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ABSTRACT

The ubiquitin-proteasome pathway plays an important role in the regulation 
of cellular proteins. As an alternative to the proteasome itself, recent research 
has focused on methods to modulate the regulation of deubiquitinating enzymes 
(DUBs) upstream of the proteasome, identifying DUBs as novel therapeutic targets 
in breast, endometrial, and prostate cancers, along with multiple myeloma. bAP15, 
an inhibitor of the 19S proteasome DUBs UCHL5 and USP14, results in cell growth 
inhibition in several human cancers; however, the mechanism remains poorly 
understood in ovarian cancer. Here, we found that aberrant UCHL5 expression 
predicted shorter progression-free survival (PFS) in a cohort of 1435 patients with 
ovarian cancer described in the Gene Expression Omnibus and The Cancer Genome 
Atlas databases. The subgroup of patients with TP53 mutations was significantly 
more likely to exhibit poor PFS (p <0.001). Moreover, we found bAP15 could 
suppress TP53-mutant ovarian cancer cell survival by regulating TGF-β signaling 
through inhibiting UCHL5 expression and dephosphorylating Smad2, consequently 
inducing apoptosis. bAP15 (2.5 and 5.0 mg/kg) also exerted significant anti-tumor 
effect on nude mice bearing subcutaneous SKOV3 xenografts. As activated TGF-β 
signaling is involved in ovarian cancer progression, these findings suggest that 
UCHL5 inhibition offers potential opportunities for a novel targeted therapy against 
TGF-β-activated ovarian cancer.
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INTRODUCTION

Ovarian cancer, the eighteenth most common 
cancer in women worldwide with approximately 300,000 
new cases reported in 2018 [1], comprises one of three 
common female malignant tumors arising in the genital 
tract and exhibits the highest mortality rate among 
female genital malignancies [1]. In general, the lack of 
early effective diagnostic methods results in the disease 

not being recognized until an advanced stage in 75% of 
cases; accordingly, disease mortality rate has remained 
fairly static at approximately 30% in recent years with 
short overall survival also driven by the emergence 
of resistance mechanisms [2]. The standard front-line 
therapy for advanced ovarian cancer consists of intensive 
debulking surgery followed by adjuvant chemotherapy. 
It is considered unlikely that in the near future a simple 
modification in chemotherapy agents combined with 
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current conventional surgery will be sufficient to improve 
the poor prognosis associated with this disease.

Alternatively, advances in our understanding of 
the molecular mechanisms underlying ovarian cancer 
have identified several promising therapeutic targets 
including anti-angiogenic factors, poly ADP-ribose 
polymerase inhibitors, and immune-checkpoint inhibitors 
[3–5]. However, the identification of additional novel 
therapeutic targets is required to fulfill the promise of truly 
personalized care in ovarian cancer treatment.

The ubiquitin-proteasome system (UPS) is a highly 
specific and selective route for cellular protein degradation 
in all eukaryotic cells to regulate the fate of cellular 
proteins by striking a balance between the dynamic 
multifaceted post-translational modification processes of 
ubiquitination and deubiquitination of protein substrates 
[6–8]. Recently, the clinical approval of the proteasome 
inhibitors bortezomib, carfilzomib, and ixazomib has 
boosted new drug discovery programs targeting different 
components of the ubiquitin system [9–14]. In addition, 
a Phase I therapeutic clinical trial of bortezomib in 
combination with cisplatin has demonstrated that the 
treatment was well tolerated in patients with ovarian 
cancer [15]. Nevertheless, severe side effects and poor 
pharmacodynamic and pharmacokinetic properties of 
proteasome inhibitors, including bortezomib, have been 
reported [16]. Therefore, the identification of novel targets 
in the UPS will likely provide more effective single agent 
or combination therapies to better treat ovarian cancer.

