistance by antagonizing p53-mediated apoptosis 
[15] and directly contribute to cisplatin resistance in 
ovarian cancer [16]. ZEB1, another regulator of EMT, 
has been shown to influence invasion, chemoresistance 
and tumorigenesis, and orchestrate key features of a CSC-
like phenotype in malignant gliomas [13]. Vice versa, 
drug resistance in cancer cells has been implicated in 
the positive regulation of EMT. It has been reported that 
cisplatin-resistant lung cancer cells acquire an EMT-like 
phenotype and CSC-like properties through the AKT/ 
β-catenin/Snail signaling pathway [17]. Furthermore, cisplatin 
treatment of primary and metastatic epithelial ovarian 
carcinomas generates residual cells with a mesenchymal stem 

cell-like profile [18]. Recently, Sun and colleagues showed 
evidence that chemotherapy-induced EMT in human tongue 
cancer cells occurs through Bmi-1 targeting by miR-200b and 
miR-15b [19]. Cisplatin also induces resistance to molecular-
targeted agents through an activated EMT pathway [20]. 
However, the function of EMT and aoosiated processes in 
CNS cancer has received little attention so far. It is believed 
that critical invasion pathways/EMT-like properties overlap 
between CNS and other cancers [13, 21]. Nevertheless, the 
interplay between EMT-like pathways and chemoresistance 
in ATRT has not yet been clarified.

Signal-transducer-and-activator-of-transcription 3 
(STAT3), a transcription factor involved in cytokine 
signaling, participates in the regulation of cell cycle, 
apoptosis, cell invasion, and angiogenesis [22]. Recent 
studies have shown that STAT3 activation in brain 
tumors, such as gliomas and medulloblastomas, is a 
prognostic indicator for malignant progression, tumor 
growth, and a low patient survival rate [23]. STAT3 is 
also involved in regulating the EMT process in several 
cancer types [24, 25]. STAT3 activation is required for 
TGF-β-induced EMT in lung cancer cells [26]. Through 
cooperation with EGFR, STAT3 upregulates Twist and 
subsequently induces EMT [27]. Moreover, the JAK/
STAT3/Snail signaling pathway activates head and 
neck tumor metastasis and EMT [28]. Additionally, 
an IL-6/STAT3/miR34a feedback loop has been 
shown to promote EMT-mediated cancer invasion 
and metastasis in human colorectal cancer cells [29]. 
The role of STAT3 in regulating chemoresistance 
has recently been emphasized in cancer cells such as 
glioblastoma multiforme (GBM) and neuroblastoma. 
Activation of the IL6/STAT3 pathway protects GBM 
and neuroblastoma cells from drug-induced apoptosis 
[30, 31]. In breast cancer cells, an autocrine signaling 
between STAT3 and RANTES is essential for tamoxifen 
resistance [32]. Targeting of the STAT3 protein was 
shown to effectively kill GBM cells and suppress GBM 
tumor growth [33]. However, it remains unknown 
whether STAT3 signaling is involved in the acquisition 
of chemosensitivity and in enhancing EMT-related 
properties with tumor invasion in ATRT.

In our study, we found that cisplatin-selected resistant 
ATRT (CisR; ATRT-CisR) cells displayed higher STAT3 
expression and it plays a role in oncogenic phenotype, 
such as cell motility, tumor invasion, and chemoresistance. 
Chromatin immunoprecipitation (ChIP) assay in ATRT-
CisR cells confirmed that STAT3 directly bound to the 
promoter of Snail, which is known to induce EMT. We 
showed that STAT3/Snail signaling played an important 
role in oncogenic resistance, rendering cells not only 
to be drug-resistant but also oncogenic (invasion, EMT 
and recurrence). That result suggested that this signaling 
pathway is a novel treatment target for ATRT patients. Our 
findings indicate interplay between chemoresistance and 
tumor invasion/EMT-like properties in ATRT.
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RESULTS

Increased tumor invasion and upregulated 
STAT3 in cisplatin-selected resistant ATRT cells

The role of cisplatin as a chemotherapy drug in 
modulating or generating the aggressive character of 

ATRT, and causing relapse and resistance to conventional 
therapeutics is still unclear. To undertand this, we 
established two ATRT primary cell lines from two patients 
(Pt1 and Pt2; Figure 1A, left). The two ATRT patients’ 
samples exhibited morphological features of celluar tumor 
with small round cells, rhabdoid cells and prominent 
nucleolus by Hematoxylin and Eosin (H&E) staining. The 
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Figure 1: Cisplatin-selected resistant ATRT cells display a more malignant phenotype and increased expression of STAT3.  
(A) Left: Representative clinicopathological picture of ATRT. The tissue sample was stained with H&E staining. Scale bars, 50 μm. Right: ATRT-
parental (ATRT-Par) cells display a round, lymphoid-like appearance and grow in tight clusters with substantial cellular cohesion. Comparatively, 
ATRT-cisplatin resistant (ATRT-CisR) cells have a more spindle-like morphology and display decreased intercellular contacts. Moreover, ATRT-CisR 
cells extend pseudopodia. Scale bars, 50 μm. (B) Dose-response curves were generated for all four cell lines, termed Pt1-Par, Pt2-Par, Pt1-CisR, and 
Pt2-CisR, and the IC50 concentrations were calculated as 3 μg/ml, 1 μg/ml, 8 μg/ml, and 9 μg/ml, respectively. (C–D) ATRT-Par and ATRT-CisR cells 
in two individual patients were subjected to soft agar colony formation (C), and invasion (D) assays to assess the ATRT phenotype. Scale bars, 50 μm. 
*P < 0.01 by Student’s t-test. (E) Left: Schema for identifying the motility-related genes of STAT3, BCAR1, Rac1, and Rho by Human Cell Motility 
RT2 Profiler PCR Array. Right: Western blot analysis of STAT3 in ATRT-Par and ATRT-CisR cells of two individual patients. (F) CisR cells showed 
a higher expression of STAT3 than Par cells by immunofluorescence staining. The nuclei were visualized with DAPI staining. Scale bars, 20 μm. 
(G) Patterns of invasion of ATRT-Par and ATRT-CisR in mouse brains. H&E staining showing infiltration of the brain parenchyma by cells detached 
from the main tumor mass in mice inoculated with ATRT-Par and ATRT-CisR cells. Upper panel: ATRT-Par cells show low invasive characteristics of 
clear tumor boundary (b) and large tumor islands (c; arrow) including a stellate appearance. Lower panel: ATRT-CisR cells have invasive characteristics 
of non-clear tumor boundary (e) and small islands (f; arrow) with single cell invasion and invasion as clusters of cells along the white matter tracts. 
Scale bars, 200 μm (a and d), and 100 μm (b, c, d and e). (H) Brain specimens isolated from ATRT-CisR cells show higher STAT3 expression levels 
than those isolated from ATRT-Par cells as determined through IHC staining (left) and qPCR analysis (right). Scale bars, 100 μm (a and d), and 50 μm 
(b, c, d and e). *P < 0.01 by Student’s t-test. T: main tumor mass. The data shown are the mean ± SD of three independent experiments.
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cisplatin IC50 values in Pt1 and Pt2 cells were determined 
to be approximately 3 μg/ml and 1 μg/ml, respectively. 
These concentrations of cisplatin were then used to treat 
Pt1 and Pt2 cells for 3 months to establish corresponding 
age- and passage-matched cisplatin-selected resistant cell 
lines (Pt1-CisR and Pt2-CisR).

