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ABSTRACT

Purpose: To assess the association of tumor mutational burden (TMB) with 
clinical outcomes, other biomarkers and patient/disease characteristics in patients 
receiving therapy for lung cancer.

Results: In total, 4,303 publications were identified; 81 publications were 
included. The majority of publications assessing clinical efficacy of immunotherapy 
reported an association with high TMB, particularly when assessing progression-free 
survival and objective response rate. High TMB was consistently associated with 
TP53 alterations, and negatively associated with EGFR mutations. High TMB was also 
associated with smoking, squamous cell non-small cell lung carcinoma, and being 
male.

Methods: A systematic literature review based upon an a priori protocol was 
conducted following Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) and Cochrane methodologies. Searches were conducted in 
EMBASE, SCOPUS, Ovid MEDLINE®, and Emcare (from January 2012 until April 2018) 
and in two clinical trial registries. Conference abstracts were identified in EMBASE, 
and in targeted searches of recent major conference proceedings (from January 2016 
until April 2018). Publications reporting data in patients receiving therapy for lung 
cancer that reported TMB and its association with clinical efficacy, or with other 
biomarkers or patient/disease characteristics, were included. Results are presented 
descriptively.

Conclusion: This systematic literature review identified several clinical outcomes, 
biomarkers, and patient/disease characteristics associated with high TMB, and 
highlights the need for standardized definitions and testing practices. Further studies 
using standardized methodology are required to inform treatment decisions.
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INTRODUCTION

The advent of immunotherapy has transformed 
the clinical oncology landscape in recent years, with 
significant improvements in long-term survival in some 
patients. However, a large proportion of patients do not 

respond to immunotherapies, and predictors of response 
are required to improve patient selection. Among 
investigated biomarkers, tumor mutational burden 
(TMB) has recently emerged as a potential predictor of 
response to immunotherapy in various tumor types [1, 2]. 
Increases in TMB are driven by several factors, including 
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DNA replication errors mediated by defective tumor 
suppressor genes (e. g. TP53), deficient DNA mismatch 
repair (dMMR) mechanisms (generally indicated by 
high microsatellite instability [MSI-H]), and exposure 
to mutagens such as tobacco, alkylating agents and 
ultraviolet light [3, 4]. Tumors with high levels of TMB 
are thought to express more cancer-specific antigens 
(neoantigens) that may sensitize them to immunotherapy 
[1, 5–7]. Accordingly, TMB levels have been shown to 
correlate with objective response rates (ORR) during 
immunotherapy across a number of cancer types [8].

Immunohistochemistry-determined programmed 
death ligand 1 (PD-L1) expression has been approved 
by the US Food and Drug Administration (FDA) as a 
companion diagnostic for several immunotherapies in 
various cancers [9]. In March 2015, the programmed cell 
death-1 (PD-1) inhibitor nivolumab was approved for 
second-line therapy of metastatic NSCLC independent 
of PD-L1 expression, as therapeutic response in phase 3  
programs was largely independent of PD-L1 levels  
[10–12]. Conversely, in October 2015, the PD-1 inhibitor 
pembrolizumab received PD-L1-dependent FDA approval 
for second-line therapy of metastatic non-small cell lung 
cancer (NSCLC), based on observations that improved 
efficacy was associated with elevated PD-L1 expression 
[13]. Collectively, these studies reported that many 
patients with elevated PD-L1 levels did not respond to 
immunotherapy, while a substantial minority of patients 
who had low PD-L1 expression did experience clinical 
benefit [10–13]. These findings highlight the need for 
additional biomarkers to improve patient selection for 
these therapies.

Tumors with dMMR/MSI-H have demonstrated 
improved response rates to PD-1/PD-L1 inhibitors, and 
dMMR/MSI-H deficiency has become the first “tissue-
agnostic” biomarker to receive FDA approval, for therapy 
with pembrolizumab [14]. However, the vast majority of 
tumor samples with high TMB do not exhibit dMMR/
MSI-H [4], and non-dMMR/MSI-H deficient tumors 
may benefit from immunotherapy. Lung cancers are more 
frequently associated with high TMB compared with other 
cancer types [4, 15], and studies suggest an association 
between TMB and response to immunotherapy in patients 
with NSCLC [10, 16, 17].

Traditional evaluation of tissue TMB by whole 
exome sequencing (WES) using next-generation 
sequencing (NGS) technology has been expensive and 
labor-intensive [18]. Recent advances in comprehensive 
genomic profiling (CGP), using targeted NGS, which 
measures the number of mutations on a portion of the 
coding region while simultaneously providing data 
on specific DNA alterations, have been validated [19] 
and shown to reflect measurements obtained by WES 
[20]. Based on parallel FDA approval, the Centers for 
Medicare & Medicaid Services proposed coverage 
for the FoundationOne CDx in vitro diagnostic test for 

NGS evaluation of gene mutations in solid tumors [21]. 
These developments have made routine TMB evaluation 
increasingly feasible. Nevertheless, the methods of 
reporting TMB in lung cancer remain highly inconsistent; 
some studies report TMB in terms of the absolute 
number of mutations, while others assess mutations per 
DNA megabase (mut/Mb). Additionally, thresholds used 
to denote high TMB vary greatly and no widely used 
standard currently exists.

