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ABSTRACT
Background: Breslow tumor thickness and mitotic rate are standardly used for 

risk stratification of patients with malignant melanoma. However, their prognostic 
value is relatively limited and a need for improved prognostication has been advocated. 
We aimed to screen the tumor tissue proteome in a search for potentially useful 
prognostic factors in early-stage cutaneous head and neck melanoma.

Methodology and Findings: Proteomic profiles of archival formalin-fixed tissue 
samples of 31 patients (age 23–90 years) with early-stage head and neck cutaneous 
malignant melanoma (American Joint Committee on Cancer, AJCC, stage I/II) were 
determined and expression intensities were compared to those of melanocytic nevi, 
yielding ratios used in data analysis. Medical charts were retrospectively reviewed 
to determine time elapsed since diagnosis to disease-specific death or censoring. 
In a multivariate recursive partitioning analysis (as per AJCC guidelines), higher 
expression levels of heterogeneous nuclear ribonucleoprotein M (hnRNP M) [n = 18, 
HR = 1.94 vs. the entire cohort; HR = 5.95 (95%CI 2.43–14.5) for “high” vs. “low” 
(n = 13)] and of heat shock protein 90 alpha (HSP 90α) [n = 17, HR = 2.09 vs. the 
entire cohort; HR = 4.59 (95%CI 1.87–11.2) for “high” vs. “low” (n = 14)] were each 
independently strongly associated with higher mortality (accounting for clinical and 
standard pathohistological features). Higher Breslow thickness and mitotic rate were 
associated with higher mortality only when proteomic data were disregarded.

Conclusions and Significance: Data suggest that tumor tissue expression of 
hnRNP M and/or of HSP 90α deserve further investigation and clinical validation as 
potential novel risk stratification aids in patients with stage I-II cutaneous head and 
neck malignant melanoma.

INTRODUCTION

Cutaneous malignant melanoma is one of the most 
aggressive malignancies that accounts for 4% of skin 
tumors and is responsible for 80% of deaths related to skin 
tumors worldwide [1]. Epidemiological data indicate a 

markedly increasing (rate estimated at 2.6–9.5%) annual 
incidence of early stage melanoma [1]. Due to direct 
insolation, almost 20% of malignant melanomas are 
cutaneous head and neck melanomas (CHNM). Affected 
patients have poorer survival compared to patients with 
melanomas occurring in other parts of the body due to 
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abundant lymphatic drainage pathways in the neck and 
early development of metastatic disease [2, 3]. According 
to the American Joint Committee on Cancer (AJCC), 
CHNM stages I and II are non-metastatic, and are stratified 
according to Breslow tumor thickness: stage I = tumor 
thickness below 2 mm; stage II = tumor thickness ≥2.01 
mm [4]. Early risk stratification and adequate surgical 
treatment considerably improve prognosis in these patients. 
The AJCC staging system suggests several prognostic and 
predictive biomarkers to be used clinically in melanoma 
patients. Lactate dehydrogenase (LDH) is the only potential 
circulating biomarker whose elevated levels are associated 
with poor survival in stage IV malignant melanoma [5]. 
Other circulating proteins such as S100β, C-reactive 
protein (CRP) and melanoma inhibiting activity protein 
(MIA) have also shown diagnostic and prognostic potential 
in melanoma patients, but with limitations in routine 
clinical use due to significant intra- and inter-patient 
variation, limitations in specificity and sensitivity of current 
technology and lack of consistency in blood sampling, 
storage and processing [6]. Combined use of tumor type 
M2 pyruvate kinase (PKM2) and S100β improves the 
estimation of disease prognosis in metastatic melanoma 
patients, compared to the use of S100β alone [7].