Previous studies have shown that CisR cancer cell 
lines have a characteristic fibroblastic morphology and 
reduced intercellular contacts [16]. We also found that 
the Pt1-CisR and Pt2-CisR cells displayed a spindle-like 
morphology and formed a non-cohesive sheet compared 
with the round lymphoid-like parental cells (Pt1-Par and 
Pt2-Par; Figure 1A, right). To determine the difference in 
cisplatin IC50 values between the established parental and 
resistant ATRT cells, a cisplatin dose-response curve for 
treatments ranging from 1 to 10 μg/ml was determined 
for the cells. The cell survival curve showed significantly 
different IC50 values between parental and resistant ATRT 
cells (Figure 1B; Pt1-Par, 3 μg/ml; Pt2-Par, 1 μg/ml versus 
Pt1-Cis, 9 μg/ml; Pt2-CisR, 8 μg/ml). Furthermore, ATRT-
CisR cells showed an enhanced ability for anchorage-
independent growth on agarose (Figure 1C) as well as 
increased migration (Supplementary Figure 1A) and 
invasion (Figure 1D) compared with their parental cells.

To further investigate potential downstream 
pathways of cisplatin-induced cell motility, we compared 
the gene expression levels of cell motility-associated 
factors using RT2 Profiler PCR arrays in the two pairs of 
parental and resistant cells. We focused on cell motility 
–related genes and selected those genes that were more 
strongly expressed (>1.5 fold) in ATRT-CisR than 
ATRT-Par cells. The results revealed that BCAR1, Rac1, 
Rho, and STAT3 were increased expression in ATRT-
CisR cells compared with ATRT-Par cells (Figure 1E, 
left). The mRNA and protein levels of these molecules 
were confirmed by qPCR and Western blot analysis, 
respectively. STAT3 displayed the most significant 
difference between ATRT-Par and ATRT-CisR cells 
(Figure 1E, right; Supplementary Figure 1B–Figure 1C). 
Immunofluorescent staining also confirmed higher STAT3 
expression in ATRT-CisR cells than in ATRT-Par cells 
(Figure 1F). To analyze the invasive characteristics of 
ATRT-Par and ATRT-CisR cells, the two cell lines were 
injected into SCID mice. Examination of paraffin sections 
of xenograft tumors from dissected brains showed that 
ATRT-Par tumors had low invasive characteristics, 
including a clear tumor boundary, large tumor islands, 
and a stellate appearance. In contrast, ATRT-CisR tumors 
showed significant invasive morphology including small 
islands with single-cell invasion (Figure 1G). Importantly, 
specimens from ATRT-CisR tumors had higher expression 
levels of STAT3 than those from ATRT-Par tumors, as 
shown by immunohistochemistry (IHC) staining (Figure 1H,  
left) and qPCR analysis (Figure 1H, right). These data 
support our observation that cisplatin resistance increases 
tumorigenicity and that STAT3 expression is associated 

with cell motility and invasiveness in cisplatin-selected 
resistant ATRT cells.

STAT3 promotes tumor invasion through 
induction of EMT factors

The correlation between STAT3 expression level and 
ATRT invasiveness prompted us to investigate whether 
STAT3 regulates the invasive properties of ATRT-CisR 
cells. We knocked down STAT3 expression in the two 
ATRT-CisR cell lines using short hairpin RNA (shRNA) 
constructs (Figure 2A). STAT3-knockdown cells were 
subjected to transwell migration and invasion assays, 
which revealed that STAT3 knockdown dramatically 
suppressed cell motility and invasiveness in ATRT-CisR 
cells (Figure 2B and Supplementary Figure 2A). Previous 
studies suggested that EMT might promote tumor invasion, 
increase chemoresistance and activate cancer stem-like 
capacities [13]. Here, we found that STAT3-overexpressed 
ATRT-Par cells (Par/STAT3) and scrambled shRNA control-
transfected ATRT-CisR cells (CisR/sh-Scr) had a higher level 
of N-cadherin and a lower level of E-cadherin. Conversely, 
empty vector-transfected ATRT-Par (Par/Ctrl) and STAT3-
knockdown ATRT-CisR (CisR/sh-STAT3) cells had lower 
N-cadherin levels and higher E-cadherin levels as assessed 
by both immunofluorescence staining and Western blot 
(Figure 2C and Supplementary Figure 2B). Interestingly, when 
the cells were cultured on top of thick collagen (to establish 
2.5D culture conditions), Par/STAT3 and CisR/sh-Scr cells 
exhibited an elongated morphology, while Par/Ctrl and CisR/
sh-STAT3 cells had rounded shapes (Figure 2D). This finding 
implied that in ATRT-CisR cells, STAT3 may modulate cell 
morphology and mesenchymal movement in 2.5D. Moreover, 
in the 2.5D-cultivated system, Par/STAT3 and CisR/sh-Scr 
cells exhibited pseudopod protrusions, whereas Par/Ctrl 
and CisR/sh-STAT3 exhibited cortical actin arrangement 
(Figure 2E). Taken together, our data support a role for 
STAT3 in activating tumor invasion and enhancing the EMT-
like phenotype in cisplatin-selected resistant ATRT cells.

