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ABSTRACT
Telocytes (Tcs) and pericytes (Pcs) are two types of perivascular interstitial 

cell known to be widespread in various organs and tissues, including the brain. We 
postulated that Tcs and Pcs may be involved in glioblastoma (GBM) neovascularization.

Objective:  Morphological study of Tc and Pc roles in GBM.
Materials and Methods: Samples from 15 GBM, 10 diffuse astrocytoma, as well as 

5 control samples were studied. We used immunohistochemistry (IHC) with antibodies 
(Abs) to GFAP, Ki-67, CD117, NeuroD1, NG2, CD34, and SMA. Confocal laser scanning 
microscopy (CLSM) of 4 glioma tissue cultures and 4 GBM sections was performed 
with GFAP, CD117, CD34/connexin43, NeuroD1/connexin43, CD34/NG2 and CD13/
CD117 Abs. Electron microscopy (EM) of GBM was performed in 4 cases.

 Results: The presence of Tcs and Pcs was shown in GBM (IHC, EM, CLSM) and 
glioma cultures (CLSM). The Tc immunophenotype was CD117+/CD34+/connexin43+/
NeuroD1+. The Pc immunophenotype was SMA+/NG2+/CD13+. The number of Tcs in 
GBM specimens was 10 times higher than in astrocytoma. We also identified CD13/
CD117 and CD34/NG2 co-expressing cells in GBM blood vessels.

Conclusion: Four immunophenotypes were found in GBM vessels, corresponding 
to endotheliocytes, Pcs, Tcs, and a mixed Pc/Tc immunophenotype. These and 
forthcoming improvements in our understanding of the origin and function of Tcs, 
including their relationship with Pcs, are necessary steps in oncology. Study of these 
cell types (Tcs, Pcs) and their roles in brain tumor oncogenesis will likely enable 
improved targeted therapies and support development of new forms of anti-neoplastic 
drugs.

INTRODUCTION

In 1893, Spanish neuroscientist Santiago Ramón-
y-Cajal described cells located in the muscle wall of 
the gastrointestinal tract which are special elements 
of the intramural nerve plexus and which regulate 

gastrointestinal motility; he termed them “interstitial 
neurons”. Later (1977–1982), M.S. Faussone-Pellegrini 
and L. Thuneberg, using electron microscopy data and 
independent of each other, came to the conclusion that the 
so-called “interstitial neurons” are not related to nervous 
tissue, but rather are derived from mesenchyme [1, 2]. In 
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2010, Popescu and Faussone-Pellegrini termed these cells 
telocytes (Tcs) [3]. Tcs are a unique type of interstitial 
cells with specific processes (telopodia) and their dilated 
segments (podoms) [4]. Tcs simultaneously belong to 
interstitial, endothelial, smooth muscle, nerve, mast, and 
hematopoietic stem cell immunophenotypes. They express 
CD117, vimentin, CD34, SMA, S100, NSE, as well as 
the gap junction protein connexin-43 [5, 6, 7]. Tcs form 
a 3D network in almost all organs, and they are involved 
in inflammation, regeneration, and angiogenesis; through 
multiple diverse cell-to-cell contacts and micro-vesicle 
involvement, they can coordinate inter-cellular interactions 
[8, 9, 10, 11]. They have pacemaker activity and express 
inflammatory mediators and angiogenesis factors, such as 
PDGFR, VEGF, EGF, FGF, and TGF [12, 13]. Popescu et 
al. [14] proved the presence of Tcs in the dura mater, the 
choroid plexus of the ventricles, and in the subventricular 
zone of rat brain. Tcs establish close contacts with blood 
capillaries, nerve fibers, and stem cells. Neural stem 
cells can participate in adult neurogenesis. Xu et al. [15] 
found Tcs in canine dura mater, and Contarero et al. [16] 
showed that they are in close contact with the vessels 
of the microvasculature. Zheng et al. [17, 18] have 
demonstrated the involvement of interstitial pacemaker 
cells at the air-blood barrier in lung vessels; they have also 
demonstrated their presence between smooth muscle cells 
and endothelial cells of lung capillaries. The involvement 
of Tcs in post-myocardial-infarction angiogenesis has been 
shown by Manole et al. [19].

Glioblastoma (GBM) is the most common malignant 
primary brain tumor, making up 54% of all gliomas and 16% 
of all primary brain tumors [20]. GBM remains an incurable 
tumor with a median survival of only 15 months [21]. Recently, 
special attention has been paid to the role of tumors’ stroma 
in carcinogenesis, which is logical given that some targeted 
therapies are directed at it. In particular, avastin (bevacizumab), 
a drug that suppresses tumor neovascularization, has shown 
promising results. This is especially relevant to GBM, in which 
the formation of atypical (aberrant) and poorly functioning 
vessels, leading to hypoxia, tumor necrosis, and low efficiency 
of drug delivery, have been shown [22].

At least five mechanisms by which gliomas 
achieve neovascularization have been described: vascular 
co-option; angiogenesis; vasculogenesis; vascular 
mimicry; and (most recently) GBM-endothelial cell 
transdifferentiation [23]. Vascular co-option is the first 
mechanism by which gliomas achieve their vasculature. 
This process involves organization of tumor cells into 
cuffs around normal microvessels [24]. Vascular co-
option is followed by the development of new vessels 
from pre-existing ones, known as angiogenesis [25]. 
Glioma-associated sprouting angiogenesis starts with an 
angiopoietin-mediated breakdown of existing vessels. 
After vascular co-option, persistent up-regulation of 
ANG-2 and TIE-2 in endothelial and tumor cells promotes 
disruption of endothelial and perivascular cell junctions, 
resulting in vessel disruption. In the presence of ANG-2, 

VEGF promotes migration and proliferation of endothelial 
cells and stimulates sprouting of new blood vessels. 
The end result of the neoplastic angiogenic process is a 
characteristically abnormal vascular network featuring 
dilated and tortuous vessels, abnormal branching, and 
arteriovenous shunts which may lead to abnormal 
perfusion. A third mechanism of tumor neovascularization, 
vasculogenesis, involves differentiation of circulating bone 
marrow-derived cells known as endothelial progenitor cells 
[26]. The fourth mechanism of glioma vascularization, 
vascular mimicry, is defined as the ability of tumor cells to 
form functional vascular networks [27]. The fifth described 
mechanism of glioma neovascularization involves the 
transdifferentiation of glioma cells into an endothelial 
phenotype.