This is the first systematic literature review 
describing the role of TMB as a predictive biomarker in 
patients with lung cancer. We aimed to assess associations 
between TMB and clinical efficacy outcomes in patients 
receiving therapy for lung cancer, to identify other 
biomarkers related to TMB, and to understand the 
association of patient and disease characteristics with 
TMB. Additionally, we sought to describe how TMB 
testing is implemented in clinical practice and reported in 
the literature.

RESULTS

Publication screening

Searches retrieved 4,303 publications in total, of 
which 1,298 were duplicates, 2,201 were excluded based 
on titles and abstracts, and 723 were excluded based 
on full-text; 81 studies were included (Figure 1). Most 
articles identified were published in 2017 (54 publications; 
65.9%), with 16 (19.5%) published from January to April 
2018. A summary of relevant data reported by publications 
presenting efficacy outcomes, biomarkers and/or patient 
or disease characteristics is presented in Supplementary 
Table 4.

Clinical efficacy outcomes and TMB

In total, 22 publications presenting data on TMB 
also reported one or more clinical outcomes (Table 1) [1, 
10, 16, 27–45]. The results of our risk of bias analysis 
are summarized in Supplementary Figure 1. Of these, 
one publication reported on patients with small cell lung 
cancer (SCLC) [32], one reported on a combination of 
NSCLC and SCLC [36], and the rest reported on patients 
with NSCLC. Of the 22 publications that reported 
clinical outcomes, 14 used CGP to assess TMB [16, 28, 
30, 33, 34, 36–41, 43–45] while eight studies used WES 
[1, 10, 27, 29, 31, 32, 35, 42]. Of the 13 publications 
assessing TMB using CGP, six used a Foundation 
Medicine platform [16, 28, 30, 33, 41, 45], three used 
a combination of commercial platforms (including 
Foundation Medicine, Guardant360, Caris Life Sciences, 
and Precipio) [37, 40, 44], one used only Caris platform 
results [38], one used only MSK-IMPACT results [34], 
and three did not specify which testing platforms were 
used [36, 39, 43].
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Overall survival

Twelve publications presented data on overall 
survival (OS) and TMB (Table 2) [10, 16, 27–30, 32, 
37, 38, 41, 43, 44]. Of these, ten publications assessed 
patients receiving immunotherapies [10, 16, 28–30, 
32, 37, 38, 41, 44], with two assessing more than one 
treatment arm [30, 32]. Eight of these (including the one 
study assessing SCLC) reported longer OS in patients 
with high TMB compared with low TMB [10, 16, 28, 
30, 32, 37, 41, 44]; yet only two reported statistical 
significance [28, 41]. Two publications reported a non-
significant association between TMB and OS during 
immunotherapy, but provided no details on the definition 
of high TMB and did not present median OS [29, 38]. 
Two further publications presented data for OS and TMB 
but did not specify the type of treatment used [27, 43]; 
one of these reported that OS was significantly longer 
in patients with low TMB compared with high TMB 
[43], with the other publication reporting no significant 
difference [27].

Progression-free survival

Eleven publications presented data for progression-
free survival (PFS) and TMB (Table 2) [1, 10, 16, 27, 

30, 32–34, 36, 39, 42]. Of these, nine publications 
(including the one SCLC study) assessed patients 
receiving immunotherapies [1, 10, 16, 30, 32–34, 36, 
39], with all reporting longer PFS in patients with high 
TMB compared with low TMB. Six of these publications 
also indicated that the difference in PFS was significant, 
either by hazard ratio confidence intervals (CIs) less than 
1, or by P value [1, 16, 30, 34, 36, 39]. Two publications 
presented data for PFS and TMB in patients receiving 
chemotherapy, with equivocal differences in PFS and no 
statistical comparison presented [10, 33]. Two further 
publications did not specify the type of treatment received 
[27, 42]; one of these reported that PFS was significantly 
shorter in patients with high TMB compared with low 
TMB [42], with the other reporting no significant 
difference [27].

Objective response rate

Eight publications presented data for ORR and 
TMB in patients receiving immunotherapies (including 
the one SCLC study) (Table 2) [1, 10, 16, 29–32, 39]; all 
reported higher ORR in patients with high TMB compared 
with low TMB. Three of these publications reported 
statistically significant differences [1, 29, 31], with 

Figure 1: PRISMA flow diagram of publication identification process. TMB, tumor mutational burden. ‘Presented’ categories 
are not mutually exclusive.
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Table 1: Summary of characteristics of publications reporting efficacy data 

Publication Lung cancer 
type TMB threshold values Agent/Setting

TMB-H patients/total
patients assessed for

TMB (n/N)

Carbone 2017 
[10]

NSCLC TMB-L: < 100 mutations 
TMB-I: 100–242 mutations 
TMB-H: > 242 mutations

Nivolumab/1L
Platinum-based 
chemotherapy

47/158
60/154

Choi 2017 [27] NSCLC NR NR NR/108

Davis 2017 [28] NSCLC TMB-L: < 15 mut/Mb 
TMB-H: ≥ 15 mut/Mb

PD-1/PD-L1 inhibitors NR/35

Gettinger 2017 
[29]

NSCLC NR PD-1/PD-L1 inhibitors NR/45

Goodman 2017 
[16]

NSCLC TMB-L: 1–5 mut/Mb 
TMB-I: 6–19 mut/Mb 
TMB-H: ≥ 20 mut/Mb

PD-1/PD-L1 inhibitors 3/36

Haratani 2017 
[31]

NSCLC NR Nivolumab NR/9

Hellmann 2017 
[34]