The association between STAT3 expression levels, 
cell motility, and an EMT-like phenotype in ATRT cells 
suggested that STAT3 may regulate ATRT invasive 
properties through an EMT mechanism. To investigate the 
potential downstream targets of STAT3-mediated tumor 
invasion, we performed RT2 Profiler PCR arrays for gene 
expression levels of EMT associated factors with three 
pairs of cells: ATRT-Par vs. ATRT-CisR; Par/Ctrl vs. Par/
STAT3; and CisR/sh-Scr vs. CisR/sh-STAT3. We focused 
on EMT-related genes and selected those genes that were 
more strongly expressed (>1.5 fold) in ATRT-CisR, Par/
STAT3, and CisR/sh-Scr cells than in their counterparts 
(Figure 2F). The PCR arrays results were confirmed by 
qPCR and Western blot in ATRT-Par and ATRT-CisR cells 
and revealed that Snail displayed the most significant 
difference between ATRT-Par and ATRT-CisR cells 
(Figure 2G, Figure 2H; Supplementary Figure 2C).
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Figure 2: EMT activator is downstream of STAT3-induced tumor invasion. (A) Stable cell lines with STAT3 knockdown were 
generated in previously established Pt1-CisR and Pt2-CisR cells. The expression or knockdown efficiency of STAT3 was analyzed by Western 
blot. (B) Pt1-CisR cells transfected with the scrambled shRNA control vector (Pt1-CisR/sh-Scr), Pt1-CisR cells transfected with the sh-STAT3 
vector (Pt1-CisR/sh-STAT3), Pt2-CisR cells transfected with the scrambled shRNA control vector (Pt2-CisR/sh-Scr), and Pt2-CisR cells 
transfected with the sh-STAT3 vector (Pt2-CisR/sh-STAT3) were subjected to an invasion assay. Scale bars, 50 μm. *P < 0.01 by Student’s t-test. 
(C) Expression of N-cadherin and E-cadherin were analyzed in ATRT-Par cells that were transfected with the STAT3-overexpressing vector (Par/
STAT3) or the vector control (Par/Ctrl) and ATRT-CisR cells transfected with the sh-STAT3 vector (CisR/sh-STAT3) or the scrambled shRNA 
control vector (CisR/sh-Scr) by immunofluorescence staining. The nuclei were visualized with DAPI staining. Scale bars, 5 μm. (D) Phase-
contrast images of Par/Ctrl, Par/STAT3, CisR/sh-Scr and CisR/sh-STAT3 (n = 200 for each stable cell line). The cells were cultivated on top 
of thick collagen (2.5D). Scale bars, 20 μm. *P < 0.01 by Student’s t-test. (E) Immunofluorescence micrographs showing the morphology and 
actin organization of Par/Ctrl, Par/STAT3, CisR/sh-Scr and CisR/sh-STAT3. The cells were cultured in 2.5D. Green, F-actin; blue, nuclei. Scale 
bars, 50 μm (first row) and 5 μm (second row). (F) Schema for identifying EMT-related genes by Human Epithelial to Mesenchymal Transition 
(EMT) RT2 Profiler PCR Array. (G) A qPCR analysis of EMT-related genes N-cadherin, Snail, Slug, Twist1, Zeb1 and Vimentin. *P < 0.01 by 
Student’s t-test. (H) Western blot of the target gene Snail. The data shown are the mean ± SD of three independent experiments.
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The STAT3/Snail axis is critical for EMT-like 
phenotype and tumor invasion in  
cisplatin-selected resistant ATRT cells

The increase of Snail in invasive ATRT-CisR cells 
led us to speculate that Snail may be a modulator of 
STAT3-mediated EMT-like phenotypic cell motility and 
invasion. We examined the causal link between STAT3 
and Snail, and found that knockdown of endogenous 
STAT3 downregulated Snail expression, but not vice versa 
(Figure 3A). Knockdown of STAT3 or Snail decreased the 
expression of N-cadherin and increased the expression of 
E-cadherin, by immunofluorescence staining (Figure 3B).  
In time-lapse microscopy, the low-STAT3 and low-Snail 
ATRT-CisR cells had rounded shapes and displayed 
substantially decreased motility in the 2.5D environment 
(Figure 3C). Cells with knockdown of STAT3 or Snail had 
reduced invasive ability compared with control cells (Figure 
3D). Consistently, ectopic STAT3 expression increased 
Snail protein expression, while ectopic overexpression of 
Snail did not affect STAT3 expression or phosphorylation 
(Figure 3E). Moreover, ectopic STAT3 or Snail enhanced 
the expression of N-cadherin but attenuated the expression 
of E-cadherin, based on immunofluorescence staining 
(Figure 3F). Using time-lapse microscopy, we found more 
rapid movement in the elongated high-STAT3 and high-
Snail ATRT-CisR cells in the 2.5D environment (Figure 
3G). Moreover, cells overexpressing STAT3 or Snail 
had higher invasive abilities than control cells (Figure 
3H). Taken together, these results indicate that STAT3 
upregulates Snail and contributes to tumor invasion and 
motility in ATRT cells.

STAT3 directly regulates Snail transcription

Because STAT3 is a critical transcription factor 
for modulating malignancies among many different 
cancers, we next aimed to elucidate whether STAT3 
enhances Snail expression through transcriptional 
regulation. We screened for potential STAT3 binding 
sites in a 1.3-Kb upstream sequence from the Snail 
transcriptional start site and found three potential binding 
regions (RE): RE1, 5′-TTTTTCAA-3′ (–1077 to –1070); 
RE2, 5′-TTGAGGCAA-3′ (–1011 to –1003); and RE3: 
5′-TTACTCTGAA-3′ (–909 to –900). To determine 
whether STAT3 activates Snail expression is a promoter 
sequence dependent, we constructed a series of Snail 
promoter-driven luciferase reporter plasmids with a full-
length promoter, promoter regions with different lengths 
of deletions (D1-3), or a promoter with mutations in the 
potentially candidated binding sites (Mut; Figure 4A, left). 
We then cotransfected a STAT3 expression vector with the 
serial deletion constructs in ATRT cells as indicated. The 
reporter assays demonstrated that RE3 was responsible for 
STAT3-mediated promoter activity, suggesting that RE3 is 
the STAT3 binding site (Figure 4A, right).

To further characterize the Snail promoter sequence 
dependencies of STAT3 to the activations of Snail promoter, 
we performed a ChIP analysis for a complementary 
assessment of promoter activity. ATRT-Par cells were co-
transfected with empty vector or ectopic STAT3 expression 
vector combined with firefly luciferase reporting vectors with 
various Snail promoter regions. Specific STAT3-binding 
signals were detected with full length, D1 and D2 Snail 
promoter vectors but not with D3 and mutated Snail promoter 
vectors, indicating that the binding of STAT3 on the Snail 
promoter is dependent on the RE3 sequence within the Snail 
promoter region (Figure 4B). To further confirm the STAT3 
binding site in the endogenous Snail promoter, and whether 
the binding of STAT3 reflects the actual endogenous Snail 
promoter activations, we performed endogenous Q-ChIP 
with primers specific to the Snail promoter REs (RE1-3) 
in ATRT-CisR cells. The results, consistent with our reporter 
and ChIP assays (Figure 4C), indicate STAT3 activates 
endogenous Snail promoter activities through the same 
targeting sequences as previous exogenous co-transfection 
experiment results (Input, 2% of total lysate). To further 
confirm the specific Snail promoter activation by STAT3 
targeting sequences, we next generated reporter vectors 
with either 6 repeats of the putative binding sequence 
concluded by previous reporter and ChIP experiment results, 
5′-TTACTCTGAA-3′, or 6 repeats of a mutated binding 
sequence, 5′-TTACTCTGGG-3, upstream of ß-actin minimal 
promoter in ATRT-CisR cells. The reporter assay results 
showed that the binding sequence 5′-TTACTCTGAA-3′, 
responsed to STAT3 overexpresions by 20-folds of increase 
as compared with respective control experiments, while 
6 repeats of mutated sequence were unable to response to 
STAT3 induced transcriptional activation. (Figure 4D). 
Taken together, we conclude that STAT3 directly regulates 
Snail transcription through specific binding to the 
sequence 5′-TTACTCTGAA-3′ in region RE3 of the Snail 
promoter exogenously and endogenously. The STAT3/
Snail transcriptional regulator axis is the key for aberrant 
malignancies of ATRT cells in our experimental systems.