GBM stem cells are a source of pro-angiogenic 
factors, such as VEGF. They are located in the perivascular 
niche of the tumor microenvironment and may be sensitive 
to therapies targeting tumor vasculature [28]. Mou et al. 
[29] showed that Tcs and other breast cancer stromal cells 
contribute to the formation of the typical tumor structure, 
promote the proliferation of tumor cells, and suppress their 
apoptosis in vitro. Mirancea et al. [30] found that Tcs are 
a component of tumor stroma in basal cell carcinoma and 
squamous cell carcinoma. Tcs can be found in specialized 
somatic synapses forming a 3D network inside peritumoral 
stroma. It is the authors’ view that Tcs likely promote the 
invasive behavior of microtumors.

Pcs were first discovered in 1873 by the French 
scientist Charles-Marie Benjamin Rouget and were 
originally called Rouget cells [31]. They were renamed a 
few years later due to their localization and close contact 
with endothelial cells. In the brain, Pcs are believed 
to be located in precapillary arterioles, capillaries, and 
postcapillary venules. Pcs of the central nervous system are 
normally located on the outer surface of microvessels and 
share a common basement membrane with endothelial cells. 
A pericyte’s cytoplasmic processes may be in contact with 
several endothelial cells simultaneously, and various types 
of structure are possible, depending on the vessel size.

The highest described Pc densities have been 
specific to the central nervous system [32, 33]. The Pc 
immunophenotype is: NG2+, PDGFRb+, CD13+, αSMA+, 
CD146+, desmin+, vimentin+, and Kir6.1 potassium channel 
complex+ [51, 52, 53, 54, 55]. Sun et al. also describe 
α-SMA-expressing Pcs in GBM vessels [56].

Pcs have contact with glia (astrocytes) and are 
involved in inflammation [36]. They are known to 
regulate blood flow, blood-brain barrier permeability [34, 
35], tissue homeostasis, and regeneration in vascular and 
other tissues. Pcs also have stem cell function, including 
the ability to differentiate into: adipocytes; chondrocytes; 
osteoblasts; fibroblasts; mesenchymal stem cells (MSC) 
[37]; vascular cells; oligodendrocytes and astrocytes [38, 
39]; as well as neuronal cells of the central nervous system 
[40, 41, 42]. Importantly, all of these functions, including 
stem cell function, are also attributed to Tcs [43].
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Today, in addition to known types (astrocytes, 
oligodendrocytes, microglia, ependymocytes), a fifth 
type of glia (NG2+ synantocytes) has been identified 
in the central nervous system [44]. Unlike Tcs and Pcs, 
synantocytes do not express GFAP. It is believed that 
synantocytes are components of synapses and that they 
are involved in stabilization of neuronal cytoskeleton 
and control of myelin integrity. They are thought to be 
responsible for damage to nerve fibers and formation 
of glial scars. NG2+ glial cells have been proven to 
support neuron function and survival through control 
of the neuroimmunological system [45]. They are also 
considered to be precursors of oligodendrocytes. An 
important and functionally significant feature of NG2-glia 
is their presence throughout the brain, both in gray and 
white matter, throughout postnatal development and in 
adulthood [46].

Like Tcs, NG2-glia are also present in neurogenic 
niches, including the subventricular zone (SVZ) and the 
dentate gyrus of the hippocampus [47, 48]. It is well known 
that, in the postnatal and mature brain, NG2-glia contain 
the largest population of endogenous/resident progenitor 
cells (4 - 8% of total cells, depending on the area of the 
brain), can quickly “respond” to any type of injury, and 
have high potential for re-population of lesions [49].

Finally, interactions between NG2-glia and other 
types of nerve cells can vary in different areas of the brain 
[50]. Despite the aforementioned research work, the exact 
relationship between Tcs and NG2-glia is unclear at the 
moment. Given the presence of Tcs in various organs 
(including the brain), their participation in angiogenesis, 
and their presence in some tumors, we hypothesized that 
Tcs may also be involved in neovascularization by GBM.

Objective

morphological study of perivascular interstitial cells 
(Tcs and Pcs) in GBM.

RESULTS

Histological and immunohistochemical study

We investigated 15 GBM, and of them: 2 were 
giant cell GBMs; 3 were GBMs with a primitive neuronal 
component; and 10 were small cell GBMs (Figure 1A). 
Two patients underwent additional surgery due to tumor 
recurrence following their initial treatments (resection, 
chemotherapy, radiation therapy). Fourteen GBMs were 
primary. One was secondary; the patient underwent 
treatment (surgery, chemotherapy, radiation therapy) for 
hemistocytic astrocytoma 4 years earlier.

According to the IHC data, all GBMs expressed 
GFAP (Figure 1B). Ki-67 indexes were from 21 to 50%, 
with an average of 27.3 ± 1.9% (Figure 1C). Expression of 

the Tc marker CD117 was observed in the vascular walls 
(Figure 2A and 2B), in the glial scar (Figure 2C), and (less 
often) on the periphery of tumor cells like a braid (Figure 
2D). G2 was also expressed in those locations (Figure 2E 
and 2F).