The human genome encodes approximately 100 
deubiquitinating enzymes (DUBs), which can be classified 
into six families: ubiquitin-specific proteases (USPs), 
ubiquitin carboxy-terminal hydrolases (UCHs), ovarian 
tumor proteases (OTUs), Machado-Joseph disease protein 
domain proteases, JAMM/MPN domain-associated 
metallopeptidases, and the monocyte chemotactic 
protein-induced protein family [17]. DUBs regulate 
multiple cellular processes including cell cycle control, 
DNA damage response and repair, apoptosis, chromatin 
modification, and response to external stimulations 
[17–20]. In mammalian cells, three different DUBs 
are associated with the 19S regulatory particle of the 
proteasome: USP14, UCHL5, and Rpn11. Both USP14 
and UCHL5 constitute cysteine isopeptidases that cleave 
distal polyubiquitin chains and are suggested to hinder 
substrate degradation. Recent studies have identified 
DUBs including UCHL5 as novel therapeutic targets in 
breast, endometrial, and prostate cancers, neuroblastoma, 
and multiple myeloma [21–29], in part owing to their 
frequent overexpression in several types of carcinoma 
cells [17]. Thus, recent research has focused on methods 
targeting the regulation of DUBs upstream of the 
proteasome for cancer therapy rather than targeting the 
proteasome itself [17].

b-AP15 functions as an inhibitor of the USP14 
and UCHL5 DUBs of the 19S regulatory particle. In 

contrast to 20S proteasome inhibitors, bAP15 blocks the 
deubiquitylating activity of both USP14 and UCHL5 
to induce strong anti-tumor activity without affecting 
proteolytic activities of the 20S proteasome [25, 26, 28, 
29]. Although the ability of bAP15 to induce cellular 
apoptosis in several kinds of carcinoma has been 
intensively investigated [25, 26, 28, 29], its effect on 
ovarian cancer remains unknown.

Among the different signaling pathways that may 
play a role in the transformation process of various ovarian 
tumor types, we consider that the effect of the TP53 
mutation on TGF-β signaling could play an important 
role in ovarian tumor progression as the latter is necessary 
for ovarian cancer cell proliferation [30]. Smad2/Smad3 
represent direct targets of TGF-β receptor kinase 1 and 
mediate transcriptional regulation through their intrinsic 
ability to bind to DNA; their phosphorylation plays a 
crucial role in the pathogenesis of ovarian cancer [30]. 
Notably, UCHL5 has been reported to interact with Smad7 
and potentially reverse Smurf-mediated ubiquitination 
of TGF-β receptor I [31]. However, the role of UCHL5 
in the regulation of TGF-β signaling in ovarian cancer 
pathogenesis is still unclear.

In this study, we investigated the anti-tumor effect 
of the DUB inhibitor, bAP15, in advanced TP53-mutant 
ovarian cancer along with the underlying mechanism. 
In particular, we examined the ability of UCHL5 to de-
ubiquitinate and stabilize Smad2/Smad3 in ovarian 
cancer cell lines, thereby promoting TGF-β signaling and 
contributing to the pathogenesis of TP53-mutant ovarian 
cancer. These data will contribute to determining the 
therapeutic potential of targeting UCHL5 in advanced 
TP53-mutant ovarian cancer.

RESULTS

UCHL5 genomic alterations in ovarian cancer

Previous studies have demonstrated that the 
expression level of UCHL5 and associated clinical 
outcome vary among cancers including gastric, rectal, 
pancreas, esophageal, hepatocellular, and ovarian cancer 
[32–37]. Our analysis of several human cancers from the 
cBioportal database [38] revealed that gene alterations are 
frequent in UCHL5 including amplification or mutation 
in several types of human cancer, specifically in 9.8% 
of breast cancer and 7% of high grade serous ovarian 
cancer (Figure 1A). Subsequent genomic analyses of 
600 human high-grade serous ovarian cancers in The 
Cancer Genomics Atlas (TCGA) revealed UCHL5 gene-
containing amplicons across chromosome 1q31.1–1q31.2. 
Moreover, UCHL5 copy number also significantly 
correlated with its mRNA expression level (R.0.42, p < 
0.001, unpaired t-test) (Figure 1B). We also analyzed a 
database of gene expression and survival of 1435 patients 
with ovarian cancer, downloaded from Gene Expression 
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Omnibus and The Cancer Genome Atlas (Affymetrix 
HG-U133A, HG-U133A 2.0, and HG-U133 Plus 2.0 
microarrays) [39] for UCHL5 mRNA expression, and 
generated survival curves (Figure 1C). The levels of 
UCHL5 mRNA expression (Affymetrix ID: 229248_at) 
were not significantly different but were associated with 
poor progression free survival (PFS) (hazard ratio [HR] = 
1.15; 95% confidence interval [CI] = 1.06-1.39; p = 0.15) 
in all patients with ovarian cancer, whereas significant 
difference was observed with those exhibiting TP53-
mutant ovarian cancer (HR = 1.94; 95% CI = 1.31–2.86; 
p = 0.00071) (Figure 1D) with the inverse correlation 
observed in those with TP53 wild-type ovarian cancer (HR 
= 0.17; 95% CI = 0.04–0.71; p = 0.0062) (Figure 1E). 
Furthermore, we investigated the histological analysis of 