The STAT3/Snail axis regulates cancer stem-like 
and tumor-initiating properties

Previous studies revealed that drug resistance is 
usually enhanced in cancer stem-like cells [34, 35]. 
The increased cisplatin resistance in our established 
ATRT-CisR cells raised the potential of these cells 
to be cancer stem-like cells. Comparative analysis 
between ATRT-Par and ATRT-CisR cells showed that 
ATRT-CisR cells have higher sphere-forming ability 
(Supplementary Figure 3A) and expressed higher 
levels of stemness factors such as Oct-4, Nanog, Sox2, 
Bmi-1, and Nestin (Supplementary Figure 3B). Flow 
cytometry also showed that the expression level of 
CD133 was dramatically increased in ATRT-CisR cells 
(Supplementary Figure 3C).
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Figure 3: STAT3 activates cell motility and tumor invasion through Snail. (A) Expression of STAT3, phosphorylated STAT3 
(p-STAT3), and Snail in ATRT-CisR cells. ß-actin was used as a loading control. (B) Expression of N-cadherin and E-cadherin were 
examined in CisR/sh-Scr, CisR/sh-STAT3 and CisR/sh-Snail cells by immunofluorescence staining. The nuclei were visualized with DAPI 
staining. Scale bars, 5 μm. (C) Representative trajectories and quantification of speed in ATRT-CisR cells transfected with sh-STAT3 or 
sh-Snail versus scrambled shRNA control vector (sh-Scr; n = 10 for each group). *P < 0.01 by Student’s t-test. (D) Transwell invasion assay 
in ATRT-CisR cells transfected with sh-STAT3 or sh-Snail versus scrambled shRNA control vector (sh-Scr). Scale bars, 50 μm. *P < 0.01 
by Student’s t-test. (E) Expression of STAT3, p-STAT3, and Snail in ATRT-Par cells. β-actin was used as a loading control. (F) Expression 
of N-cadherin and E-cadherin were analyzed in Par/Ctrl, Par/STAT3, and Par/Snail cells by immunofluorescence staining. The nuclei were 
visualized with DAPI staining. Scale bars, 5 μm. (G) Representative trajectories and quantification of speed in ATRT-Par cells transfected 
with ectopic STAT3 or Snail versus the vector control (Ctrl; n = 10 for each group). *P < 0.01 by Student’s t-test. (H) Transwell invasion 
assay in ATRT-Par cells transfected with ectopic STAT3 or Snail versus the vector control (Ctrl). Scale bars, 50 μm. *P < 0.01 by Student’s 
t-test. The data shown are the mean ± SD of three independent experiments.
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As STAT3 and Snail are regulators of self-renewal 
and cancer stem-like properties in several solid tissue 
cancers [36], we hypothesized that the STAT3/Snail axis 
activates cancer stem-like and tumor-initiating properties 
in ATRT cells. We first investigated the involvement of 
STAT3 and Snail in cancer stem-like properties and 
tumor-initiating capability of ATRT-CisR cells using 
sphere-forming and self-renewal assays. We observed 
that STAT3 overexpression in ATRT-Par cells increased 
sphere numbers through several passages of the sphere-
formation assay, indicating an increased self-renewal 
capability, whereas simultaneous knockdown of Snail 
attenuated the STAT3-increased self-renewal (Figure 
5A–Figure 5B). Consistently, co-overexpression of Snail 
rescued cells from inhibited self-renewal mediated by 
STAT3 knockdown (Figure 5A–5B).

We next examined the stemness transcriptome profile 
by gene expression microarray analysis (Figure 5C). Principle 
component analysis (PCA) and multidimensional scaling 
(MDS) analysis demonstrated that suppression of STAT3 in 
ATRT-CisR cells diverted them away from ESCs; however, 
Snail co-overexpression induced cells toward ESCs (Figure 
5D–Figure 5E). Consistently, STAT3 overexpression in 
ATRT-Par cells promoted a signature shift toward that of 
ESCs, whereas co-knockdown of Snail diverted ATRT-
Par cells from ESCs (Figure 5D–Figure 5E). According to 
bioinformatics data, we hypothesized that the STAT3/Snail 
axis positively regulates cancer stem-like properties and 
tumor-initiating capabilities in ATRT. We further analyzed 
Nanog and Sox2 mRNA expression and showed that STAT3 
knockdown in ATRT-CisR cells significantly decreased 
mRNA levels of Nanog and Sox2, while they were increased 
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independent experiments.
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after STAT3 overexpression in ATRT-Par cells (Figure 5F). 
Importantly, orthotopic grafts of the established ATRT clones 
in mice demonstrated that Snail overexpression rescued the 
tumor-initiating capability of CisR/sh-STAT3 cells, and Snail 
knockdown partially reduced the tumor-initiating capability 
of Par/STAT3 cells (Table 2). Taken together, we conclude 
that STAT3 and Snail are both essential for promoting tumor-
initiating capabilities in ATRT cancer cells and play a key 
role in chemoresistance-induced cancer stem-like properties 
of ATRT.

Blocking STAT3/Snail axis upregulates ABCC1 
expression and improves chemoresistance in vitro

