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ABSTRACT

The role of microRNAs as key regulators of a wide variety of fundamental cellular
processes, such as apoptosis, differentiation, proliferation and cell cycle is increasingly
recognized in most aspects of biology and biomedicine. Accretion of results from
multiple microRNA studies over multiple pathway networks, led us to hypothesize
that microRNAs target molecular pathways. As we show here, this is a network-
wide phenomenon. The work presented, uses statistical tools that show how single
microRNAs target molecular pathways. We demonstrate that this targeting could not
be the result of random associations and cannot be the result of the sheer numeracy of
microRNA targets. Furthermore, the strongest evidence for the association microRNA-
pathway, is in a demonstration of the way by which these associations are disease-
relevant. In our analyses we study ten different types of cancer involving thousands
of samples, and show that the identified microRNA-pathway associations demonstrate
a clinical affiliation and an ability to stratify patients. The work presented here shows
the first evidence for a mechanism of microRNAs-pathway generic regulation. This
regulation is tightly associated with clinical phenotype. The presented approach may
catalyze targeted treatment through exposure of hidden regulatory mechanisms and

a systems-medicine view of clinical observation.

INTRODUCTION

MicroRNAs (miRNAs) are small, endogenous
non-coding RNA molecules that control gene-expression
by inhibiting translation or inducing cleavage of target
mRNAs. The role of miRNAs as key regulatory molecules
that control a wide variety of fundamental cellular
processes, such as proliferation, death, differentiation,
motility, invasiveness, etc., has been demonstrated
[1, 2]. MiRNAs are aberrantly expressed in cancer
tissues and the connection between deregulated miRNAs
and the inhibition of tumor suppressor genes in cancer
is well established [3, 4]. Further, several studies have
demonstrated a potential utility of miRNA-based therapy
in cancer [5—8]. A striking example is the use of anti-
miR-21 in breast cancer, which led to suppression of both
cell growth in vitro, as well as tumor growth in vivo [9].
MiRNAs’ potential to act both as therapeutic agents and
as disease biomarker places this family of non-coding
RNAs at the forefront of biomedical interest. Cellular
function and cellular pathways are thus affected by the

regulatory function of miRNAs. The most studied of these
processes include development, apoptosis, differentiation,
and other oncogenic related processes [10]. A possible
explanation for the dominating influence of miRNAs
might therefore be the control, by a single miRNA, over
an intricate pathway, through targeting multiple mRNAs
of this specific cellular pathway. It is recognized, that
one miRNA may be simultaneously targeting several
mRNAs. These mRNAs could be members of a cascade
functioning towards a functional endpoint in the cell,
through mutual involvement in the same cellular signaling
pathways or in the crosstalk between such pathways [11].
For example, miR-106a directly down regulates ULK1
mRNA levels in acute myeloid leukemia (AML) cells,
and can also target other members of the ULK1 complex
such as mAtg13 and FIP200 [12]. Other examples include
Lu et al. [13] demonstration of microRNA-21 as down
regulating the IL-12/IFN-y pathway in lung cancer, and
a work describing microRNA-7 as targeting 3-kinase/Akt
pathway in hepatocellular carcinoma and Glioblastoma
[14, 15]. Multiple targeting may be considered in view

www.impactjournals.com/oncotarget

1594

Oncotarget



of how microRNA-200 functions as a multifunctional
tumor suppressor in meningiomas through multiple,
simultaneous, effects on the E-cadherin and Wnt/fB-
catenin signaling pathways [16]. The Pten/Akt pathway
demonstrated inhibition in response to microRNA-1 [17]
while the C/EBP-0—PU.1 pathway has been suggested to
be regulated by microRNA-124 [18]. These important
studies conceptually converge to raise the question of
generality of this phenomenon: what is the breadth of this
biological effect?

To answer this question, we analyzed a
comprehensive collection of 357 pathways (137 NCI/
Nature curated pathways and 220 pathways imported
from the Biocarta database) from the National Cancer
Institute’s Pathway Interaction Database (PID) [19], which
together comprise of 1460 genes. Using information on
the complete collection of documented miRNAs - their
predicted and validated target genes - we combined
miRNA data and pathway data to identify, for each
pathway, a single miRNA that potentially targets the
pathway. The decision is based on statistical methods
described below, and initially we demonstrate, per each
miR-pathway, that this targeting is statistically significant.
Following these results and utilizing them, we follow
relations between identified miRNAs and their pathway
targets and show that this targeting is instrumental in
phenotypic stratification over a large collection of different
cancer types.