Proteomic methods enable simultaneous large-
scale identification and quantification of proteins from 
complex tissue samples. In melanoma research, plasma 
and serum proteomics emerged in the late 2000s, when 
platelet basic protein precursor was identified as predictive 
of survival in melanoma patients [8]. Recently, serum 
amyloid A protein was suggested as a prognostic factor in 
the early stages of melanoma [9]. Proteomic analyses of 
69 lymph nodes pathohistologically positive for metastatic 
melanoma and 17 disease-negative lymph nodes showed 
that proteomic profiling could differentiate between 
metastatic and healthy tissues and accurately “recognize” 
clinical stage of the disease [10]. In 2010 and 2011 
respectively, Rezaul and Byrum both published proof-
of-principle techniques related to protein extraction from 
formalin-fixed paraffin embedded (FFPE) tissues [11, 12]. 
Introduction of proteomic methods is expected to improve 
CHNM staging and prognostics based on patient serum 
proteomic profiles [13, 14]. Identification of molecules 
involved in disease progression is the prerequisite for 
development of adequate prognostic tools and treatments 
for patients with a high-risk of metastatic melanoma [15]. 
Timely differentiation of high-risk patients would have 
a positive impact on the development of individualized 
patient follow-up strategies and help in early detection 
of metastatic disease [16]. Although many candidate 
molecules have been investigated, currently no biomarker 
can predict disease outcome in patients with early stage 
cutaneous melanoma.

To the best of our knowledge, proteomic tumor 
tissue expression profiles have not yet been related to 
patient survival in early stages of CHNM. In this study, 

we screened the tumor tissue proteome in archival FFPE 
samples of 31 patients with stage I and stage II CHNM in 
a search for potentially useful prognostic factors.

RESULTS

The cohort comprised 31 patients (18 men; age 
range 23–90 years), 15 of whom suffered from nodular 
melanoma, 12 from superficial spreading melanoma and 
4 suffered from lentigo maligna melanoma. A total of 20 
(64.5%) patients died during the observed period with 
first death occurring 10 months after the surgery. Patient 
characteristics and survival are summarized in Table 1 
and Figure 1, respectively (see Supplementary Table 1 for 
individual patient data).

Across all samples, 1140 proteins were identified. 
Less reliable single peptide identifications were 
excluded as well as proteins that were not expressed 
across all samples. Finally, 47 proteins identified by 
at least two peptides were considered for statistical 
analysis (Supplementary Table 2, Supplementary 
Table 3). Considering all proteomic, pathohistological 
and clinical data, recursive partitioning procedure 
identified exclusively proteomic variables (6 out of 
47 considered proteins) as relevant for prediction of 
survival, with expression level of heterogeneous nuclear 
ribonucleoprotein M (hnRNP M) as the most relevant 
one, followed by heat shock protein 90α expression 
level (HSP 90α) (Figure 2A). Other identified important 
variables were expression levels of profilin-1, β-tubulin 
chain, annexin-A5, and L7 ribosomal protein (Figure 
2A) – their association with survival appeared stronger 
than association of any of the clinical/pathological 
variables (Breslow tumor thickness category, mitotic 
rate, T-category, histological tumor type or disease state). 
When proteomic data were disregarded, Breslow thickness 
category appeared the most relevant predictor of survival 
(Figure 2B). Considering all potential predictors, the 
entire cohort was split only once, into two subsets based 
on hnRNP M expression levels: the procedure identified a 
cut-off iBAQ value that split the cohort in subsets below 
(n = 13) and above the cut-off (n = 18) (Figure 3A1). In 
respect to the entire cohort (reference, with hazard ratio, 
HR = 1.0), the subset with lower hnRNP M expression 
had lower mortality risk (HR = 0.378), and the subset with 
higher hnRNP M expression had higher risk (HR = 1.94) 
(Figure 3A1). Disease-specific mortality was considerably 
higher in patients with hnRNP M expression above the 
cut-off (“high”) than in patients with expression below the 
cut-off (“low”) – HR = 5.95, log-rank P < 0.001 (Figure 
3A2). When hnRNP M was omitted from the analysis, 
the cohort was again split only once, into two subsets 
based on the HSP 90α expression level (Figure 3B1): 
again, the subset below the cut-off iBAQ value (“low”, 
n = 14) had lower mortality vs. the entire cohort (HR = 
0.571), while the subset above the cut-off value (“high”, 
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Table 1: Patient and tumor characteristics (overall, by gender and histological type of cutaneous 
head and neck melanoma)

By gender
All patients Men Women

N 31 18 (58.1%) 13 (41.9%)
Age (years) 73 (23–90) 73 (44–90) 73 (23–84)
Nodular melanoma 15 (48.4%) 9 (50.0%) 6 (46.2%)
Superficial spreading melanoma 12 (38.7%) 8 (44.4%) 4 (30.8%)
Lentigo maligna melanoma 4 (12.9%) 1 (5.6%) 3 (23.0%)
Breslow thickness (mm, average) 3.37 3.62 3.01
Breslow stage 1/2/3/4/5 5/2/12/9/3 1/1/8/7/1 4/1/4/2/2
Clark stage 1/2/3/4/5 0/4/9/16 /2 0/1/5/10/2 0/3/4/6/0
Stage I/II 10/21 5/13 5/8
Mitotic rate (average) 5.5 5.3 5.9
T category

1a or 1b 6 1 5
2a or 2b 4 4 0
3a or 3b 13 8 5
4a or 4b 8 5 3

Data are presented as count (%) or median (range).