NSCLC TMB-L: Below 85th percentile 
TMB-H: Above 85th percentile

PD-L1 inhibitors +/- anti-
CTLA-4 therapy

NR/437

Hellmann 2018 
[33]

NSCLC TMB-L: < 10 mut/Mb 
TMB-H: ≥ 10 mut/Mb

Nivolumab + ipilimumab
Chemotherapy

139/330
160/349

Hellmann 2018 
[32]

SCLC TMB-L: < 143 mutations 
TMB-I: 143–247 mutations 
TMB-H: > 247 mutations

Nivolumab
Nivolumab + ipilimumab

47/133
26/78

Hu 2018 [35] NSCLC TMB-H: ≥ 20 mut/Mb PD-1/PD-L1 inhibitors 9/NR

Kowanetz 2017 
[30]

NSCLC TMB-L: Below 50th percentile 
TMB-H: Above 50th percentile

Atezolizumab/1L
Atezolizumab/2L

NR/102
NR/371

Mahadevan 
2017 [36]

NSCLC  
(n = 80) and 

SCLC (n = 5)

TMB-L: Below 50th percentile 
TMB-H: Above 50th percentile

PD-1 (n = 82)/ 
PD-L1 (n = 5) inhibitors/ 
other agents (n = 7)

NR/94

Park 2017 [37] NSCLC TMB-L: 1–5 mut/Mb 
TMB-I: 6–19 mut/Mb 
TMB-H: > 20 mut/Mb

Nivolumab NR/36

Patel 2017 [38] NSCLC NR Immunotherapy NR/50

Rizvi 2015 [1] NSCLC TMB-L: Below 50th percentile 
TMB-H: Above 50th percentile

Pembrolizumab (cohort 1)
Pembrolizumab (cohort 2)

NR/16
NR/18

Ross 2017 [45] NSCLC NR Immune checkpoint 
inhibitors

545/3758

Roszik 2016 
[39]

NSCLC TMB-L: < 100 mutations 
TMB-H: ≥ 100 mutations

Pembrolizumab 21/29

Rozenblum 
2017 [40]

NSCLC NR Pembrolizumab and 
nivolumab

NR/18
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another reporting no significant difference [16]. The other 
four publications did not present statistical comparisons. 
One publication also presented data for ORR and TMB 
in patients receiving platinum-based chemotherapy; there 
appeared to be no association of TMB on ORR in these 
patients [10].

Durable clinical benefit

Four publications presented data on durable 
clinical benefit (DCB) and TMB in patients receiving 
immunotherapies (Supplementary Table 5) [1, 34, 36, 39].  
Three reported that TMB was significantly higher in 
patients who experienced DCB compared with those 
who did not [1, 34, 36]. One further publication reported 
patients with high TMB were more likely to experience 
DCB than patients with low TMB, but did not present 
statistical comparisons [39].

Disease control

Two studies presented data on disease control rate 
(DCR) and TMB in patients receiving immunotherapy 
(Supplementary Table 5) [35, 41]. One of these reported 
that DCR was significantly higher in patients with high 
TMB compared with patients with low TMB [41]. The 
other publication included only patients with high TMB, 
but reported DCR of 100% [35].

An additional publication reported no clear 
association of TMB levels with response as determined 
by Response Evaluation Criteria In Solid Tumors 
(RECIST) criteria (partial response, stable disease, or 
progressive disease) in patients receiving immunotherapies 
(Supplementary Table 5) [40].

Duration of treatment

Two publications compared duration of therapy 
(DoT) with immunotherapy in patients with high 

and low TMB; both of these reported that DoT was 
significantly longer in patients with high TMB 
(Supplementary Table 5) [41, 45].

Biomarkers and TMB

A total of 14 publications reporting the association 
of TMB with biomarkers were identified (Table 3) [10, 
27, 36, 45–55]. Nine publications reported data on PD-L1 
and TMB [10, 27, 36, 45, 48–50, 53, 55]. Four reported 
significant associations of PD-L1 and TMB [45, 48, 53, 55],  
with two reporting weak Spearman’s correlations of 0.12 
and 0.085 [45, 48]. Three publications (one of which 
presented three analyses from different centers) assessed 
TMB and EGFR status; all reported that EGFR-mut was 
significantly associated with low TMB [46, 47, 51]. All 
three publications assessing TP53 alterations reported 
that it was significantly associated with high TMB  
[51, 52, 54].

Patient/disease characteristics and TMB

We identified 22 publications that evaluated the 
association between patient or disease characteristics and 
TMB (Table 4). Smoking history was the most commonly 
reported; of the 16 publications presenting data on 
smoking history and TMB [1, 28, 36, 42, 43, 51, 56–65], 
14 reported that smoking was significantly associated 
with higher TMB levels [1, 36, 42, 43, 51, 57, 59–62, 
64, 65] or with a greater likelihood of a patient having 
high TMB [28, 56]. Two further publications assessed 
TMB levels in patients with a history of smoking; one did 
not assess significance [63], and the other reported non-
significance [58].