As mentioned above, a critical role for miRNAs in
cancer has been established. Further, multiple targeting of
mRNAs, by a single miRNA, has also been universally
demonstrated; the transition from multiple, disengaged,
mRNA targets, to an hypothesis about miRNA and
functional pathways has been raised, but has not yet been
demonstrated. Using computational methods, we reveal
significant associations between known curated pathways
and specific miRNAs. We also show that this association
is unique only to pathways. It is absent from otherwise
dissociated random gene groups. Furthermore, and most
important from a translational point of view, we show how
these miRNA-Pathway associations are correlated with
disease phenotypes, demonstrated in multiple datasets
from ten different cancer types.

RESULTS

Pathways are targeted by individual miRNAs

We analyzed 357 curated pathways from the
PID database [19] with overall 1460 genes. Initially, to
partner these data with miRNA information, we used 8
prediction tools collectively combined into miRWalk [20].
miRWalk is a tool that performs a comparative analysis
of predicted and validated targets through the combined
use of 8 prediction tools: miRnada, miRDB, miRWalk,

RNAhybrid, PICTARS, PITA, RNA22, TargetScan. From
these results, we chose the set of pairs of miRNA-Gene
that were predicted by at least two different tools. We then
tagged each gene with its affiliated pathway and further
affiliated, with every pathway, a single miRNA. This
single miRNA has been chosen as the miRNA with the
highest number of targets in that specific pathway (results
shown in Supplementary Table 1). A single p-value has
been associated with every pathway and it’s indicated
miRNA. This p-value has been obtained using enrichment
considerations, utilizing the hyper-geometric function (see
Methods). All of the 357 pathways presented a significant
FDR-adjusted p-value as can be seen in Figure 1(A)
and Figure 1(B). FDR p-values were calculated using
the procedure introduced by Storey, 2002 [21] for the
correction of the p-values received by the hyper-geometric
function.

Instead of setting the error rate at a particular level
and estimating the rejection region, Storey et al. have
proposed to fix the rejection region and estimate the error
rate. This approach allows a more straightforward analysis
of the problem.

Under multiple hypotheses testing, FDR procedures
are designed to control the expected proportion of “false
discoveries”.

To determine the strength and accuracy of the
overall performance of the miRNA-pathway association
using bootstrapping, we scrambled the data and randomly
build 357 new pathways with a random size between 450
genes (as in the original data).

Thus, we create an estimator for the hypothesis in
order to test the hypothesis distance from a random, non-
pathway related, distribution. Figure 1(C) shows both the
observed FDR distribution and random FDR distribution
across 1000 iterations. The results presented here suggest
that the observed phenomenon of miRNA-pathway
association is indeed specific (and highly significant with
p-value of 3.35¢-037) to defined cellular networks and
is not observed in a non-biologic random network. In
addition, this analysis revealed that there are 4 microRNA
(hsa-miR548c-3p, hsa-miR-548d-3p, hsa-miR-495, hsa-
miR-424) that are associated with 34% of the pathways
(Supplementary Figure 1). Figure 2(A) presents the
network created by these associations and Figure 2(B)
shows the largest sub-network, composed of targets of
hsa-miR-548c¢-3p.

GATA3 pathway in targeted by hsa-miR-532 in
ER- breast cancer patients

To investigate if these findings — the association
between a specific miRNA and a specific pathway —
have biological meaningful implications, we used
methods that quantify network behavior from gene
expression data. To utilize these network graph
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Figure 1: The observed enrichment of pathway targeting by miRNAs. (A) Pathways FDR-adjusted p-value distribution across
observed data. The figure presents a histogram of the number of targeted pathways, as a function of their FDR-adjusted p-values. All of
the pathways show an (adjusted) p-value of lower than 0.014. (B) p-value vs. g-value (FDR-adjusted p-value) plot. The plot presented here
shows the significance of the results. (C) By randomizing gene groups, we measure the uniqueness of naturally observed findings displayed
in panel (A). The figure shows the same histogram as the one presented in panel (A), with results from randomized by selecting pathway-
sized groups from the pool of genes that are members of any pathway. As the figure shows, over 1000 iterations present a clear separation
from computationally observed findings with a significantly higher FDR-adjusted p-values (p-value = 3.35¢-037).