Counting of CD117-expressing cells showed that the 
average number of cells with expression of this antigen 
ranged from 1 to 56%, with the latter (high) value seen in 
a post-operative glial scar (56%). In the GBM group, the 
average number of CD117+ cells was 13.8 ± 4.1 % (Figure 
3A). NeuroD1 expression was observed not only in the 
vast majority of tumor cells, but also in vascular cell nuclei 
(Figure 4).

Diffuse astrocytomas (comparison group) also 
expressed GFAP; their Ki-67 index was from 1.4 to 
4, with 2.96 ± 0.30% on average (Figures 5A, 5B, 
and 3B). In astrocytomas, CD117-expressing cells with 
Tc characteristics were extremely rarely seen in vessel 
walls (Figure 5C and 5D). The average number of CD117-
expressing cells in the astrocytoma group was 1.46 ± 0.18, 
significantly less than in GBMs (Figure 3A). Correlation 
analysis revealed a significant association between Ki-
67 and the number of CD117+ Tcs. In addition, a linear 
correlation between tumor cell proliferative activity index 
and number of Tcs was seen (Figure 3C).

Glioblastoma IHC staining with NG2/SMA antibody 
cocktail demonstrated co-expression in vascular wall cells 
(Figure 6). This fact was interpreted as an indication of Pc 
presence in tumor vessels.

For comparison with tumor tissue, we also 
performed an IHC study of frontal lobes from patients 
who died from cardiovascular disease. CD117+ cells were 
detected extremely rarely in vessel walls (Figure 7A) 
and somewhat more in white matter, up to 0.5%, with an 
average of 0.26±0.09% (see Table 1). NG2+ cells were seen 
even more rarely. In none of the 5 cases did we see NG2 
expression on vascular wall cells (Figure 7B). NeuroD1 
expression varied from patient to patient, with the number 
of expressing cells ranging from 30-87%. Expression was 
in the nuclei of neurons and glial cells (white and grey 
matter) (Figure 7C).

Primary culture

In primary cultures of GBM and astrocytoma, typical 
Tcs were detected (Figure 8). They feature a fusiform 
cell body and two long prolongations. The morphology 
of Tcs in vitro is different from that seen in tumor cells. 
After 7 days of culture, typical Tc morphological features 
appeared (seen under light microscopy): small, oval-
shaped cell bodies with extremely long, thin, moniliform 
prolongations (telopodes) extending from cell bodies. In 
primary cultures, Tcs often were seen mixed with tumor 
cells; Tc telopodes typically can be seen extending directly 
into contact with tumor cells.
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Figure 1: Small cell glioblastoma. (A) Hematoxylin and eosin; (B) GFAP expression in glioblastoma’s cells; (C) Ki-67 expression in 
glioblastoma. All slides at 200×.
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Confocal laser scanning microscopy

CLSM of cell cultures isolated from GBMs and 
astrocytomas revealed GFAP+ tumor cells (Figure 9A 
and 9B)  and CD117+ featuring Tc morphology (Figure 
9C–9E).

Using double immunofluorescence, we 
demonstrated CD34/connexin43 co-expression in diffuse 
astrocytoma culture (Figure 10) and NeuroD1/connexin43 
co-expression in GBM culture (Figure 11) in cells with Tcs 
morphology (featuring long, thin prolongations). CD34/

сonnexin43 co-localization was observed on the telopodes 
and the cell body as yellow fluorescence (Figure 10D). 
With NeuroD1/connexin43 double-staining, dual signals 
from individual (same) Tc cells were observed: NeuroD1 
in the nucleus (green fluorescence) and connexin43 in the 
cytoplasm (red fluorescence) (Figure 11D).

CLSM of paraffinized and frozen GBM sections 
demonstrated CD34+ and NG2+ phenotype cells in the 
walls of vessels (Figures 12 and 13) In our view, this 
can be interpreted as: CD34+ endothelial cells, CD34+ 
Tcs, and NG2+ Pcs. Cells with CD34/NG2 co-expression  

Figure 2: Immunohistochemistry of glioblastoma. (A–D) Giant cell glioblastoma; (E–F) Small cell glioblastoma). (A) CD117+ 
cells in vessels (Genemed Ab); (B) CD117+ cells in vessels (Diagnostic BioSystems Ab); (C) CD117+ cells in glial scar (Genemed Ab); (D) 
CD117+ (Diagnostic BioSystems Ab) cells among tumor cells; (E) NG2+ cells in vessels; (F) NG2+ cells among tumor cells and in vessels. 
Antibodies are detailed in the Supplementary Materials. All slides at 200×. CD117+ cells and NG2+ cells are stained brown.
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Figure 3: Overview of Ki-67 expression and correlation with number of CD117+ cells. (A) the average number of CD117+ 
cells in one *field of view. (B) the average number of Ki-67+ cells in one *field of view. (C) scatter plot with a regression curve showing 
the linear relationship between Ki-67  index and the number of telocytes. *(400×)
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CD34/NG2 co-expression (Figures 12 and 13)  and 
CD117/CD13 co-expression were also detected (Figure 
14); we interpret these as cells featuring a mixed (Tc/Pc) 
immunophenotype.

Transmission electron microscopy

In GBM samples examined by electron microscopy, 
tumor cells featuring round nuclei about 5 μm in diameter 
and narrow areas of perinuclear cytoplasm, in many 
cases without pronounced differentiated organelles, were 
detected. Transformed cells in necrotic death (featuring 
disruption of membrane integrity and fragmentation of 
the cytoplasm) were frequently seen (Figure 15A). Some 
areas of the GBM samples studied were enriched with 
osmiophilic myelin fibers of various diameters (Figure 
15B). Along with tumor cells and myelin fibers, numerous 
erythrocytes were present in the samples, often not 
associated with blood vessels (Figure 15A); this confirms 
the complete functional destruction of the blood-brain 
barrier in GBMs.