Given that STAT3 was initially identified by its 
upregulation in cisplatin-selected resistant ATRT cells, we 

aimed to examine its involvement in chemoresistance in 
ATRT cells. We subjected Par/Ctrl, Par/sh-STAT3, CisR/
sh-Scr, and CisR/sh-STAT3 cells derived from patients 
to a colony-formation assay in the presence of cisplatin 
ranging from 0 to 10 μg/ml (Pt1 and Pt2 ATRT cells had 
similar results; Pt1 cells are shown as representative 
results). Results showed that STAT3 knockdown severely 
repressed cisplatin resistance in ATRT-CisR cells but not 
in ATRT-Par cells. This is most likely due to the fact that 
STAT3 expression is low in ATRT-Par cells, and attempts 
to knockdown STAT3 did not alter STAT3 levels. The IC50 
value of ATRT-Par/sh-Scr and ATRT-Par/sh-STAT3 were 
approximately 3 μg/ml (Figure 6A, left), and the IC50 
value of ATRT-CisR/sh-STAT3 was approximately 1 μg/
ml (Figure 6A, right). These IC50 values (3 μg/ml and 
1 μg/ml) were used to treat ATRT-Par and ATRT-CisR stable 
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Figure 6: Decreasing STAT3/Snail signaling combined with cisplatin suppresses cell viability and upregulates ABCC1 
expression. (A) To determine the effect of chemotherapy on the tumor survival fraction, a cisplatin dose ranging from 0 to 10 μg/ml was used to 
treat ATRT-CisR cells with sh-Scr or sh-STAT3 and ATRT-Par cells with sh-Scr or sh-STAT3. (B) Colony formation and (C) AnnexinV staining 
assays were performed in ATRT-Par cells treated with vector control (Ctrl), ectopic expression of STAT3 (STAT3), or ectopic expression of STAT3 
transfected with sh-Snail (STAT3/sh-Snail) combined with or without cisplatin (1 μg/ml); in addition, ATRT-CisR cells were treated with scrambled 
shRNA control vector (sh-Scr), sh-STAT3, or sh-STAT3/Snail combined with or without cisplatin (3 μg/ml). *P < 0.01; #P < 0.01 by Student’s t-test. 
(D) A qPCR analysis of ABCB1, ABCC1 and ABCG2 in ATRT-Par cells treated with vector control (Ctrl), STAT3, and STAT3/sh-Snail in addition 
to ATRT-CisR cells treated with sh-Scr, sh-STAT3, and sh-STAT3/Snail. *P < 0.01 by Student’s t-test. (E) Western blot analysis of ABCB1, ABCC1 
and ABCG2 in ATRT-CisR cells treated with sh-Scr, sh-STAT3, or sh-STAT3/Snail. (F) The protein expression of ABCC1 in ATRT-CisR cells 
treated with sh-Scr, sh-STAT3, or sh-STAT3/Snail by flow cytometry. The data shown are the mean ± SD of three independent experiments.
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cell lines, respectively, to evaluate the effect of the STAT3/
Snail axis in cisplatin resistance. Colony formation was 
significantly decreased in ATRT-CisR/sh-STAT3 cells when 
treated with cisplatin (1 μg/ml) compared with nontreated 
ATRT-CisR/sh-STAT3 cells (Figure 6B, lower panel). This 
reduction could be rescued by co-overexpression of Snail 
(Figure 6B, lower panel). In contrast, cisplatin (3 μg/ml) 
was not able to suppress the colony formation of ATRT-Par 
cells with STAT3 overexpression, and co-transfection of sh-
Snail partially decreased cisplatin resistance in ATRT-Par/
STAT3 cells (Figure 6B, upper panel).

Annexin V staining showed that ATRT-CisR/sh-
STAT3 cells had increased Annexin V staining, which was 
further increased by cisplatin treatment (1 μg/ml), while 
co-overexpression of Snail decreased the percentage of 
Annexin V-positive cells (Figure 6C, bottom). In contrast, 
STAT3 overexpression in ATRT-Par cells decreased the 
percentage of Annexin V-positive cells, and cisplatin 
treatment had limited ability to increase this percentage, 
while co-knockdown of Snail dramatically increased 
staining (Figure 6C, top). Three ATP-binding cassette 
(ABC) drug transporters, ABCB1 (p-glycoprotein/MDR1), 
ABCC1 (MRP1) and ABCG2 (BCRP), have been shown 
to be involved in the development of drug resistance [37]. 
We examined the mRNA and protein expression levels 
of ABCB1, ABCC1, and ABCG2 and observed ABCC1 
reduction upon STAT3 knockdown in ATRT-CisR cells 
and an ABCC1 level increase after STAT3 overexpression 
in ATRT-Par cells (Figure 6D–Figure 6E). Flow cytometry 
analysis further confirmed the positive correlation between 
ABCC1 expression and activity of the STAT3/Snail axis in 
ATRT-CisR cells (Figure 6F). Taken together, these results 
showed that STAT3/Snail is crucial for the acquisition of 
cisplatin resistance in ATRT cells and that ABCC1 is a 
potential downstream target of the STAT3/Snail axis in 
modulating cisplatin resistance.

Abrogation of STAT3/Snail axis synergistically 
improves the efficacy of chemotherapy and 
prolongs the survival of recipients of 
ATRT-CisR cells

We further investigated the role of the STAT3/Snail 
signaling and its effects on cisplatin treatment in ATRT-
Par and ATRT-CisR cells in vivo. ATRT-CisR cells were 
labeled with red fluorescent protein (RFP) by lentiviral 
infection with a vector containing the RFP gene. A total 
of 1 × 105 ATRT-Par and ATRT-CisR cells with different 
treatment protocols were injected into the stratum of 
SCID mice, and tumor size was monitored by 3T MRI 
for 6 weeks. RFP imaging revealed that tumor volumes in 
mice transplanted with ATRT-CisR/sh-STAT3 cells were 
significantly decreased with cisplatin (1 μg/ml) compared 
to ATRT-CisR/sh-Scr cells with cisplatin (1 μg/ml) (Figure 
7A). Examination of paraffin sections of xenograft tumors 
from dissected brains showed that ATRT-CisR/sh-STAT3 

tumors treated with cisplatin (1 μg/ml) had low invasive 
characteristics, including large tumor islands and a clear 
tumor boundary (Figure 7B, bottom), compared to ATRT-
CisR/sh-Scr tumors treated with cisplatin (1 μg/ml) 
(Figure 7B, top). Notably, cisplatin showed a synergistic 
effect with STAT3 knockdown to significantly reduce 
tumor volumes in the transplanted mice (Figure 7C).

In contrast, ATRT-Par/Ctrl cells treated with 
cisplatin showed slow tumor growth in transplanted 
mice, and ectopic STAT3 effectively activated tumor 
growth of ATRT-Par/Ctrl cells in the transplanted mice 
(Supplementary Figure 4A). QPCR analysis confirmed 
that the level of Nanog and Sox2 were significantly 
decreased in xenograft tumor sections from ATRT-CisR/
sh-STAT3-transplanted mice compared with the levels 
observed after all other treatments (Figure 7D). Compared 
with untreated ATRT-CisR mice, sh-STAT3 combined with 
cisplatin (1 μg/ml) significantly increased the survival rate 
of mice bearing ATRT-CisR intracranial xenografts (Figure 
7E). Moreover, compared with untreated ATRT-Par-
transplanted mice, ectopic expression of STAT3 resulted 
in decreased survival rate of intracranial xenograft-bearing 
mice (Supplementary Figure 4B). These results indicated 
that the STAT3/Snail axis regulates drug resistance 
and cancer stem-like properties in xenotransplanted 
immunocompromised mice.