structures and the overlay of transcriptional data,
we used the methods described in [22, 23]. These
methods quantify expression behavior in specific sub-
networks (i.e. specific pathways or any other defined
sub-network) and produce metrics of network behavior
and disruption. The analysis takes into consideration
the specific type of interaction (such as inhibition
or promotion) and calculates the likelihood that the
interaction occurs in the pathway Further details
are given in [22, 24]. To apply this network-based
methodology, we used the tool PathOlogist [25] which
is an automated tool that uses gene-expression data
(RMA levels) to deduce pathway metrics. Each sample
was thus presented by its pathway metrics.

To utilize this hypothetical miRNA-pathway
regulation in understanding disease mechanisms, we used
three different breast cancer datasets for the purpose of

finding a consistent and robust pathway that stratifies
patients into two groups, based on their Estrogen Receptor
(ER) status. Estrogens are important regulators of growth
and differentiation in the normal mammary gland and
are also important in the development and progression of
breast carcinoma. Estrogens regulate gene expression via
ER, however the details of estrogen effect on downstream
gene targets, the role of cofactors, and cross-talk between
other signaling pathways are far from fully understood
[26-29]. The expression of ER has important implications
in therapy [30-32].

Using the same procedure we previously describe
[23, 33], we demonstrate that the pathway “GATA3
Participate in Activating the Th2 Cytokine Genes
Expression” demonstrated significantly higher activity
levels in ER+ patients compared to ER- patients, across
all three datasets, as can be seen from Figure 3(A).
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Figure 2: The network created from the analysis. Every node represents either a pathway or a micro-RNA, edges represents the
association between a micro-RNA and a pathway. The network composed out of 220 nodes and 186 edges and was visualized by Cytoscape.

Gata3 has previously shown to over-express in ER+
patients, and it has also suggested to regulate genes critical
to the hormone-responsive breast cancer phenotype [34-36].
However, here we are referring to the pathway called Gata3
containing 13 different genes. Further, using the approach
described above, we identified hsa-miR-532 as significantly
targeting this GATA3 pathway. Specifically, hsa-miR-532
targets 6 out of the 13 genes in the pathway, leading to a
p-value of 3x107°. By separately obtaining the correlation
of the miRNA and the pathway in the two clinical groups
- ER+ and ER-, we found a consistent negative correlation
between the miRNA and the pathway in the ER- group of
patients, in all three datasets; and, we found (close to) zero
correlation between the miRNA and the GATA3 pathway in
the ER+ group of patients, as can be seen in Figure 3(B) and
3(C). These results are consistent with the previously known
fact that the gene Gata3 is highly expressed in ER+ tumors.
This observation may be explained by the finding we show
here, a ‘broken’ control mechanism between Gata3 pathway
and hsa-miR-532 in ER+ patients.

When we observe the set of pathway genes, predicted
to be targeted by hsa-miR-532, we see the behavior
presented in Figure 4. In the figure, we see the six genes
that were predicted to be targeted by hsa-miR-532 indeed
correlate with miR-532 in the ER- group, while they are not

correlated with the miRNA in the ER+ group. Three out of
the six genes in the GATA3 pathway positively correlate
with miR-532. Previous works have shown how different
miRNAs induce (and not reduce) gene expression [37—
40]. All genes in the pathway have the same expression
distribution between the two groups (ER+ and ER-) except
for the Gata3 gene, as can be seen in supplementary Figure
2. Nevertheless, the difference in the correlation status of
the six genes that were identified as possible targets and
hsa-miR-532 between the groups is still present.

In conclusion, these findings point to possible
control mechanisms, involved with regulation in ER-
breast cancer patients. As demonstrated, these results are
consistent and robust in their presentation of the GATA3
pathway and its connection to hsa-miR-532. Further, the
finding that this association is absent from ER+ tumors,
suggests a possible intervention mechanism and calls for
further study of a possibility of realigning regulation in
breast cancer, from the harder-to-treat ER- phenotype, to
the improved prognosis of ER+ phenotype.

Validation in independent data sets.