Figure 1: Summary of disease-specific survival (Kaplan–Meier product limit survival curve). Open circles above the 
survival curve indicate censored subjects; closed circles below the line indicate disease-specific deaths.
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n = 17) had higher mortality vs. the entire cohort (HR = 
2.085) (Figure 3B1). Disease-specific mortality was also 
strongly associated with higher expression level of HSP 
90α (HR = 4.588, log-rank P = 0.001) (Figure 3B2). When 
all proteomic data were disregarded, the cohort was split 
based on the Breslow thickness category into a subset with 
thickness <2.5 (leaf 1, n = 7), and a subset with thickness 
≥2.5 which was further split into a subset with mitotic rate 
<4.5 (leaf 2, n = 10) and a subset with mitotic rate ≥4.5 
(leaf 3, n = 14). Compared to the entire cohort, mortality 
was lower (HR = 0.37), comparable (HR = 0.95) or 
higher (HR = 1.72) in the three respective subsets (leaves) 
(Figure 3C1). It was higher in patients presented by leaf 
3 patients vs. patients presented by leaf 1 (Figure 3C2). 
Table 2 summarizes patient characteristics across the 
subsets formed in these procedures.

DISCUSSION

Cutaneous melanoma, particularly in the head 
and neck region (CHNM), is one of the most aggressive 
malignancies with continuously increasing incidence 
worldwide [1]. Successful treatment and favorable 
prognosis rely upon accurate and early tumor staging 
and risk stratification [2]. Breslow melanoma thickness 
is currently the most reliable prognostic factor for 
localized CHNM before metastases have occurred. Still, 
Breslow thickness cannot reliably identify patients with 

a high risk of metastatic disease due to cut-off clustering. 
Accordingly, it is not surprising to see that many patients 
with low Breslow thickness develop metastatic disease [17, 
18]. Occult metastatic regional disease develops in 16% 
of stage I and II patients. Adequate surgical or adjuvant 
treatment is then needed, which rarely happens based 
on currently used clinical criteria [19]. Serum levels of 
several proteins, such as S100β, CRP, melanoma inhibitory 
activity (MIA) protein and LDH have been suggested 
as early biomarker candidates, but they do not seem to 
improve patient sub-classification into specific prognostic 
groups [20–22]. Melanoma tissue proteins appear to 
hold some promise in this respect. High expression of 
syntaxin 7 in melanoma tissues was shown to be inversely 
proportional to tumor growth and aggressiveness [23], 
while a proteomics-based study identified several 
molecules in metastatic tissue, potentially promising 
regarding predictions of metastatic disease [24]. So far, 
however, no study addressed early-stage CHNM and 
prediction of disease-specific survival. In this respect, 
archival tissues are a valuable source of information, 
particularly in the light of technological developments 
enabling proteomic analysis of FFPE samples [24, 25]. In 
the present pilot study, we screened the proteomic profile 
of FFPE tumor tissue samples from 31 adult patients with 
early-stage CHNM for whom disease-specific survival was 
determined retrospectively. We detected signals for more 
than a thousand different proteins, 47 of which could be 