Upregulation of STAT3 and Snail expression in 
clinical samples of recurrent ATRT

To confirm the results derived from in vitro and 
animal experiments, we next investigated the levels of 
STAT3 and Snail by IHC staining in samples from nine 
ATRT patients. The properties of these patients were 
noted (Table 1), and representative IHC results are shown 
in Figure 8A. We observed that the IHC grading of Snail 
was closely related to STAT3 expression in the nine 
ATRT patients. As shown in Table 1, eight of the nine 
patients received full course chemotherapy after their 1st  
surgery. However, in five patients (patients 1, 2, 4, 7, 
and 8), the tumor relapsed, and the patients underwent 
a second surgery. The percentage of STAT3- and Snail-
positive cells were dramatically increased in the four 
of five tumor-relapse samples (patients 1, 2, 4, and 8) 
compared with the tumor samples from the first surgery 
(Figure 8B). The results seem to revelaed the levels 
of STAT3/snail may predict the recurrence of ATRT 
patients. In support of the closely associated relationship 
of the two molecules in patient samples, we confirmed 
the colocalization between STAT3 and Snail in the 
same foci of ATRT tissue from Pt1 with STAT3hi Snailhi 
(Figure 8C). In summary, we found that cisplatin-selected 
resistance (oncogenic resistance) transactivates STAT3/
Snail pathway, and the axis regulates tumor migration/
invasion, cancer stem-like cell properties, and cisplatin 
resistance in ATRT cells (Figure 8D).
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Figure 7: STAT3/Snail axis silencing increases the synergistic effects with chemosensitivity and prolongs the 
survival of ATRT-CisR in vivo. ATRT-CisR cells were intracranially transplanted into NOD-SCID mice, with six mice in 
each group (n = 6 in each group; total, 36 mice). (A) After 6 weeks, in vivo RFP imaging showed that transplanted ATRT-CisR-
RFP cells grew solid tumors at the injection site. The tumor volumes in ATRT-CisR/sh-STAT3 cells transplanted mice were 
significantly decreased treated with cisplatin (1 μg/ml) compared to ATRT-CisR/sh/Scr cells treated with cisplatin (1 μg/ml).  
(B) H&E staining showed paraffin sections of xenograft tumors from dissected brains. Upper panel: ATRT-CisR/sh-Scr tumors treated 
with cisplatin (1 μg/ml) presented the high invasive characteristics of small islands (a; arrow) with sigle cell invasion and non-clear tumor 
boundary (b). Lower panel: ATRT-CisR/sh-STAT3 tumors treated with cisplatin (1 μg/ml) presented low invasive characteristics of clear 
tumor boundary (d), and large tumour islands (c; arrow) including a stellate appearance. Scale bars, 100 μm (a and c), and 50 μm (b and d).  
T: main tumor mass. (C) Tumor volumes in ATRT-CisR transplanted mice treated with sh-STAT3 combined with cisplatin (1 μg/ml) treatment  
were significantly smaller than those receiving the different protocol. *P < 0.01 by Student’s t-test. (D) A qPCR analysis of Nanog, and 
Sox2 in CisR/sh-Scr, CisR/sh-STAT3, and CisR/sh-STAT3/Snail cells with or without cisplatin in transplanted mice. *P < 0.01 by Student’s 
t-test. (E) Kaplan-Meier survival analysis further described mean survival rate for animals injected with ATRT-CisR cells treated with 
indicated treatments. Mice with ATRT-CisR cells treated with shSTAT3 and cisplatin had a significantly prolonged survival rate compared 
with untreated ATRT-CisR mice. *P < 0.01 by Student’s t-test. The data shown are the mean ± SD of three independent experiments.
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Table 1: ATRT patients’ description and characteristics
Patient No. Age/Sex Treatment Survival time

1 2.3 / F 1st Surgery + Chemotherapy
+ 2nd surgery 0.3 yr

2 8.1 / F 1st Surgery + Chemotherapy
+ 2nd surgery 4.7 yr

3 0.7 / M 1st Surgery 0.2 yr

4 5.1 / M 1st Surgery + Chemotherapy
+ 2nd surgery 1.7 yr

5 1.4 / M 1st Surgery + Chemotherapy 8.7 yr

6 3.3 / F 1st Surgery + Chemotherapy 7.5 yr

7 2.8 / M 1st Surgery + Chemotherapy
+ 2nd surgery 4.4 yr

8 5.1 / M 1st Surgery + Chemotherapy
+ 2nd surgery 1.7 yr

9 1.7 / M 1st Surgery + CCRT 2.5 yr

The second surgery for tumor relapses.

Table 2: STAT3/Snail axis regulated the tumor-initiating activity of ATRT in vivo
Patients Injected Cells 

Numbers
CisR/sh-Scr CisR/sh-

STAT3
CisR/sh-

STAT3 + Snail
Par/Ctrl Par/STAT3 Par/STAT3 

+ sh-Snail

No. 1 50,000 3/3 3/3 3/3 3/3 3/3 3/3

10,000 3/3 2/3 3/3 2/3 3/3 2/3

1,000 3/3 1/3 3/3 0/3 3/3 2/3

500 2/3 0/3 1/3 0/3 0/3 0/3

100 2/3 0/3 1/3 0/3 0/3 0/3

50 0/3 0/3 0/3 0/3 0/3 0/3

No. 2 50,000 3/3 3/3 3/3 3/3 3/3 3/3

10,000 3/3 2/3 3/3 2/3 3/3 2/3

1,000 3/3 2/3 3/3 0/3 3/3 2/3

500 2/3 1/3 2/3 0/3 1/3 1/3

100 1/3 0/3 0/3 0/3 0/3 0/3

50 0/3 0/3 0/3 0/3 0/3 0/3

No. 3 50,000 3/3 3/3 3/3 1/3 3/3 3/3

10,000 3/3 1/3 3/3 2/3 2/3 1/3

1,000 2/3 1/3 1/3 0/3 1/3 1/3

500 0/3 0/3 0/3 0/3 0/3 0/3

100 0/3 0/3 0/3 0/3 0/3 0/3

50 0/3 0/3 0/3 0/3 0/3 0/3

Atypical teratoid/rhabdoid tumor- CisR/sh-Scr, CisR/sh-STAT3, CisR/sh-STAT3 + Snail, Par/Ctrl,
Par/STAT3 and Par/STAT3 + sh-Snail transfected cells were transplanted into the brain striatum of mice with different number 
of cells as indicated (N = 3). After 12 weeks follow-up, the presence of tumor nodules in each mouse was determined and 
listed in the table.
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DISCUSSION