GBM blood capillaries are formed by thin endothelial 
cells connected by tight contacts. The thickness of the 
endothelium in the peripheral region of endotheliocytes is 
0.4-0.6 μm. The central, nucleus-containing region has a 
thickness of 3-5 μm. Endotheliocyte nuclei are generally 

rounded, but they can form deep, uneven invaginations of 
the nuclear envelope (Figure 16).

Two interstitial cell types are associated with GBM 
capillaries: Pcs and Tcs. Pcs are localized directly on the 
outer surface of the endothelium and are in close contact 
with endotheliocytes; often the Pc body is not separated 
from the endothelium by the basement membrane (Figure 
17A). Pc peripheral processes are quite massive, featuring 
a thickness of 1–2 microns without  evident thickenings or 
narrowings (Figure 17B and 17C). .

In contrast, Tcs form much longer and thinner 
processes, telopodia, which are 0.1–0.2 μm thick (Figure 
18A and 18B). The telopodia ultrastructure seen in 
glioblastomas is fully consistent with that previously 
described repeatedly in a number of tissues and organs. 
Characteristic dilations are seen, the podoms, which 
alternate with thin segments termed podomeres (Figure 
18A).

Thus, a number of methods converge to show the 
presence of Tcs in tumors. IHC, electron microscopy, 
and CLSM reveal them in GBMs. Cultures derived from 
GBMs and astrocytomas, examined by phase-contrast 
and CLSM, also show the presence of Tcs. The number 
of Tcs in GBM specimens was 10 times more than in 
astrocytoma. In normal gray and white matter, Tcs and 
NG2+ Pcs constitute less than 0.5% of the population. 

Figure 4: Neuro D1 in tumor cell nuclei and in vessel cells. 200×.
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Figure 5: Diffuse astrocytoma. (A) GFAP expression in tumor cells; (B) Ki-67 expression in astrocytoma’s cells; (С) CD117+ cells 
in diffuse astrocytoma vessels. (D) Double-stain IHC of diffuse astrocytoma with CD34/CD117 antibodies CD117: red; CD34: blue; co-
expression: maroon; All slides at 200x.
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Four cell immunophenotypes were found in GBM vessels: 
endotheliocyte; Pc; Tc; and a mixed Pc/Tc type.

DISCUSSION

Based on numerous descriptions of Tc function 
[58, 59], the presence of Tcs in GBM vessels, as seen by 
IHC and confocal microscopy, is not entirely surprising. 
Here, we have proven the presence of Tcs in GBM and 
astrocytoma primary cultures. Our immunohistochemical 
study with CD117 revealed the presence of Tcs in tumor 
vessel walls and in glial scars; some authors have described 
Pcs in these locations [60]. Svensson et al. [61] confirmed 
that activated Pcs infiltrating glioma were mainly localized 
to the tumor vessel wall. Cheng et al. [62] believe that 
glioma stem cells often reside in perivascular niches and 
that they may undergo mensenchymal differentiation; the 
authors showed that glioma stem cells give rise to Pcs 
most likely in order to support vessel function and tumor 
growth.

The Pc immunophenotype differs from the Tc type 
by the absence of expression of several markers: CD117 
(c-Kit); CD34; S100; NSE; and connexin43. In our study, 

GBM vascular cells expressed CD117. Tcs from glioma 
culture showed CD34/connexin43 co-expression in 
addition to CD117 expression. This is fully consistent with 
the immunophenotype of interstitial pacemaker cells.

Moreover, by using CLSM microscopy to study 
Tc cultures isolated from gliomas, we proved that 
these cells express Neuro D1. Using GBM paraffin 
sections, we also revealed, by IHC, the expression of 
this transcription factor in the nuclei of vascular wall 
cells. In recent decades, Neuro D1 has been found in 
the adult nervous system and in the endocrine cells of 
primitive neuroectodermal tumors [63]. It is known that 
this factor is involved in neurogenesis, including control 
of potential trans-differentiation, in which other cell types 
may become neurons; it is also a general regulator of brain 
development [64].

Neuro D1 is known to play an important role in the 
differentiation, morphogenesis, and maintenance of cells 
of the central nervous system [65]. This transcription factor 
is expressed in the pituitary gland and in the progenitor 
cells of the “endocrine” part of the pancreas, both during 
embryogenesis and later [66, 67]; it is also expressed in 
neuroectoderm cells [68]. In our work, it was also found 
in GBM tumor cells.

Figure 6: Double-stain IHC of small cell glioblastoma with NG2/SMA antibodies. NG2: red; SMA: blue; co-expression: 
maroon; 200×. 
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Adult neurogenesis is the process of generating 
new, functional neurons from neural stem cells and neural 
progenitor cells in order to react to and adapt to additional 

stimuli in various physiological and pathological 
conditions. These cells are predominantly located in the 
SVZ, and they can migrate and differentiate into new 

Figure 7: White matter of the normal brain. (A) CD117+ cells in the vascular wall (white arrow); (B) lack of NG2 expression on 
the cells of vascular walls; (C) expression of NeuroD1 on oligodendrocyte nuclei; All slides at 200×.
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Figure 8: Astrocytoma and glioblastoma primary culture at 7 days. (A) stellate cells in astrocytoma colony; (B) telocyte 
(center) featuring a small, ovoid body and 4 telopods in contact with a fibroblast-like cell (white arrow) and a tumor cell (red arrow); phase 
contrast microscopy at 200×. (C) stellate cells in glioblastoma colony; (D) telocyte (center) featuring a small, ovoid body and 2 telopods; 
400×.
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Figure 9: CLSM of glioblastoma and astrocytoma primary cultures. (A) Glioblastoma tumor cells (DAPI/nuclei in blue; 
GFAP/Alexa Fluor488 in green; 200x); (B) astrocytoma tumor cells (DAPI/nuclei in blue; GFAP/Alexa Fluor488 in green; 400×). (C–E) 
CD117+ cells in a glioblastoma culture (600×). (C) Blue fluorescence of the cell nucleus (DAPI); (D) Green CD117/Alexa Fluor488 
fluorescence; (E) Overlay image (nucleus in blue; CD117 in green).