Five publications presented data on TMB in 
NSCLC stratified by squamous or adenocarcinoma 
histology (Table 4) [51, 54, 60, 66, 67]. All reported 
higher TMB in patients with squamous cell or 

Singal 2017 
[41]

NSCLC TMB-L: 1–5 mut/Mb 
TMB-I: 6–19 mut/Mb 
TMB-H: ≥ 20 mut/Mb

Nivolumab NR/444

Wang 2017 [42] NSCLC TMB-L: Below 50th percentile 
TMB-H: Above 50th percentile

NR NR/98

Xiao 2016 [43] NSCLC TMB-L: ≤ 4 mutations 
TMB-H: > 4 mutations

NR 47/335

Yaghmour 2016 
[44]

NSCLC TMB-L: Below 80th percentile 
TMB-H: Above 80th percentile

Nivolumab, 
pembrolizumab, or 
ipilimumab

3/23

Abbreviations: 1L, first-line; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; mut/Mb, mutations per DNA 
megabase; NR, not reported; NSCLC, non-small cell lung cancer; PD-1, programmed cell death-1; PD-L1, programmed 
death ligand 1; SCLC, small cell lung cancer; TMB, tumor mutational burden; TMB-H, high TMB; TMB-I, intermediate 
TMB; TMB-L, low TMB.
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Table 2: Publications reporting primary efficacy outcomes (OS, PFS, ORR) in patients receiving active therapy for 
lung cancer

Median OS (Months)
[HR (95% CI)/P Value]

Median PFS (Months)
[HR (95% CI)/P Value]

ORR (%)
[P Value]

IMMUNOTHERAPY
Carbone 2017 [10]

Nivolumab/1L Low/intermediate vs high 
TMB: 12.7 vs 18.3 [P: NR]

Low vs intermediate vs high 
TMB: 6.9 vs 6.5 vs 9.7  
[P: NR]

Low/intermediate vs high TMB: 
23% vs 47% [P: NR]

Davis 2017 [28]
PD-1/PD-L1 inhibitors Longer with high TMB

[0.19 (0.04 to 0.88); P = .034]
NR NR

Gettinger 2017 [29]
PD-1/PD-L1 inhibitors NR [P = .92] NR Higher with high TMB [P = .02]

Goodman 2017 [16]
PD-1/PD-L1 inhibitors Low/intermediate vs high 

TMB: 7.6 vs not reached 
[0.32 (0.07 to 1.50); P = .15]

Low/intermediate vs high 
TMB: 2.1 vs 12.5 [0.32  
(0.13 to 0.81); P = .0817]

Low/intermediate vs high TMB: 
18% vs 33% 
[P = .4882]

Kowanetz 2017 [30]

Atezolizumab/1L Longer with high TMB [50th 
percentile: 0.79 (0.39 to 1.58), 
P: NR; 75th percentile: 0.45 
(0.17 to 1.16), P: NR] 

Longer with high TMB  
[50th percentile: 0.58  
(0.36 to 0.94), P: NR; 75th 
percentile: 0.54 (0.3 to 0.97), 
P: NR]

Low vs high TMB (50th percentile): 
13% vs 28% [P: NR]
Low vs high TMB 
(75th percentile): 20% vs 25%  
[P: NR]

Atezolizumab/2L Longer with high TMB  
[50th percentile: 0.87 (0.65 to 
1.16), P: NR; 75th percentile: 
0.7 (0.49 to 1.0), P: NR]

Longer with high TMB 
[50th percentile: 0.64 (0.5 to 
0.8), P: NR; 75th percentile: 
0.5 (0.38 to 0.67), P: NR]

Low vs high TMB (50th percentile): 
14% vs 25% [P: NR]
Low vs high TMB (75th percentile): 
16% vs 29% [P: NR]

Haratani 2017 [31]

Nivolumab NR NR Higher with high TMB [P = .038]

Hellmann 2017 [34]

Anti-PD-L1 +/- anti-CTLA-4 
therapy

NR Longer with high TMB [HR: 
0.59 (95% CI: NR); P = .004]

NR

Hellmann 2018 [33]

Nivolumab + Ipilimumab NR Low vs high TMB: 3.2 vs 7.2
[P: NR]

NR

Hellmann 2018 [32]

Nivolumab Low/intermediate vs high 
TMB: 3.1 vs 5.4 [P: NR]

Low/intermediate vs high 
TMB: 1.3 vs 1.4 [P: NR]

Low/intermediate vs high TMB: 7% 
vs 21% [P: NR]

Nivolumab + ipilimumab Intermediate vs high TMB: 3.4 
vs 22.0 [P: NR]

Low/intermediate vs high 
TMB: 1.3 vs 7.8 [P: NR]

Low/intermediate vs high TMB: 
22% vs 46% [P: NR]

Mahadevan 2017 [36]

PD-1/PD-L1 inhibitors NR Longer with high TMB 
[P = . 015]

NR

Park 2017 [37]

Nivolumab Low vs intermediate vs high 
TMB: 12.4 vs 10.3 vs not 
reached [P = .211]

NR NR

Patel 2017 [38]

Immunotherapy NR [P = .5] NR NR
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non-adenocarcinoma compared with patients with 
adenocarcinoma [51, 60, 66, 67]; however, only 
one demonstrated a significant difference [51]. Four 
publications assessed lung cancer stage, with all 
reporting no significant association with TMB [27, 43, 
58, 65].

Demographics

All three publications assessing TMB and sex 
reported that men had significantly higher TMB than 
women (Table 4) [43, 51, 65]. Four studies [42, 43, 60, 65] 
assessed age and TMB. Three reported higher TMB in older 

patients [42, 60, 65], with one demonstrating significance 
[42]. One publication investigated age in four subgroups 
across TP53 status and cancer histology [68]. This study 
reported a small, but significant, inverse association of 
age and TMB in patients with TP53-mut adenocarcinoma, 
but no significant effect of age and TMB in patients with 
TP53-wt adenocarcinoma, or with TP53-wt or TP53-mut 
squamous cell carcinoma.