serous carcinoma, as shown in Figure 2A. The levels of 
UCHL5 mRNA expression were significantly associated 
with PFS (HR = 0.8; 95% CI = 0.64–0.99; p = 0.039). 
Moreover, a strong association was observed in TP53-
mutant serous carcinoma (HR = 2.1; 95% CI = 1.39–3.18; 
p = 0.00033) (Figure 2B) but not in TP53-wild-type serous 
carcinoma (HR = 0.16; 95% CI = 0.03–0.79; p = 0.01) 
(Figure 2C) (Supplementary Figure 1).

Cytoplasmic UCHL5 is a prognostic factor in 
advanced ovarian cancer

Immunohistochemical analysis of the tissue 
microarray specimens of ovarian cancers from 135 
patients with advanced ovarian cancer treated at the Teikyo 

Figure 1: UCHL5 expression across different organs and TP53 status in ovarian cancer. (A) Overview of the genomic 
alterations in patients with cancer in the Cancer Genome Atlas TCGA database [38]. (B) To validate the correlations between the expression 
of UCHL5 genes and the copy number alteration in an independent cohort, Affymetrix SNP 6.0 and RNA-Seq data generated by TCGA 
were accessed via the cBioPortal (http://www.cbioportal.org) [38]. The prognostic value of UCHL5 mRNA expression downloaded from 
Gene Expression Omnibus and The Cancer Genome Atlas (Affymetrix HG-U133A, HG-U133A 2.0, and HG-U133 Plus 2.0 microarrays) 
in https://kmplot.com/analysis [39]. Affymetrix ID is 229248_at. Survival curves are plotted for patients with ovarian cancer. (C) the 
progression free survival (PFS) curve is in the right panel (n = 1435). Survival curves are plotted for patients with p53-mutated ovarian 
cancer. (D) the progression free survival (PFS) curve of ovarian cancer tissue with TP53 mutation is plotted in the left panel (n = 483). (E) 
the progression free survival (PFS) of ovarian cancer tissue with wild-type TP53 is plotted in the right panel (n = 84).
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University Hospital from January 2003 to December 2012 
was performed. The staining of UCHL5 was very weak 
in normal ovarian epithelium. Expression of UCHL5 was 
found in the majority of nuclei whereas its expression in 
the cytoplasm was various in ovarian cancer tissue. Figure 
3A shows the representative results of tissues with low 
(Figure 3a, 3b, 3e, 3f) and high (Figure 3c, 3d, 3g, 3h) 
UCHL5 cytoplasmic expression in ovarian cancer tissue. 
Upper panels (Figure 3a–3d)  show serous carcinoma; 
lower panels (figure 3e–3h) are clear cell carcinoma. 
UCHL5 cytoplasmic staining of ovarian carcinoma was 
scored according to its intensity as either (Figure 3a, 3e) 0, 
negative; (Figure 3b, 3f) 1, weak positive; (Figure 3c, 3g) 
2, moderate positive; or (Figure 3d, 3h) 3, strong positive. 
Low and high expression of UCHL5 cytoplasmic staining 
was observed in 26.7% (36/135) and 73.3% (99/135) of 
patients, respectively (Figure 3A). High cytoplasmic 
UCHL5 expression was significantly associated with 
poor PFS (p = 0.01, HR 3.119, 95% CI: 1.231–7.899) 
for all patients with ovarian cancer, whereas there was 
no statistically significant difference in OS between the 
two groups (p = 0.16, HR 2.075, 95% CI: 0.721–5.975) 
(Figure 3B).