Figure 10: CLSM of astocytoma primary culture. (A) Blue fluorescence of cell nuclei (DAPI); (B) Green fluorescence of 
CD34/Alexa Fluor488 on the telopodes and the telocyte cell body; (C) Red fluorescence of сonnexin43/Alexa Fluor568 on 
the telopodes and the telocyte cell body; (D) Overlay of images (A–C). Co-localization (CD34/сonnexin43) was observed as 
yellow fluorescence on the telopodes and the telocyte cell body; 400×.
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Figure 11: CLSM of glioblastoma primary culture. (A) Blue fluorescence of cell nuclei (DAPI); (B) Green fluorescence 
of NeuroD1/Alexa Fluor488 in telocyte nuclei; (C) Red fluorescence of connexin43/ Alexa Fluor568 on the telocyte 
telopodes; (D) Overlay of images (A–C) reveals NeuroD1/connexin43 same cell (Tc) co-expression; 200×.

Figure 12: CLSM of glioblastoma. CD34 + /Alexa Fluor488 (green) and NG2 + / Alexa Fluor568 (red) cells are seen in 
glioblastoma vessels. Paraffin section; 200×.
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Figure 13: CLSM of glioblastoma. (A) Blue fluorescence of cell nuclei (DAPI); (B) Green fluorescence of CD34/Alexa 
Fluor488; (C) Red fluorescence of NG2/Alexa Fluor568; (D) Overlay of images (A–C). Same-cell CD34/NG2 co-expression (orange 
fluorescence), indicated by arrows, is visible in glioblastoma vessels (frozen sections, 200×).

Figure 14: CLSM of glioblastoma. (A) Blue fluorescence of cell nuclei (DAPI); (B) Green fluorescence of CD13/Alexa Fluor488; (C) Red 
fluorescence of CD117/Alexa Fluor568; (D) Same-cell CD117/CD13 co-expression (orange fluorescence), indicated by arrows, is visible 
in glioblastoma vessels (frozen sections, 200×).
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Figure 15: General ultrastructure of glioblastoma. (A) Tumor cells with signs of necrotic destruction (arrow). Erythrocytes are seen in 
the vicinity of tumor cells, without any association with blood vessels. (B) Transverse section of multiple myelin fibers, of various sizes, 
within the glioblastoma. Abbreviations: tc, tumor cells; e, erythrocytes; mf, myelin fibers. 

Figure 16: Glioblastoma blood capillary. Abbreviations: end, endotheliocyte; tj, tight junction; e, erythrocyte.
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Figure 17: Pericytes in glioblastoma blood capillary. (A) Pericyte associated with wall of glioblastoma blood 
capillary. (B and C) Pericyte processes in glioblastoma blood capillaries. Abbreviations: p, pericyte; end, endotheliocyte; tj, 
tight junction; e, erythrocyte; pp, pericyte process.

Figure 18: Processes of telocytes (telopodes) in glioblastoma’s blood capillaries. Alteration of dilated podomes and thin podomeres 
is visible in (A). Erythrocytes are located outside the capillaries. Abbreviations: end, endotheliocyte; e, erythrocyte; tp, telopode; pod, 
podome.
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Table 1: Overview of patients, specimens, and analytical methods

№ Sex Age *Type of glioma
disease (autopsy)

Ki-67 (%), CD117+ cells 
(%)

Tumor location and 
dimensions (MRI)

Cause of death 
(in control group)

Methods

Glioblastomas

1 F 73

Secondary giant cell 
glioblastoma, Grade IV, 

IDH-mutant, Ki-67 – 
22%, CD117+ cells – 8.8%

Left frontal and 
temporal lobes, at 
a depth of 5mm, 

35x35x34mm

- H, IHC, MA

2 F 48

small cell glioblastoma, 
Grade IV, IDH-wildtype, 

Ki-67 – 30%, CD117+ cells 
– 36.0%

Right frontal and 
parietal lobes, 
55x42x39mm

- H, IHC, MA

3 F 59

Giant cell glioblastoma 
with primitive neuronal 
component, Grade IV, 
IDH-wildtype, Ki-67 – 

21%, CD117+ cells – 1.0%

Left parietal lobe, 
17x13x17mm - H, IHC, MA

4 F 60

glioblastomas with 
primitive neuronal 

component, Grade IV, IDH-
wildtype, Ki-67 – 50%, 

CD117+ cells – 1.1%

Left temporal lobe, 
64x40x56mm - H, IHC, MA, 

CLSM

5 F 64

glioblastomas with 
primitive neuronal 

component, Grade IV, 
IDH-wildtype, Ki-67 – 

32%, CD117+ cells – 2.5%

Right temporal lobe, 
33x32x30mm - H, IHC, MA, 

CLSM

6 F 73

small cell glioblastoma, 
Grade IV, IDH-wildtype, 

Ki-67 – 30%, CD117+ cells 
– 5.2%

Right temporal 
lobe, at a depth of 
1cm,36x35x44mm

-
H, IHC, MA, 

DSIHC, 
CLSM

7 F 61

small cell glioblastoma, 
Grade IV, IDH-wildtype, 

Ki-67 – 22%, CD117+ cells 
– 3.0%

Right parietal and 
occipital lobes, 

thalamus and basal 
nuclei, 36x36x39mm

-
H, IHC, MA, 

DSIHC, 
CLSM

8 F 63

small cell glioblastoma, 
Grade IV, IDH-wildtype, 

Ki-67 – 21%, CD117+ 
cells – 2.5%, CD117+ cells 

– 10.0%

Right frontal and 
parietal lobes, 
37x30x29mm

- H, IHC, MA, 
DSIHC

9 F 61

small cell glioblastoma, 
Grade IV, IDH-wildtype, 

Ki-67 – 28%, CD117+ cells 
– 56.0%

Right frontal 
lobe, thalamus, 
45x72x54mm

- H, IHC, MA, 
DSIHC

10 F 61

small cell glioblastoma, 
Grade IV, IDH-wildtype, 

Ki-67 – 22%, CD117+ cells 
– 12.0%

Right frontal and 
temporal lobes, 
31x17x34mm

- H, IHC, MA, 
DSIHC
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№ Sex Age *Type of glioma
disease (autopsy)