TMB testing practices

A summary of the TMB testing practices is 
presented in Table 5. Among the 81 publications 

Rizvi 2015 [1]

Pembrolizumab (cohort 1) NR Low/intermediate vs high 
TMB: 3.7 vs 14.5 [P = .01]

Low vs high TMB: 0% vs 63% 
[P = .03]

Pembrolizumab (cohort 2) NR Low/intermediate vs high 
TMB: 3.4 vs not reached 
[P = .006]

Low vs high TMB: 22% vs 56% 
[NR]

Roszik 2016 [39]

Pembrolizumab NR Low vs high TMB: 4.1 vs 8.3 
[P = .0003]

Low vs high TMB: 0% vs 48%
[NR]

Singal 2017 [41]

Nivolumab Low/intermediate vs high 
TMB: 10 vs not reached 
[P < .01]

NR NR

Yaghmour 2016 [44]

Nivolumab, pembrolizumab, 
or ipilimumab

Low vs high TMB: 4.9 vs not 
reached [HR undefined (95% 
CI: 0.04 to 1.90); P = .21]

NR NR

CHEMOTHERAPY

Carbone 2017 [10]

Platinum-based 
chemotherapy

NR Low vs intermediate vs high 
TMB: 4.2 vs 3.6 vs 5.8  
[NR]

Low/intermediate vs high TMB: 
33% vs 28% [NR]

Hellmann 2018 [33]

Chemotherapy NR Low vs high TMB: 5.5 vs 5.5 
[NR]

NR

NOT SPECIFIED

Choi 2017 [27]

Not specified NR [P = .5933] NR [P = .7765] NR

Wang 2017* [42]

Not specified NR Shorter with high TMB* 
[P = .0133]

NR

Xiao 2016 [43]

Not specified Low vs high TMB: 61 vs 48.4 
[P = .02]

NR NR

Abbreviations: CI, confidence interval; HR, hazard ration; NR, not reported; ORR, objective response rate; OS, overall 
survival; PFS, progression-free survival; TMB, tumor mutational burden.
*Wang 2017 presents disease-free survival, not progression-free survival.

www.oncotarget.com


Oncotarget6611www.oncotarget.com

identified that reported TMB in lung cancer, 37 (46%) 
reported TMB as mut/Mb [16, 28, 30, 33–35, 37, 
40, 41, 45, 46, 48, 54, 60, 61, 63, 66, 67, 69–87], 34 
(42%) reported TMB as total mutations [1, 10, 32, 36, 
38, 39, 42–44, 47, 49–51, 53, 55–57, 59, 62, 64, 65, 
68, 88–99], and two reported both mut/MB and total 
mutations [31, 100]; eight publications did not report 
TMB in either mut/MB or total mutations [27, 29, 52, 
101–105].

In total, 33 publications (41%) classified TMB 
by high versus low or intermediate levels [1, 10, 16, 

28, 30, 32–37, 39, 41–44, 48, 51, 54–56, 60, 63, 66, 
69–71, 75, 84, 86, 91, 99, 102]. However, among 
these publications, various units were used to define 
the threshold of high or low/intermediate TMB: 16 
publications (48%) classified TMB by mut/Mb (median 
threshold [range]: 20 [10–20]) [16, 28, 33, 35, 37, 41, 
48, 54, 63, 66, 69–71, 75, 84, 91], 10 publications (30%) 
used a percentile to categorize TMB status [1, 30, 34, 
36, 44, 51, 56, 60, 86, 99], and six publications (18%) 
categorized TMB based on total mutation count (range: 
4–242) [10, 32, 39, 42, 43, 55].

Table 3: Publications reporting TMB and relevant biomarkers

Publication Main findings relating to TMB and biomarker P Value

PD-1/PD-L1

Carbone 2017 [10] Pearson’s r: 0.059 NA

Choi 2017 [27] Pearson’s r:

PD-1: 0.004 PD-1: .96958

PD-L1: –0.067 PD-L1: .52563

Goldberg 2017 [48] Spearman’s rho: 0.12 .00035

Liu 2018 [49] Spearman’s rho: 0.092 .62

Mahadevan 2017 [36] Undefined .47

Nakagomi 2018 [50] Undefined .49

Schabath 2017 [53] Undefined .03

Senarathne 2018 [55] Undefined .05

Ross 2017 [45] Spearman’s rho: 0.085 .00062

EGFR

Chen 2017 [46] Median TMB higher in EGFR-wt patients (8.4) vs EGFR-mut patients (4.6) .034

Dong 2017 [47]

TCGA Median TMB higher in EGFR-wt patients (181) vs EGFR-mut patients (56) < .001

Broad Institute Median TMB higher in EGFR-wt patients (209) vs EGFR-mut patients (59) .003

Guangdong Lung 
Cancer Institute

Median TMB higher in EGFR-wt patients (197) vs EGFR-mut patients (162) .029

Owada 2017 [51] Median TMB higher in EGFR-wt patients vs EGFR-mut patients (values NR) < .001

TP53

Owada 2017 [51] Median TMB higher in TP53-positive patients vs TP53-negative patients 
(values NR)

< .001

Rothberg 2017 [52] Median TMB higher in TP53-positive patients vs TP53-negative patients 
(values NR)

< .0001

Schrock 2017 [54] Median TMB higher in TP53-positive patients (10.1) vs TP53-negative 
patients (5)