ATRT is the most common primary pediatric 
tumor of the CNS and has limited treatment options 
and a dismal prognosis. Because of the rarity of ATRT 
and resistance to therapeutic regimens, no standard 
chemotherapy regimen has been established [38]. 
Although cisplatin-based chemotherapy is a mainstay 
treatment of ATRT, drug resistance frequently develops 
[39]. Many studies have attributed chemoresistance and 
tumor recurrence to the existence of a subset of CSCs or 
cancer-initiating cells that possess stem-like properties 
and are able to repopulate tumors [19]. Recently, studies 
have indicated that therapy induced “oncogenic-type” 
may be involve in self-renewal, cancer invasiveness, 
drug resistance, and EMT, as well as share the properties 
of CSCs [11]. In this study, we are able to provide 
the following findings: (i) expression of STAT3 and 

Snail is highly correlated in different cancer cell lines; 
(ii) cisplatin treatment selects not only for resistance but 
also for a more oncogenic phenotype characterized by 
high self-renewal and invasive capabilities; (iii) STAT3 
directly regulates Snail transcription and activation of 
STAT3/Snail pathway contributes to tumor invasion, 
chemoresistance and cancer stem-like properties; 
(iv) suppression of Snail in STAT3-overexpressing ATRT 
cells reduced cisplatin resistance; and (v) coexpression 
of STAT3 and Snail in primary ATRT samples enhanced 
cisplatin resistance and correlated with worse prognosis. 
We demonstrated that cisplation can activate “oncogenic-
type” of drug resistance and Snail plays a crucial role 
in STAT3-dependent induction of oncogenic phenotype, 
such as cisplatin resistance, tumor invasion and cancer 
stem-like properties. To our knowledge, the present study 
is the first to show that STAT3 directly regulates Snail 
transcription and promotes platinum resistance.
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Figure 8: High-level coexpression of STAT3 and Snail present in recurrent ATRT samples. (A) Detection of STAT3 and 
Snail protein by IHC staining in 9 ATRT patient samples. Scale bars, 50 μm. (B) The percentage of STAT3- and Snail-positive ATRT cells 
(1st surgery, 9 patients) was dramatically elevated in the tumor-relapse samples (2nd surgery, 4 patients). (C) Immunofluorescent staining 
showing STAT3 and Snail protein colocalization in Pt1’s tissues. Scale bars, 20 μm. (D) Schematic model depicting the STAT3/Snail axis 
interconnected between invasion, chemoresistance and tumor initiation.
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It has been reported that oncogenic resistance is 
associated with highly aggressive cancer phenotype, 
and modulates the therapeutics-induced cell cycle arrest 
and apoptosis [11]. For example, hypoxia transactivates 
genes, such as autocrine or paracrine growth factors, 
that are critical for invasion and metastasis during the 
antiangiogenic therapy [40]. Furthermore, some study 
revealed Bcr-Abl mutation-mediated drug resistance 
led to activation of Stat3 associated with malignant cell 
transformation [41]. Moreover, Src confers resistance to 
Adriamycin that was associated with the interaction of 
p21waf1 with the STAT3 transcription factor at the Myc 
promoter [42]. Consistent with these previous reports, our 
study found that cisplatin can cause “oncogenic-type” of 
drug resistance which simultaneously activates STAT3/
Snail pathway to make cell aggressive, such as tumor 
invasion and cancer stem-like capability in ATRT-CisR 
cells. These findings indicated that chemotherapeutic 
resistance may contribute to adapt the cancer stem-like 
capability and simultaneously makes cells more aggressive 
phenotype in ATRT-CisR cells, in partly through 
activation of STAT3/Snail pathway. Therefore, the more 
future studies are needed to explore whether oncogenic 
reistance play an important role in the development of 
EMT-derived invasiveness and cancer reprogramming 
in CSCs or surrogate markers of therapeutic response in 
patients with ATRT.

STAT3 is frequently activated in various cancers 
and plays a crucial role in enhancing EMT and increasing 
invasiveness outside the CNS [43]. For example, wogonin 
suppresses tumor cell migration by inactivating the STAT3 
signaling pathway in human alveolar cell adenocarcinomas 
[44]. Activation of the STAT3 pathway is required for 
IL-6-induced EMT in the progression of human cervical 
carcinomas [45]. STAT3 is also associated with sphere-
forming efficiency as well as cancer stem cell-like 
functions in nasopharyngeal carcinoma and breast cancer 
[46, 47]. Induction of STAT3 signaling was associated 
with enhanced chemoresistance of cancer cells, while a 
STAT3 inhibitor was able to enhance chemosensitivity 
in epithelial ovarian cancer cells [48]. In ovarian cancer, 
high expression levels of STAT3 were shown to promote 
cisplatin resistance [49]. Consistent with these reports, 
we found that the STAT3 pathway is a key mechanism 
to link tumor invasion, chemoresistance and cancer stem-
like properties in ATRT. In addition, EMT, the major cause 
of invasion, has been shown to activate chemoresistance 
and induce the acquisition of cancer stem-like properties 
[13]. However, very few reports have investigated the 
underlying mechanism between chemoresistance and 
cancer invasion with EMT-like properties in ATRT. 
Previous studies revealed an involvement of STAT3 
in EMT through inhibition of E-cadherin expression 
in colorectal cancer [50]. Moreover, the STAT3/miR-
34a/Snail axis promotes EMT-mediated colorectal 
cancer invasion and metastasis [29]. However, the exact 

mechanism between STAT3 and EMT is still unclear. 
Recent studies have shown that STAT3 directly binds to 
the promoter region of Beclin1 in lung cancer [51]. Here, 
we demonstrated that STAT3 positively promoted Snail 
transcription by directly binding to the Snail promoter.

Snail acts as a zinc-finger transcription factor that 
is essential for inducing the EMT phenotype. Previous 
studies reported that Snail plays important roles in the 
EMT phenotype of many cancer types outside of the 
CNS [52]. In our studies, we found an increase of Snail 
expression in ATRT-CisR cells compared with ATRT-
Par cells. Suppression of Snail attenuated the migration 
and invasion in ATRT-Par/STAT3 cells. Our previous 
report demonstrated that ectopic expression of Snail 
promotes cancer stem like-cell activities by increasing 
IL-8 expression in human colorectal cancer cells [53]. 
A recent study reported that Snail directly regulates 
Nanog expression and enhances tumor-initiating 
cell characteristics [54]. In the current study, ectopic 
expression of Snail rescued the shSTAT3-suppressed 
expression of Nanog and Sox2, self-renewal ability, and 
tumor-initiating abilities in ATRT-CisR/sh-STAT3 cells. 
Based on these studies and our data, we suggest that 
elevated Snail expression is responsible for the increase 
in the EMT-like phenotype, tumor invasion, and cancer 
stem-like cell properties in ATRT-CisR cells.