Figure 2: Variable importance (based on the strength of association with the mortality data) determined using the 
recursive partitioning method. (A) Analysis included all potential predictors (proteomic and clinico-pahtological). Only protein 
expression data were identified as “important variables”. (B) Analysis included only clinical and pathohistological data, without the protein 
expression data. 
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Figure 3: Results of the recursive partitioning survival data analysis presented as survival trees (A1, B, C1) with hazard ratios (HR) in the 
terminal nodes (leaves) [HR for the patients in the respective subset (leaf), relative to the entire cohort (starting node, n = 31, HR = 1.0). If 
leaf HR <1.0 – mortality lower than in the entire cohort; if >1.0 – mortality higher than in the entire cohort], and as Kaplan–Meier product 
limit survival curves for patients within the respective leaves generated by splitting of the starting node (A2, B2, C2) with log-rank HR and 
the associated p-value. A1 and A2. The analysis included all proteomic expression data and clinico-pathological data as potential predictors. 
The entire cohort (initial node) was split only once, based on the expression level of heterogeneous nuclear ribonucleoprotein M (hnRNP 
M): to patients with iBAQ below or above the identified cut-off iBAQ value. (B1 and B2) The analysis was repeated whithout hnRNP M 
expression data: the entire cohort was split only once, based on the expression level of heat shock protein 90α (HSP 90α) to a subset with 
iBAQ below (HR<1.0) or above (HR>1.0) the identified cut-off value. (C1 and C2) The analysis considered only clinico-pathohistological 
variables as potential predictors. The entire cohort was split based on Breslow thickness (cut-off 2.5 mm) and, if thickness ≥2.5 mm, also 
based on mitotic rate (cut-off 4.5) into three leaves with lower (leaf 1), comparable (leaf 2) or higher (leaf 3) mortality than for the entire 
cohort.
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reliably identified across all individual samples, and were 
considered combined with standard clinico-pathological 
indices as potential predictors of mortality. In this highly 
dimensional dataset, recursive partitioning algorithm 
depicted only proteomic variables as important regarding 
association with mortality: a set of six highly expressed 
proteins was identified as “important variables”. In 
particular, expression levels of hnRNP M and of HSP 90α 
were revealed as parameters with the strongest association 
with the outcome: “high” expression (i.e., above the cut-
off values of arbitrary expression intensity units detected 
by the algorithm) was associated with several-fold higher 
mortality than the “low” expression. At the same time, 
classical clinico-pathological indices, primarily Breslow 
thickness and mitotic rate (combined thickness ≥2.5 and 
mitotic rate ≥4.5 – higher mortality) became relevant 
predictors only when proteomic data were disregarded. 
Moreover, the strength of association between hnRNP 
M and HSP 90α expression signals and the outcome, 
appeared “stronger” than that of Breslow thickness/mitotic 
rate in the sense of numerically higher hazard ratios. 

These observations strongly suggest hnRNP M and HSP 
90α tissue expression levels as potentially helpful aids 
in risk stratification of early-stage CHNM. Biologically, 
this also seems plausible. HnRNP M is a ubiquitously 
expressed RNA-binding protein involved in stabilization, 
splicing, transcription and translation of RNA (https://
www.proteinatlas.org/ENSG00000099783-HNRNPM/
pathology). Through mRNA processing, as a part of the 
spliceosome machinery, it regulates the expression of 
many proteins and its disruption can promote proliferation, 
invasion, and metastasis of tumor cells. It was proposed 
as a predictive factor for colorectal, ovarian and breast 
cancer [25, 26]. This protein was shown to dramatically 
increase breast cancer xenograft tumor growth [27]. 
HSP 90α is a chaperone essential for stabilization and/or 
activation of hundreds of cellular proteins. Its expression 
increases in almost all cancer types: the cancer cell is in a 
way dependent to HSP 90 proteins that commonly stabilize 
mutated tumor-related proteins and stimulate malignant 
transformation [27]. Although increased serum HSP 
90α expression levels have been identified in metastatic 

Table 2: Patient characteristics across subsets based on heterogeneous nuclear ribonucleoprotein 
M (hnRNP M) expression level, heat shock protein 90α (HSP 90α) expression level and subsets 
(leafs) based on Breslow thickness and mitotic rate identified by the recursive partitioning analysis 
of disease-specific mortality

hnRNP M expression 
cut-off iBAQ 103751.5

HSP 90α expression  
cut-off iBAQ 2491550

Breslow thickness (cut-off 2.5) and 
mitotic rate (cut-off 4.5)

“Low” “High” “Low” “High” Leaf 1 Leaf 2 Leaf 3
N 13 18 14 17 7 10 14
Men 6 12 7 11 2 7 9
Women 7 6 7 6 5 3 5
Nodular melanoma 2 13 3 13 0 5 10
Superficial spreading 
melanoma 7 5 7 4 3 5 4