Ki-67 (%), CD117+ cells 
(%)

Tumor location and 
dimensions (MRI)

Cause of death 
(in control group)

Methods

11 F 54

small cell glioblastoma, 
Grade IV, IDH-wildtype, 

Ki-67 – 22%, CD117+ cells 
– 13.6%

Right frontal and 
temporal lobes, 
47x28x20mm

- H, IHC, 
DSIHC, MA

12 F 60

small cell glioblastoma, 
Grade IV, IDH-wildtype, 

Ki-67 – 28%, CD117+ cells 
– 3.0%

Left frontal and 
parietal lobes, 
40x31x34mm

-
H, IHC, PC, 
CLSM, EM, 

MA

13 M 62

small cell glioblastoma, 
Grade IV, IDH-wildtype, 

Ki-67 – 22%, CD117+ cells 
– 8.8%

Right parietal lobe, 
26x15x19mm -

H, IHC, PC, 
CLSM, EM, 

MA

14 M 56

small cell glioblastoma, 
Grade IV, IDH-wildtype, 

Ki-67 – 31%, CD117+ cells 
– 36.0%

Right frontal and 
parietal lobes, 
63x54x50mm

- H, IHC, EM, 
MA

15 F 76

small cell glioblastoma, 
Grade IV, IDH-wildtype, 

Ki-67 – 22%, CD117+ cells 
– 10.0%

Right and left frontal 
lobes and corpus 

callosum, 65x54x52mm
- H, IHC, EM, 

MA

Astrocytomas

16 F 71

diffuse astrocytomas, 
Grade II, NOS categories, 
Ki-67 – 2%, CD117+ cells 

– 1%

Left temporal lobe, 
45x20x10mm -

H, IHC, MA, 
DSIHC, PC, 

CLSM

17 M 47

diffuse astrocytomas, 
Grade II, NOS categories, 
Ki-67 – 4%, CD117+ cells – 

2.5%

Right frontal and 
parietal lobes, 
44x26x24mm

-
H, IHC, MA, 
DSIHC, PC, 

CLSM

18 M 57

diffuse astrocytomas, 
Grade II, NOS categories, 
Ki-67 – 4%, CD117+ cells – 

1.6%

Left parietal and 
occipital lobes, corpus 
callosum, 84x66x11mm

- H, IHC, MA

19 F 40

diffuse astrocytomas, 
Grade II, NOS categories, 
Ki-67 – 4% CD117+ cells – 

0.7%

Right parietal 
lobe, thalamus, 
33x30x30mm

- H, IHC, MA

20 F 61

diffuse astrocytomas, 
Grade II, NOS categories, 
Ki-67 – 1,4%, CD117+ cells 

– 2.3%

Left frontal and 
parietal lobes, corpus 

callosum, 60x60x60mm
- H, IHC, MA

21 M 59

diffuse astrocytomas, 
Grade II, NOS categories, 
Ki-67 – 2.5%, CD117+ cells 

– 1.3%

Left temporal lobe, 
33x33x32mm - H, IHC, MA
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neurons [69]. They can also be activated in the meninges 
or the choroid plexus, where Tcs have been described [70, 
71]. In addition, our immunohistochemical study of GBM 
revealed that, in vessel walls, there are cells expressing 
not only CD117, but also NG2 with SMA. Dual-label IHC 
demonstrated the presence of cells with NG2/SMA co-
expression, i.e. Pcs. CLSM of GBM revealed cells with co-
expression patterns such as CD13/CD117 and NG2/CD34. 
In other words, cells with mixed Pc/Tc immunophenotypes 
were seen. In vascular walls, we also observed a number 
of cells without CD34/NG2 co-expression (CD34+ 
endothelial cells, CD34+ Tcs, and NG2+ Pcs). Under 
malignant tumor conditions, stromal cells may change 
their immunophenotype, as reported by Díaz-Flores et al. 

[72], and Erdag et al. [73]. They have described CD34+/
SMA+ cells in the peripheral areas of scars.

In humans, isolated Pcs expressing CD146, NG2, 
PDGFRb, and SMA have been theorized to be a native 
source of mesenchymal stem/stromal cells (MSC) [74]. 
Apparently, the fifth described mechanism of glioma 
neovascularization involves the trans-differentiation of 
glioma cells into 3 immunophenotypes: (1) CD117+/
CD34+/connexin43+/NeuroD1+ Tc immunophenotype; 
(2) SMA+/NG2+ Pc immunophenotype; and (3) a mixed, 
transitional Tc/Pc immunophenotype with CD13/
CD117 and NG2/CD34 co-expression. It is known that 
GBM vessels are functionally and morphologically 
abnormal. This phenomenon ensures the maintenance 

№ Sex Age *Type of glioma
disease (autopsy)

Ki-67 (%), CD117+ cells 
(%)

Tumor location and 
dimensions (MRI)

Cause of death 
(in control group)