.001

Abbreviations: NR, not reported; PD-1, programmed cell death-1; PD-L1, programmed death ligand 1; TMB, tumor 
mutational burden.
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Table 4: Publications reporting data on key patient and disease characteristics and TMB

Publication Main findings relating to TMB and patient/disease characteristic P Value

SMOKING
Kadara 2017 [57] TMB was higher in patients with a history of smoking vs no smoking history 

(values NR)
.002

Kim 2017 [58] TMB was higher in patients with a history of smoking (101.5 mutations) vs no 
smoking history (63.0 mutations)

.43

Mahadevan 2017 [36] TMB was higher in patients with a history of smoking vs no smoking history 
(values NR)

.047

Ono 2017 [60] TMB was higher in patients with a history of smoking vs no smoking history 
(values NR)

.0001

Owada 2017 [51] TMB was higher in patients with a history of smoking vs no smoking history 
(values NR)

< .001

Quek 2018 [61] TMB was higher in patients with a history of smoking (11.6 mut/Mb) vs no 
smoking history (4.0 mut/Mb)

.00016

Reck 2017 [62] TMB was higher in patients with a history of smoking (199 mutations) vs no 
smoking history (60 mutations)

.004

Rizvi 2015 [1] TMB was higher in patients with a history of smoking vs no smoking history 
(values NR)

.08

Schrock 2016 [63] TMB was higher in patients with a history of smoking (10.4 mut/Mb) vs no 
smoking history (3.3 mut/Mb)

NR

Shim 2015 [64] TMB was higher in patients with a history of smoking vs no smoking history 
(values NR)

< .0001

Wang 2017 [42] TMB was higher in patients with a history of smoking vs no smoking history 
(values NR)

.00087

Xiao 2016 [43] TMB was higher in patients with a history of smoking (3 mut/Mb) vs no smoking 
history (2 mut/Mb)

.00139

Xiao 2017 [65] TMB was higher in patients with a history of smoking (126 mutations) vs no 
smoking history (46 mutations)

.031

Chae 2018 [56] Patients with a history of smoking were more likely to have TMB-H than TMB-L 
(values NR)

< .001

Davis 2017 [28] Smoking was associated with higher TMB mutation (TMB-H: 18 patients with 
history of smoking vs 1 patient with no history; TMB-L: 38 patients with history 
of smoking vs 25 patient with no history)

.001

Lizotte 2016 [59] Spearman’s rho: 0.5297 .0009
HISTOLOGY
Isaka 2017 [66] TMB higher in patients with SCC (5.6 mut/Mb) vs adenocarcinoma (1.6) NR
Kojima 2017 [67] TMB higher in patients with SCC (5.6 mut/Mb) vs adenocarcinoma (1.6) NR
Ono 2017 [60] TMB higher in patients with SCC vs adenocarcinoma (no values reported) .069
Owada 2017 [51] TMB higher in patients with SCC vs adenocarcinoma (no values reported) < .001
Schrock 2017 [54] TMB higher in patients with non-adenocarcinoma (9.9 mut/Mb) vs 

adenocarcinoma (6.8 mut/Mb) .176
SEX
Owada 2017 [51] TMB higher in male patients vs female (values NR) < .001
Xiao 2016 [43] TMB higher in male patients (3 mut/Mb) vs female (2 mut/Mb) < .001
Xiao 2017 [65] TMB higher in male patients (92 mutations) vs female (34 mutations) < .001
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CANCER STAGE
Choi 2017 [27] No association of disease stage and TMB in patients with stage I–III cancer 

(values NR)
.95

Kim 2018 [58] TMB higher in patients with stage I–III cancer (104.4 mutations) vs stage IV 
(80.0 mutations)

.277

Xiao 2016 [43] No clear differences in TMB between patients with stage I (2 mutations), stage II 
(2 mutations), stage III (2 mutations) and stage IV (2 mutations)

NR

Xiao 2017 [65] No clear differences in TMB between patients with stage I (39.5 mutations), 
stage II (74.5 mutations), stage III (59.0 mutations) and stage IV (50.5 mutations)

NR

AGE
Ono 2017 [60] TMB higher in patients aged ≥ 70 years vs < 70 years (values NR) .106
Wang 2017 [42] TMB higher in patients aged ≥ 65 years vs < 65 years (values NR) .0208
Xiao 2016 [43] No difference in TMB in patients aged ≥ 65 years (2 mutations) vs <65 years  

(2 mutations)
.616

Xiao 2017 [65] TMB higher in patients aged ≥ 65 years (80.5 mutations) vs < 65 years  
(48 mutations)

.897

Zhang 2016 [68] Log-2 transformed effect estimates for age in patient subgroups:
Adenocarcinoma TP53-positive: –0.023 .007
Adenocarcinoma TP53-negative: 0.01 .30
Squamous cell TP53-positive: –0.009 .22
Squamous cell TP53-negative: –0.011 .37

Abbreviations: mut/MB, mutations per DNA megabase; NR, not reported; SCC, squamous cell carcinoma; TMB, total 
mutational burden.