The hypothesis of whole pathway regulation by
miRNAs, through the multiple targeting of mRNAs of the
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Figure 3: GATA3 pathway and hsa-miR-532 are associated selectively according to ER status. (A) GATA3 pathway
activity level distributions in the ER- and the ER+ groups of patients in three independent datasets. As the figure demonstrates, the pathway
is more active in the ER+ group as opposed to the ER- patients. (B) A significant negative correlation between the pathway and the miRNA
is observed in ER- patients and is (C) absent from the ER+ group. The correlation was calculated between the miR expression levels and
the pathway activity levels. Correlation between the miR and the pathway may indicate on a possible control mechanism (ER- patients),
while a lack of correlation (such in the ER+ group of patients) may implies on a broken control.

same cellular pathway, mandates validation beyond the
originating datasets. To validate whether the phenomenon
may be associated with phenotype, we applied the same
pipeline described above to the most comprehensive
currently obtainable dataset. As the requirements for this
dataset include miRNA and mRNA expression levels, as
well as well documented phenotypic affiliation, we were
able to combine information from patients in studies of
unrelated nine different types of cancer. These data sets
were downloaded from TCGA: ovarian, liver, melanoma,
kidney, thyroid, leukemia, stomach adenocarcinoma,
bladder urothelial carcinoma and head and neck squamous
cell carcinoma. For each of these tumor types we
downloaded, from TCGA, gene expression information to

test different phenotypes. The following list of phenotypes
is the ones tested and are available in TCGA database:
survival, breslaw depth value, stage and morphology.
Iterating over pathways as described above, we identified,
for every one of the datasets, a single pathway that stratified
the patients. Then, for each of these pathways, through the
enrichment method described above, we identified a single
microRNA that targets the identified pathway in a specific
manner (results shown in Table 1 and Figure 5). These
results support the hypothesis of a regulation mechanism
directing pathway behavior through a miRNA association.
The overarching results, over tumor types, phenotypes and
studies, indicate that these phenomena may be at the core
of cancer cellular mechanisms.
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Table 1: The table presented here shows the results of the presented analyses in nine different
datasets, every cancer show a specific pathway and a specific miRNA in a manner that correlates

with different phenotype

Cancer Type Phenotype Pathway microRNA
Ovarian serous cystadenocarcinoma | Survival PDGF Signaling Pathway (Biocarta) Hsa-miR-214
Liver hepatocellular carcinoma Survival IL4 Signaling Pathway (Biocarta) hsa-miR-30e

Skin Cutaneous Melanoma

Breslow depth value

Role of Mef2d in T-cell Apoptosis
(Biocarta)

hsa-miR-199a-2

carcinoma

Kidney renal clear cell carcinoma Stage ARF1 Pathway (NCI/Nature) hsa-miR-193b

Thyroid carcinoma Survival Regulation of EIF-4e and p70s6 kinase |hsa-miR-375
(Biocarta)/

Acute Myeloid Leukemia Morphology Hypoxia-inducible factor in the hsa-miR-181a-1
cardivascular system (Biocarta)

Stomach adenocarcinoma Survival Stress Induction of HSP Regulation hsa-miR-324
(Biocarta)

Bladder Urothelial Carcinoma Survival CBL Mediated ligand-induced hsa-miR-221
downregulation of EGF receptors
pathway (Biocarta)

Head and Neck squamous cell Survival Calcium Signaling by HBX of Hepatitis | hsa-miR-203

B Virus (Biocarta)

DISCUSSION

One possible major component involved with
the reasoning of associating miRNAs and pathways is
parallel gene expression. As every miRNA can potentially
target hundreds of different transcripts simultaneously, by
regulating the levels of a single miRNA, control over an
entire pathway may be obtained. Previous studies have
shown the vast target range of different miRNAs [41-46],
but still, the specific processes and pathways regulated
by individual miRNAs and their role in different diseases
are mostly unknown. MiRNAs’ role in regulating cancer-
related processes such as apoptosis, cell growth and
tissue differentiation has been previously described and
their key role in cancer is well established. In addition,
cancer is a disease of multiple simultaneous modifications
in genes. Altered global interactions evolve into the
transformed and malignant states [47]. Oncogenesis gains
an instructive perspective by being considered not only
through a rearrangement of chromosomes but also as a
rearrangement of regulatory networks.