Methods

22 M 71

diffuse astrocytomas, 
Grade II, NOS categories, 
Ki-67 – 4%, CD117+ cells – 

1.2%

Right frontal lobe, 
60x55x61mm - H, IHC, MA

23 F 35

diffuse astrocytomas, 
Grade II, NOS categories, 
Ki-67 – 3.6%, CD117+ cells 

– 1.0%

Right parietal lobe, 
21x22x21mm - H, IHC, MA

24 F 39

diffuse astrocytomas, 
Grade II, NOS categories, 
Ki-67 – 2.9%, CD117+ cells 

– 2.0%

Left temporal lobe, 
18x32x18 mm - H, IHC, MA

25 F 60

diffuse astrocytomas, 
Grade II, NOS categories, 
Ki-67 – 3.2%, CD117+ cells 

– 1.0%

Left temporal lobe, 
10х11х12 mm - H, IHC, MA

Normal brain

26 M 68 Coronary artery disease, 
CD117+ cells –0.01% no tumor Pulmonary 

embolism H, IHC, MA

27 M 40 Coronary artery disease, 
CD117+cells –0.17% no tumor Heart failure H, IHC, MA

28 M 53 Coronary artery disease, 
CD117+ cells –0.38% no tumor Pulmonary 

embolism
H, IHC, 

MA

29 F 51 Coronary artery disease, 
CD117+ cells –0.23% no tumor Myocardial 

infarction H, IHC, MA

30 F 61 Coronary artery disease, 
CD117+ cells- 0.5% no tumor Myocardial 

infarction H, IHC, MA

*2016 World Health Organization Classification of Tumors of the Central Nervous System [57]. Abbreviations: H, 
histology; PC, primary culture of telocytes from gliomas; IHC, immunohistochemistry; MA, morphometric analysis; 
DSIHC, double stain immunohistochemistry; CLSM, confocal laser scanning microscopy; EM, electron microscopy; 
MRI, magnetic resonance imaging; NOS categories, not otherwise specified (tumor samples were not tested for IDH gene 
mutations).
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and progression of the tumor. A so-called “vascular or 
perivascular niche” concept of GBM, in which tumor 
areas are potentially invulnerable due to shielding from 
chemotherapy, has been highlighted [75].

Vascular “strengthening” in GBM is confirmed, in 
our work, by the fact that there are 10 times more CD117+ 
Tcs in this tumor than in astrocytomas. The number of 
these CD117+ Tcs has a significant linear correlation with 
the proliferative activity index of tumor cells. Moreover, 
in the gray and white matter of control group (tumor–) 
specimens, we observed only single CD117+ Tcs in the 
vascular walls. Accordingly, MSC have been proposed to 
arise from perivascular cells termed Pcs [76]. It has been 
suggested that MSC-like cells originate from Pcs that have 
become activated after tissue damage [77]. The concept 
of MSC is being revised [78] due to the large number of 
studies that refute this fact, and Pcs are being proposed for 
the role of this “intriguing” cell.

Our study shows that the Tc immunophenotype in 
gliomas is characterized by NeuroD1 expression. The 
presence of new Tc immunophenotypic characteristics 
in gliomas aligns with the opinions of Cretoiu et al. [79] 
and Diaz-Flores et al. [80], who indicate that Tcs change 
phenotype according to organ. From our point of view, 
the presence of Neuro D1 in glioma Tcs confirms the 
assumption of Popescu et al. [14] that Tcs can participate 
in neurogenesis and regulate the development of the 
brain as a whole. It is possible that Tcs are derived from 
Pcs. In any case, we found cells with mixed, transient 
immunophenotypes (with CD13/CD117, NG2/CD34 
co-expression) which can be attributed to NG2-glia. 
It’s entirely possible that researchers may, at times, be 
interpreting one type as various cell types, in the absence 
of detailed immunophenotype analysis.

MATERIALS AND METHODS

Clinical samples

Fifteen hemispheric Grade IV GBMs (gliob+ study 
group), 10 hemispheric Grade II diffuse astrocytomas 
(astro+ comparison group), and 5 normal, tumor-free brains 
(control group) were studied. Hemisphere gliomas were 
removed, as follows: 3 GBMs with primitive neuronal 
component; 2 giant cell GBMs, 10 small cell GBMs, and 
10 diffuse astrocytomas. Tumor-free frontal lobes (control 
group) were obtained from deceased cardiovascular 
disease patients; specimens were taken within 4 hours 
after death. GBM+ group patient ages ranged from 48 to 
76 years (62.0±7.1 yrs av.), and the group consisted of 13 
women and 2 men. Astro+ group patient ages ranged from 
35 to 71 years (54.0±12.4 yrs av.), and the group consisted 
of 6 women and 4 men. The control group (tumor-
free brains) was comprised of 2 women and 3 men; the 
mean age was 55±3 years, and the ages ranged from 40 
to 68 years old. Histological study featured hematoxylin 

and eosin staining. Table 1 summarizes patient clinical 
characteristics and the specimen analysis methods used.

Antibodies

A detailed list of antibody reagents used for 
immunohistochemistry and confocal laser scanning 
microscopy (CLSM), including their dilutions, is provided 
in the Supplementary Materials.

Immunohistochemistry

Histological and immunohistochemical studies 
were carried out on sectioned paraffin block embedded 
samples. IHC study was performed using the peroxidase-
based detection method. Immunohistochemistry (IHC) 
with antibodies to GFAP, Ki-67, CD117, NeuroD1, 
CD34 and NG2 was performed on gliomas. Double 
immunohistochemical staining (NG2/SMA) was 
performed in 6 GBM cases (patients 6–11, Table 1). A 
CD34/CD117 cocktail was used in 2 astrocytoma cases 
(patients 16 and 17, Table 1). An immunohistochemical 
study was also performed on normal brain samples with 
antibodies to CD117, NeuroD1, and NG2 (patients 26–
30, Table 1). Taking into account the high importance of 
CD117 as a Tc marker, we used three CD117 antibodies: 
mouse monoclonal c-Kit (clone 1657, Novusbio, USA); 
rabbit monoclonal c-Kit (clone AH26, Genemed, 
San Francisco, CA, USA and rabbit polyclonal c-Kit 
(Diagnostic BioSystems, Netherlands). In order to 
confirm the specificity of the CD117, Neuro D1, and 
NG2 antibodies, we performed IHC staining of skeletal 
muscle sections with these antibodies as negative 
controls; those staining controls were completely negative 
(Supplementary Figure 1A–1C, see Supplemental 
Materials). A complete description of the IHC procedure 
is provided in the Supplementary Materials.