Table 5: Summary of reporting of TMB testing practices reported by 81 included publications

Genes tested, n (%) 27 (33%) [10, 30, 32–36, 39–41, 44, 46, 48, 55, 63, 70, 71, 73–75, 86, 87, 91, 94, 
100, 101, 104]

Median (range) reported values 315 (15–592)
Mbs tested, n (%) 10 (12%) [16, 33, 40, 45, 54, 63, 70, 71, 81, 84]
Median (range) reported values 1.1 (0.8–1.2)

Units used for TMB 
measurement, n (%)
Mut/Mb 37 (46%) [16, 28, 30, 33–35, 37, 40, 41, 45, 46, 48, 54, 60, 61, 63, 66, 67, 69–87]
Total mutations 34 (42%) [1, 10, 32, 36, 38, 39, 42–44, 47, 49–51, 53, 55–57, 59, 62, 64, 65, 68, 

88–99]
Both 2 (2%) [31, 100]
Other units 8 (10%) [27, 29, 52, 101–105]

TMB threshold defined, n (%) 33 (41%) [1, 10, 16, 28, 30, 32–37, 39, 41–44, 48, 51, 54–56, 60, 63, 66, 69–71, 
75, 84, 86, 91, 99, 102]

By mut/Mb 16 (48%) [16, 28, 33, 35, 37, 41, 48, 54, 63, 66, 69–71, 75, 84, 91]
Median (range) reported values 20 (10–20)

By percentiles 10 (30%) [1, 30, 34, 36, 44, 51, 56, 60, 86, 99]
Median (range) reported values 50 (50–85)

By total mutations 6 (18%) [10, 32, 39, 42, 43, 55]
Range of reported values 4–242

Abbreviations: mut/Mb, mutations per DNA megabase; TMB, tumor mutational burden.
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MATERIALS AND METHODS

A systematic literature review based on an a 
priori protocol (available upon request) was conducted, 
following Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) [22] and 
Cochrane Handbook for Systematic Reviews of 
Interventions [23] guidance.

Literature search/data sources

Search strategies combined keywords and controlled 
vocabulary; full search strategy details are presented in 
Supplementary Tables 1–3. Bibliographic databases 
(EMBASE, Scopus, Ovid MEDLINE® and Ovid Emcare) 
were searched from January 2012 until April 2018 for 
publications in the English language only. Methodological 
filters for both randomized controlled trials and 
observational studies were used. Both ClinicalTrials. gov 
and the International Clinical Trials Registry Platform were 
searched from January 2016 until April 2018 for ongoing, 
completed and in-progress studies. Conference abstracts 
were identified in Embase, and from review of the 2016–
2018 conference proceedings for the American Society of 
Clinical Oncology (ASCO), European Society for Medical 
Oncology (ESMO), Society for Immunotherapy of Cancer 
(SITC), International Association for the Study of Lung 
Cancer (IASLC), and American Association for Cancer 
Research (AACR). Reference lists of included studies and 
related reviews were scanned for references missed by 
other methods of searching.

Publication inclusion criteria

Publications reporting controlled or observational 
studies (excluding case reports and case series) in 
adults receiving therapy for any stage or histology of 
lung cancer were included. Publications that evaluated 
TMB solely by liquid biopsy were excluded, as this 
method has not yet been fully validated and evidence 
is new and emerging [24]; however, publications 
reporting results from both tissue and liquid biopsies 
were included. Definitions of “low”, “intermediate” and 
“high” levels of TMB were based on those used in the 
publications. Studies were included if they evaluated 
the association of TMB with clinical efficacy outcomes, 
biomarkers, or patient and disease characteristics. 
Clinical efficacy outcomes of interest included OS, 
PFS, ORR, DCB, DCR, and DoT. Biomarkers included 
PD-L1 expression, MSI status, MMR pathway gene 
mutations, DNA polymerase gene mutations, and any 
other genomic alterations. Clinical and demographic 
patient characteristics included sex, age, smoking status, 
cancer stage, and histology. Results for biomarkers and 
patient/disease characteristics are presented only for 
outcomes reported by at least three publications. Reported 

statistical comparisons were considered significant only  
when P < .05.

Screening, study selection, and data extraction

Screening of search results was performed using 
Covidence [25], and was conducted independently by 
two reviewers. Search results were initially screened for 
eligibility based on review of titles and abstracts. After 
initial exclusion of publications that clearly did not meet 
inclusion criteria based on screening review of title and 
abstract, the full text of each remaining publication was 
reviewed. Data were extracted independently by two 
reviewers using Covidence. Disagreements were resolved 
by discussion or by a third reviewer.

Evaluation of study quality and publication bias

Risk of bias was assessed using the Criteria for 
Critically Appraising Studies of Prognostic Tests for 
studies reporting clinical outcomes [26]. This method was 
adopted owing to the data reported and the purpose of 
the review. Bias was considered based on the following 
questions: “Was an inception cohort assembled?”; “Was 
the referral pattern described?”; “Were laboratory 
and clinical outcomes assessed in a blinded fashion?”; 
“Was complete follow-up achieved?”; “Was adjustment 
for extraneous prognostic factors carried out?”; “Were 
appropriate statistical methods used?” Two reviewers 
graded each study as low, high, or unclear risk of bias 
for each of the study design features, with discrepancies 
resolved by a third reviewer.