Three ATP-binding cassette (ABC) drug transporters 
have been associated with drug resistance in most cancers 
[55], and the ABCB1 (p-glycoprotein/MDR1), ABCC1 
(MRP1) and ABCC2 (MRP2) subfamilies have been 
shown to be involved in the development of cisplatin 
resistance [56–59].Though cisplatin is one of the most 
commonly used chemotherapeutic drugs in most solid 
cancers including ATRT [36, 60], treatment with cisplatin 
always induces multidrug resistance along with suppressed 
apoptosis pathway and activated EMT [61]. Hsu et al. 
revealed that ectopic expression of Snail in primary 
head and neck cancer samples may result in cisplatin 
resistance and poor outcome [62]. However, the molecular 
mechanism of Snail-dependent induction of drug 
resistance in ATRT is unclear. We showed in this study that 
Snail overexpression not only increased cell viability after 
cisplatin treatment but also enhanced ABCC1 expression 
in ATRT-CisR/sh-STAT3 cells. Conversely, knockdown of 
Snail caused a distinct suppression of cell viability and 
attenuated the expression of ABCC1 in ATRT-Par/STAT3 
cells. Taken together, these data suggest that Snail confers 
cisplatin resistance to ATRT-CisR cells through ABCC1.

In conclusion, our study showed that cisplatin 
treatment selects induced oncogenic type of drug resistance, 
simultaneously increased migration and invasion abilities as 
well as EMT-like phenotype, and promoted the acquisition 
of stem-like properties in ATRT cells through activation of 
the STAT3/Snail pathway. We suggest that Snail is a key 
molecule linking EMT and chemoresistance because it 
regulates the expression of not only EMT-related genes but 
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also the ABCC1 transporter. We believe that STAT3/Snail 
signaling plays an important role in oncogenic resistance 
and could be a potential treatment target to inhibit ATRT 
invasion and to enhance the efficacy of chemotherapeutic 
drugs, such as cisplatin. Our study provides insight for the 
development of future therapies that attempt to overcome 
cisplatin resistance, which is frequently observed with 
current ATRT treatment regimens.

METHODS

Cell culture

All procedures of sample acquisition follow the tenets 
of the Declaration of Helsinki and have been approved by 
Institutional Review Committee at Taipei Veterans General 
Hospital. Between January 1998 and April 2011, a total of 
32 patients with ATRT were treated at our hospital [63–65]. 
We had nine samples from ATRT patients. There were three 
females and six males as shown in Table 1. In brief, the 
tissues were washed in glucose containing Hanks’ balanced 
salt solution, (HBSS; Invitrogen/Life Technologies, 
Carlsbad, CA, USA) three times after surgical removal 
of the ATRT tissues. Then, these tissues were sliced at 
a thickness of 300 mm and immersed in 0.1% (w/w) 
collagenase (Sevapharma, Prague, Czech Republic) in 
glucose-containing HBSS at 37°C/15 min and shaken on a 
rotation shaker at 125 rpm. All cells were cultured in RPMI 
(Gibco® 1640) with 10% FBS and antibiotics in 5% CO2 
at 37°C. Analysis of cell morphology was performed using 
a Zeiss Axiovert 25 Phase Contrast Inverted Microscope. 
Digital images were captured using a Canon Power Shot 
G10 equipped with a Carl Zeiss 426126 lens.

RT2 profiler PCR array

The Human Cell motility and Human Epithelial to 
Mesenchymal Transition (EMT) RT2 Profiler PCR Array 
that profiles the expression of 84 key genes was purchased 
from SABiosciences (Frederick, MD) and used as 
recommended by manufacturer. RT-PCRs were performed 
in 96-well plate format using the ABI 7500 FAST Real-
Time PCR System. Fold changes in cell motility and 
EMT gene expression from denervated samples relative 
to control samples were calculated using the ΔΔCt method 
using the integrated software package for PCR Array 
Systems provided by the manufacturer (RT2 Profiler PCR 
Array Data Analysis Template v3.3). ΔΔCt values from 
each sample were normalized to three housekeeping genes 
that did not change across the conditions.

Culturing cells on top of a thin or thick layer of 
collagen, and collection of cells from collagen 
matrices

These experiments used PureCor bovine collagen 
solution (Advance Biomatrix). For preparation of cells for 

seeding on top of collagen, we first seeded the cells on 
plastic dishes at 50% confluence. After 37°C for 10 min, 
we collected the cells by trypsinizing them with 0.1% 
trypsin in EDTA, suspended the cells at concentration of 
0.4 x 106 ml−1 and confirmed that the suspended cells were 
single cells by microscopic examination. A 1.6 mg ml−1 
collagen solution (3 ml) was prepared by mixing 1.6 ml of 
3 mg ml−1, 0.6 ml of 5x medium, PureCor bovine collagen 
solution, and 20 μl of 1 M NaOH, then adding water 
to a total volume of 3 ml. The collagen was allowed to 
polymerize in the tissue culture incubator at 37°C for 2 
h. First, we prepared the thick collagen-coated dishes for 
culturing cells on top of thick collagen (2.5D) and then 
plated the cells on top of the collagen; an appropriate 
amount of serum-containing culture medium was added. 
By microscopic examination, we confirmed that the cells 
suspended in collagen were single cells and performed 
the cell-collagen mixture with a known amount of serum-
containing medium. The experiments indicating cellular 
imaging in 2.5D conditions were performed using cells 
collected from 2.5D cultures.

Analysis of cell morphology

We analyzed the cell morphology according to a 
previous report [66]. The area and the perimeter of the 
cells were defined by drawing around the cell shape in 
phase-contrast images and determined by ImageJ software. 
The morphology index was calculated as the perimeter2/4π 
area. We hypothesized that the ratio of a round cell is 1.0, 
and an elongated cell has an increased index. For every 
clone, the mean value of the index was determined from 
200 cells.

Quantification of the speed of motile cells by 
time-lapse microscopy

Time-lapse microscopic observations of cell motility 
were performed as described previously [67]. In a 2.5D 
culture, we used a 3.5-cm dish with 1 ml of the 1.6 mg ml–1 
collagen solution, seeded 1 x 105 cells on top of the collagen 
and then added 1.2 ml of medium. Cells were allowed to 
adhere for 18 h and were then observed in humidified,  
CO2-equilibrated chamber with a motorized-stage-equipped 
LumascopeTM series for 24 h. The images were managed 
and reconstructed with ZEN 2009 Light Edition software. 
To quantify the speed of cells in the 2.5D system, we 
tracked the movements of individual cells with the ImageJ 
software Mtracking plugin analysis in a randomly selected 
high-power field. The cell motility speed was calculated 
and is presented as micrometers per minute. Each cell was 
tracked for identification of speed in 2.5D culture. All of 
the fractions of individual cells for speed identification 
were more than 85%. The fractions of individual cells 
for each clone in the speed identification experiments are 
described in the figure legends.
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