Primary culture of telocytes from gliomas

Tumor fragments were removed under sterile 
conditions and placed into wide (50 ml) tubes with 
phosphate-buffered saline (PBS). Following rinsing with 
fresh PBS to remove blood, tumor samples were minced 
into millimeter-sized pieces in a sterile culture dish 
containing a solution of collagenase type II (V900892; 
Sigma-Aldrich, St. Louis, MO, USA) in PBS, followed 
by incubation at 37°C for 30 min. Collagenase was then 
deactivated by Dulbecco's Modified Eagle Medium 
(DMEM) (12400-024, Gibco; Thermo Fisher Scientific, 
Inc., Waltham, MA, USA) supplemented with 1% 
glutamine and 1% penicillin/streptomycin (PS). Fragments 
were centrifuged at 300g for 10 min at room temperature. 
Supernatants were removed, and sediments were seeded 
onto sterile culture dishes following re-suspension in 
fresh DMEM. Samples were cultured (37˚C with CO2 and 
humidity) for 7 days, with replacement of media every 2 
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days. Cell cultures were examined daily using an inverted 
microscope. After 7 days, colonies of cells had begun to 
form around the small explants. By 2 weeks, they covered 
more than 70% of their dishes. Characterization cell 
culture Tcs was performed using routine phase contrast 
microscopy and CLSM.

Confocal laser scanning microscopy

CLSM of 4 glioma primary cultures (patients 
12,13,16, and 17) was performed using an indirect double 
immunofluorescent staining procedure with primary 
antibodies recognizing GFAP/CD117, CD34/connexin43, 
and NeuroD1/connexin43; nuclei were counterstained with 
DAPI (AppliChem). CLSM of GBM sections, both frozen 
(patients 4 and 5) and paraffinized (patients 6 and 7) was 
performed. Double indirect immunofluorescent staining 
of sections with CD34/NG2 and CD13/CD117 primary 
antibodies combinations was performed. Alexa Fluor488 
goat anti-mouse and Alexa Fluor568 goat anti-rabbit IgG 
were used for secondary antibody labeling. For all of the 
specimens listed above, CLSM was performed using a 
TCS SP8 microscope (Leica, Germany) equipped with a 
405 nm diode laser (for DAPI excitation), a 488 nm Argon 
laser (for Alexa Fluor488 exc.), and a 561 nm DPSS laser 
(for Alexa Fluor568 exc.). The CLSM method is further 
detailed in the Supplementary Materials.

Electron microscopy

Each tumor specimen was cut into small pieces, 
approximately 1–2 mm3 in size and pre-fixed with 2.5% 
glutaraldehyde in PBS (pH 7.4) for 45 min at room temp. 
These pieces were washed three times with PBS and 
post-fixed 1% PBS-buffered OsO4 for 1 hour. Specimens 
were then dehydrated in a series of ethanol solutions of 
gradually increasing concentration and embedded in 
Epon epoxy resin. Ultra-thin sections (70–90 nm) were 
obtained using a Leica EM UC7 ultramicrotome. Sections 
were transferred onto copper grids, stained (uranyl acetate 
and lead citrate), and examined using a JEM 1011 TEM 
(JEOL, Japan) equipped with a Morada digital camera 
(Olympus, Japan).

Morphometry and statistics

Morphometric analysis was performed using 
an automated image analyzer (Image Scope Color M, 
Russia). In order to analyze the relative quantities of 
cells expressing select antigens, 10 high-power fields 
(400× magnification) were evaluated per specimen. For 
CD117 (patients 1–10, 16–30) and Ki-67 (patients 1–25), 
percentages of the average number of expressing cells, 
in relation to overall cells, were separately calculated. 
Statistical analysis of the acquired data was done using 
Statistica v.10 software (StatSoft, Russia). For normal 
distributions, the significance of differences in quantitative 

characteristics was interpreted using the Student’s t-test. 
For other types of distribution, we used non-parametric 
methods of analysis, namely the Mann–Whitney test for 
independent samples and the Wilcoxon test. Differences 
between groups were defined as significant when p<0.05. 
In order to evaluate the correlation of two variables, we 
applied Spearman rank correlation analysis. Correlation 
coefficient (r) interpretation: r <0.3 as weak association; 
r=0.3–0.5 as moderate; r= 0.5–0.7 as significant; r=0.7–
0.9 as strong; and r>0.9 as very strong. Correlation was 
considered as positive if r>0 and negative if r<0.

CONCLUSIONS

In this study, a number of methods (IHC, CLSM, 
electron microscopy) were used to analyze glioma vessels 
and tumor-derived cultures. Tcs featuring a CD117+/
CD34+/connexin43+/NeuroD1+ immunophenotype were 
seen. In GBM vessels, four immunophenotypes were 
found. These correspond to endotheliocytes, Pcs, Tcs, 
and a mixed telocyte/pericyte immunophenotype. Further 
refinement of targeted therapies and development of new 
cellular therapies will require improved understanding 
of biology, at the molecular and histological levels, in 
several areas such as: the origin and function of Tcs; their 
relationship with Pcs; and the roles of both Tcs and Pcs 
in the oncogenesis of brain tumors. The authors hope that 
the analysis presented here advances our understanding in 
those directions.
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