DISCUSSION

Despite inconsistencies in the definitions and 
reporting of TMB, high TMB appeared to be associated 
with greater clinical benefit (particularly ORR and PFS) 
among patients receiving immunotherapy for lung cancer. 
This suggests that TMB, in addition to PD-L1 expression 
level and dMMR/MSI-H status, may have clinical utility in 
identifying patients likely to respond to immunotherapies. 
It should be noted that almost all publications included 
in our clinical efficacy analysis reported exclusively on 
patients with NSCLC, with one assessing a cohort in 
which 94% of patients had NSCLC [36], and one reporting 
on patients with SCLC [32]. Clinical outcomes in the 
study assessing patients with SCLC were qualitatively 
similar to the broader NSCLC findings, with improved 
OS, PFS, and ORR in patients with high TMB. These 
findings are supported by recent observations from the 
CheckMate 227 study, the first phase 3 trial in lung cancer 
to assess immunotherapy specifically in patients with 
high TMB (≥ 10 mut/Mb) [33]. That study reported that in 
patients receiving first-line therapy for NSCLC with high 
TMB, PFS was longer with nivolumab plus ipilimumab 
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than with chemotherapy irrespective of PD-L1 levels  
(7.2 months vs 5.5 months; hazard ratio for disease 
progression or death [95% CI]: 0.58 [0.41 to 0.81]). 
Other trials assessing the predictive utility of TMB as a 
marker of response to immunotherapy in lung cancer are 
underway (NCT02848651; NCT03668119).

Evidence for an association between PD-L1 
expression and TMB was inconsistent. This is not entirely 
unexpected, as previous studies have reported that  
PD-L1 and TMB are independent predictors of response 
to immunotherapy in patients with NSCLC [10, 33]. One 
retrospective analysis has reported that patients with both 
positive PD-L1 expression (defined as ≥ 1% expression) 
and high TMB had significantly improved ORR and PFS 
compared with patients who lacked one or both of these 
biomarkers [106]. Additional research is required to fully 
elucidate the clinical utility of TMB in combination with 
PD-L1 [107].

Our review found that TMB was consistently 
associated with TP53 alterations. Somatic alteration in 
the TP53 gene, which functions as a tumor suppressor 
in response to mutagenic cellular stresses, is one of 
the most frequent alterations in cancers, including 
lung cancers, although its predictive and/or prognostic 
role remains unclear [108]. Conversely, we found that 
TMB was negatively associated with EGFR mutations. 
In patients with EGFR-mut lung cancer, TMB has 
been shown to be associated with a poor response to 
tyrosine kinase inhibitors [109], and a meta-analysis 
of clinical trial data reported that patients with EGRF-
mut tumors demonstrate a poor therapeutic response to 
immunotherapies [110]. Recent work has been designed 
to elucidate the interaction between these biomarkers, 
with one meta-analysis reporting that concurrent TP53 
and EGFR mutations predict poor response to tyrosine 
kinase inhibitors, but not to non-targeted therapies 
[111]. The precise nature of this interaction, and the 
involvement of TMB, remain unclear.

Several publications reported significant associations 
between TMB and multiple patient and disease 
characteristics, including a history of smoking, squamous 
cell lung carcinoma, and male sex. Of particular note, an 
association between smoking and high TMB levels was 
repeatedly demonstrated. This consistent finding is in line 
with previous observations that cancers related to chronic 
mutagenic exposures (such as from tobacco) exhibit 
the highest prevalence of mutations [15]. Interestingly, 
subgroup analyses of NSCLC patients receiving second-
line nivolumab in the CheckMate 057 and 017 studies also 
found history of smoking to be associated with efficacy 
[11, 12]. Collectively, these characteristics may help 
identify patients who are more likely to have high TMB 
and therefore to respond to immunotherapy.

Limitations of this study included the diversity of 
testing methods and reporting of TMB. A standardized 

threshold for classifying TMB levels as low, intermediate, 
and high does not currently exist; and in the identified 
publications not only were the units used to report 
TMB inconsistent, but even publications reporting 
TMB in identical units often used different threshold 
definitions. Furthermore, testing platforms differ, such as 
between commercial and institutional sites, with varying 
institutional guidance regarding the number of genes and/
or Mb to be tested, as well as the units used to report TMB 
findings. Additionally, although the majority of included 
data comes from solid tissue biopsies, some TMB data 
from evaluation of peripheral blood samples are also 
included. Future research is needed to fully evaluate the 
use of blood samples to assess TMB, and to compare 
these findings with TMB results from paired solid tumor 
samples. These inconsistencies impede any meaningful 
meta-analysis of the collated data. Other limitations of 
this study include the heterogeneity of lung cancer type 
and treatment regimens used. Consideration must also be 
given to the fact that our search included only a few high-
impact congresses and may have overlooked relevant data 
reported elsewhere.

As most identified studies assessed TMB as a 
secondary/exploratory outcome, statistical power and 
reporting detail were generally insufficient. As a result, 
evidence of TMB as a predictive biomarker of response 
to immunotherapy in patients with lung cancer is 
lacking. Robust, adequately powered, observational and 
prospective clinical studies should continue to assess the 
association of TMB and other biomarkers with clinical 
outcomes of immunotherapy. We recommend that future 
studies assessing TMB adhere to standard reporting 
practices to enable comparison. The ongoing Friends of 
Cancer Research TMB Harmonization Project aims to 
provide a WES-based universal standard and to identify 
sources of variability once TMB scores from targeted 
panels have been aligned with the reference standard 
[112]. As further research is conducted with standardized 
TMB testing and reporting practices, a future meta-
analysis may provide important evidence regarding the 
value of TMB testing in patients with lung cancer and 
other cancers.

In conclusion, these findings suggest that TMB may 
complement PD-L1 and dMMR/MSI testing in identifying 
patients among the lung cancer population who are likely 
to have good outcomes with immunotherapy. Robust, 
adequately powered, prospective and observational 
studies assessing TMB using standardized methodology 
are required to fully inform treatment decisions.
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