Here, we suggest that a single pathway can be
regulated by a single miRNA in a manner that ultimately
directs phenotype. Results introduce a novel computational
concept, the ability of a single miRNA to control cellular
outcome via targeting of multiple genes in a specific
pathway in a manner that ultimately directs phenotype. We
demonstrate here, through the power of gene-expression
networks, the criticality of miRNA-Pathway control
mechanisms in driving disease course. By uncovering the

specific interactions within the network, that are controlled
by miRNAs and that drive the phenotype, we catalyze
targeted treatment, facilitate prognosis through network
biomarkers and offer a novel perspective into hidden
disease heterogeneity.

METHODS

Hyper-geometric function analysis

Genes were matched to their corresponding
pathways. The probability for the pathway being targeted
by a specific microRNA was calculated using hyper-
geometric function as follow:

X; — Number of targeted genes in pathway i
K; — Number of targets found for miRNA j
N; — Number of genes in pathway i

M — Number of total genes tested

()
p=FoM, K, Ny =1 - S NAN=1/

o)

The result is the probability of hitting up to x of
possible K genes in N drawings.
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Figure 4: Predicted gene targets in the GATA3 pathway display correlation with hsa-miR-532 in the ER- group and
not in the ER+ group. Six genes in the Gata3 signaling pathway were found to have a possible binding site with hsa-miR-532. The
graphs presented here show the correlation between miR-532 and the six genes in the two groups tested (ER- and ER+) in the TCGA
dataset. As can be seen here, a significant correlation was found in the ER- patients while a no correlation was observed in the ER+ group.

For example: Gata3 signaling pathway comprises
13 genes (N = 13), six of them potentially targeted by hsa-
miR-532 (X = 6). hsa-miR-532 was predicted to target 124
genes within the dataset (K = 124). Given that the total
number of genes in the dataset is 1460 the resulted p-value for
targeting Gata3 signaling pathway by hsa-miR-532 is 3 x 107,

Pathway network interactions dataset

Network information was obtained from the National
Cancer Institute’s Pathway Interaction Database [19].

Datasets

The Cancer Genome Atlas (TCGA): Breast cancer
dataset and all datasets used for validation on different
types of cancer were obtained from the TCGA database,
available at http://cancergenome.nih.gov/ BRCA dataset
holds molecular characterization of 322 BRCA patients.
For each patient, the database provides gene expression
microarray, microRNA values, and clinical information.

Gene Expression Omnibus (GEO): Two additional
datasets were used in the breast cancer analysis GSE22220
[48] and GSE19783 [49].

MicroRNA binding site prediction

miRWalk [20] is a comprehensive database
that provides information on predicted and validated
miRNA binding sites. It combines information produced
by 8 established miRNA targets prediction programs:
Diana-microT [50], miRanda [51], miRDB [52],
PICTAR [53], PITA [54], RNA22, RNAhybrid [55], and
Targetscan [56].

Statistical and data analysis

Tow sample Student’s 7-Test was performed in
order to estimate the pathways significance in stratifying
phenotypes. Survival analysis was performed using
Kaplan-Meier through clinical data to determine the power
of a pathway in survival stratification.
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Figure 5: Results from nine different cancer datasets from the TCGA. The described results were applied in nine different
types of cancer in order to determine the strength of the presented results. For every type of cancer we identified a single pathway targeted
by a single microRNA. In each cancer type the association between the miRNA and pathway is correlated with a specific phenotype. This
phenomenon is consistent across a set of nine different cancer types.
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Random re-sampling

To determine the strength and accuracy of the overall
performance of the miRNA-pathway association using
bootstrapping, we scrambled the data and randomly build
357 new pathways with a random size between 4-50 genes
(as in the original data). We then performed (as described)
a prediction of microRNA binding sites in order to choose
the most significant microRNA that associates with
each random pathway and calculated p-value for all 357
microRNA-pathway pairs using hyper-geometric function.
We iteratively repeated this analysis 1000 times. Figure 1(B)
demonstrates the observed miRNA-pathway association
distribution as opposed to the randomly build PPI-network.

Networks construction

Networks generation performed using MATLAB
R2010a and networks visualization created using
Cytoscape [57, 58]. Every node represents either a
pathway or a micro-RNA, edges represents the association
between a micro-RNA and a pathway.
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