Lentigo maligna melanoma 4 0 4 0 4 0 0
Breslow thickness (mm) 1.82 4.49 1.81 4.65 0.75 3.65 4.48
Breslow stage 1/2/3/4/5 5/2/4/2/0 0/0/8/7/3 5/2/5/2/0 0/0/7/7/3 5/2/0/0/0 0/0/6/2/2 0/0/4/2/8
Stage I/II 8/5 2/16 10/4 0/17 7/0 0/10 0/14
Mitotic rate 2.9 7.5 3.3 7.4 2 3.2 9
Median iBAQ hnRNP M 21468 537915 24400.5 559600 17142 425325 395375
Median iBAQ HSP 90α 407380 4664450 458345 4693600 176980 2794250 3229550
T category

1a or 1b 6 0 6 0 6 0 1
2a or 2b 2 2 4 0 1 1 2
3a or 3b 3 10 2 11 0 7 6
4a or 4b 2 6 2 6 0 2 6

Based on Breslow thickness and mitotic rate, patients were split into leaf 1 (Breslow thickness <2.5), leaf 2 (Breslow thickness 
≥2.5 and mitotic rate <4.5) and leaf 3 (Breslow thickness ≥2.5 and mitotic rate ≥4.5) (Figure 3). Data are presented as count 
(%) or median (range) unless specified otherwise.

https://www.proteinatlas.org/ENSG00000099783-HNRNPM/pathology
https://www.proteinatlas.org/ENSG00000099783-HNRNPM/pathology
https://www.proteinatlas.org/ENSG00000099783-HNRNPM/pathology
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melanoma patients, its prognostic significance in relation 
to early-state disease survival has not been demonstrated. 
Present data suggest tumor tissue HSP 90α (high) 
expression as a potential marker of poor prognosis [28].

There are two major limitations of the present study. 
A small single-center sample clearly cannot fully represent 
variability (and contributing factors, their “overlaps” 
and interactions) of survival in early-stage CHNM 
patients, or of expression (qualitative and quantitative) 
of particular tumor tissue proteins. Consequently, small 
samples might recognize only very prominent effects 
(regarding the clinical outcome), which could occur by 
chance, while some weaker, but potentially clinically 
relevant effects might be omitted. The limitations of 
the employed proteomics approach (i.e., those beyond 
potential technological limitations of mass spectrometry, 
as its performance is given “as is” to any researcher) lie 
with the fact that it was focused solely on identification 
of proteins with approximate quantification of intensity in 
arbitrary units that are of little practical relevance (at this 
point). In an attempt to reduce chance findings/signals, the 
false discovery rate was set to 1% at both the peptide and 
the protein level. Accordingly, we restricted our analysis 
to only those signals (proteins) that could be reliably 
identified in all patient samples as well as in control sample 
of pooled melanocytic nevi. By this virtue, we believe 
we have managed to avoid false signals, but again, this 
restrictive approach could have contributed to omission of 
some possibly relevant ones. Despite these limitations, we 
believe that the present data clearly support the need for 
further evaluation (e.g., immunohistological verification; 
accurate quantification; evaluation of their relationship to 
histological tumor types and clinico-pathological staging) 
of association of hnRNP M and/or of HSP 90α early-
stage CHNM expression levels and the risk of metastases 
occurrence. The high expression of each of these two 
proteins is independently strongly associated with patient 
survival, and in a hierarchy of “important predictors” they 
appeared dominant to classical clinico-pathological factors.

However challenging integration of novel factors 
into the existing prognostic tools may be, this process 
is vital for improvement of clinical estimation of risk 
stratification in patients with melanoma.

MATERIALS AND METHODS

Study design

Ethics committee at the School of Medicine, 
University of Zagreb, approved the study. All included 
CHNM patients were treated at a single tertiary referral 
center between January 1st 2000 and December 31st 
2012, and were postoperatively followed-up with regularly 
updated oncological status over a minimum of 60 months. 
Before surgery, all patients provided a signed informed 
consent and agreed to the use of tissue samples for research 

purposes. Their clinico-pathological stage was determined 
in line with the AJCC criteria [4] (see Supplementary 
Material, Supplementary Table 1 for individual data). For 
the purpose of the study, their medical charts were reviewed 
between January and March 2018 to retrospectively 
determine time elapsed since surgery to death due to 
disease progression (disease-specific mortality). Censored 
time was defined as time elapsed between surgery and 
chart review or death, not related to disease progression. 
Proteomic analysis was performed on 31 CHNM tissue 
samples patients, and also on a pooled tissue sample 
containing melanocytic nevi obtained from six patients 
without malignant melanoma (control sample) who were 
treated at the same center during the same time-period and 
under the same conditions as the CHNM patients.

Proteins were extracted from FFPE tissues using 
a commercial kit (FFPE-FASP kit, Expedeon) according 
to manufacturer’s instructions. Protein concentration was 
determined using RC DC Protein Assay Kit II (Biorad). 
Digested peptides were purified using a 30 kDa cut-off Spin 
Filter centrifuge column and concentrated using Stage Tips 
[29]. Peptides were separated on a C18 column by liquid 
chromatography (Easy-nLC, Proxeon Biosystems) and 
analyzed by mass spectrometry (LTQ Orbitrap Discovery, 
Thermo Scientific). Automated mass spectrometric 
measurement cycles consisted of full MS scanning and MS/
MS scanning of up to twenty most intense ions. Full MS 
scans ranging from m/z 300 to 2,000, were obtained in the 
Orbitrap analyzer at a resolution of 100,000, with internal 
calibration of the instrument using the lock mass setting. 
MaxQuant software version 1.5.1.2. (Max Planck Institute 
of Biochemistry) was used to process the raw data and 
quantify the detected proteins using intensity-based absolute 
quantification (iBAQ) algorithm [30]. Trypsin was selected 
for in silico digestion, carbamidomethylation, N-terminal 
acetylation and methionine oxidation were used as variable 
peptide modifications. No fixed modifications were 
specified. False discovery rate at the peptide spectrum level 
and at the protein detection level was set at 1%. Minimum 
peptide length for protein identification was seven amino 
acids. The main search peptide mass tolerance was set to 4.5 
ppm. Common laboratory contaminants were excluded from 
the analysis. Proteins were quantified using intensity-based 
absolute quantification (iBAQ), a continuous intensity value 
of protein expression in individual samples (i.e. the ratio of 
the sum of the experimentally determined intensities of all 
peptides and the intensity of the individual detected peptide). 
Experimental data was compared with the set of human 
proteins available in the UniProt database (http://www.
uniprot.org). Samples were analyzed in technical triplicates 
and proteins identified with at least two peptides in all 
samples were considered relevant for statistical analysis. The 
mass spectrometry proteomics data have been deposited to 
the ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org) via the PRIDE partner repository 
with the dataset identifier PXD015137 [31].

http://www.uniprot.org
http://www.uniprot.org
http://proteomecentral.proteomexchange.org
http://proteomecentral.proteomexchange.org
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Statistical rationale

Only proteins identified in all patient samples and 
in the control sample were considered for data analysis. 
iBAQ values for each protein and each individual patient 
were compared to the respective iBAQ value of the control 
sample to yield proportionality ratios used in data analysis. 
Considering high dimensionality of data (a number of 
proteomic and clinico-pathological variables as potential 
predictors), multivariate recursive partitioning (RP) 
algorithm was implemented to analyze survival data [rpart 
module within the programming language R (R Foundation 
for Statistical Computing, Vienna, Austria URL https://
www.R-project.org/) and SPSS (Version 22.0 released in 
2013 IBM SPSS Statistics for Windows, Armonk, NY: 
IBM Corp.)] [32–34]. RP-based programs clarify complex 
and non-linear interactions, and enable robust conclusions 
in high-dimensional data sets. They are increasingly 
used in oncology for extracting risk factors, developing 
prognostic indexes, and optimizing diagnostic procedures 
and treatments [35, 36]. The result of recursive partitioning 
is presented as a survival tree, which begins with a starting 
node. All patients are included in the starting node, and their 
hazard ratio (HR) is 1. Using different cut-off values the 
starting patient group is partitioned in subgroups in one or 
more decision steps. The final nodes (leaves) correspond to 
subgroups with maximal difference in identified HRs. It is 
important to note that their HR is expressed in comparison 
to the starting node. The comparison of final nodes (leaves) 
was done using Kaplan–Meier survival curves and log-rank 
test. All statistical tests were two-sided. The p values ≤ 0.05 
were considered statistically significant.
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