Next, we investigated the association between 
cytoplasmic UCHL5 expression and clinicopathological 
characteristics in patients with ovarian cancer. Univariate 
and multivariate analysis assessing prognostic factors were 
performed using Cox proportional hazards regression. 
Univariate analysis revealed that UCHL5 expression 
was significantly associated with FIGO stage, lymph 
node metastasis, and peritoneal dissemination, although 
we no significant association was found with histology 
and distant metastasis (Table 1). All variables associated 
with p < 0.10 on univariate analysis were included in the 

multivariate analysis; however, no significant independent 
prognostic factors were identified by multivariate analysis.

bAP15 inhibits cancer cell growth and induces 
apoptosis in a dose-dependent manner

We used bAP15 and IU1 as DUBs inhibitors and 
investigated their effect on the proliferation of ovarian 
cancer cells. bAP15 inhibited cell proliferation in a 
concentration-time dependent manner in both MESOV 
and SKOV3 TP53-mutant ovarian serous cell carcinoma 
cell lines (Figure 4A). The half-maximal inhibitory 
concentration (IC50) at 24 h was 314.7 nM for MESOV 
and 369.8 nM for SKOV 3 (Figure 4B). Conversely, 
proliferation was minimally suppressed even at 100 µM 
concentration of the USP14-specific inhibitor IU1 for these 
cells (Figure 4C). In addition, the colony formation assay 
demonstrated that the number of colonies was significantly 
decreased in cells treated with bAP15 compared with those 
in control cells (Figure 4D). Interestingly, bAP15 inhibited 
TP53-mutant ovarian cell lines ES2 in a concentration-
time dependent manner (Figure 4E). In contrast, OVISE 
and RMG-1 did not show any inhibitory effect of bAP15 
(Figure 4F), although it should be noted that these cell lines 
comprise different histologic types of clear cell carcinoma 
rather than serous carcinoma origin.

Next, we investigated the apoptotic effect of bAP15 
on MESOV and SKOV3 cells by flow cytometry using 
Annexin V. We found that bAP15 significantly induced 
apoptosis in these cells, with a greater effect on MESOV 
than SKOV3 cells (Figure 5A and 5B). Furthermore, cell 
cycle analysis following b-AP15 treatment of MESOV and 
SKOV3 cells revealed that bAP15 treatment resulted in a 
shift in the cycle distribution in both cell lines. Specifically, 

Figure 2: Prognostic value of UCHL5 expression in serous carcinoma of ovarian cancer patients available in https://
kmplot.com/analysis. The prognostic value of UCHL5 mRNA expression downloaded from Gene Expression Omnibus and The 
Cancer Genome Atlas (Affymetrix HG-U133A, HG-U133A 2.0, and HG-U133 Plus 2.0 microarrays) in https://kmplot.com/analysis 
[39]. Affymetrix ID is 229248_at. Survival curves are plotted. (A) the progression free survival (PFS) is plotted for patients with serous 
carcinoma (n = 1104). (B) The progression free survival (PFS) curve of ovarian cancer serous carcinoma tissue with TP53 mutation is 
plotted (n = 470). (C) The progression free survival (PFS) of ovarian cancer tissue with wild-type TP53 is plotted (n = 81).
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the G2/M phase cell cycle population of cancer cells was 
significantly increased after treatment of MESOV cells with 
bAP15 (Figure 5C). Moreover, Figure 5D shows that bAP15 
induced G2/M cell cycle arrest in a concentration-dependent 
manner. In comparison, we observed no significant tendency 
for IU1 to induce the cell cycle arrest (Figure 5E).

To further investigate the mechanism of G2/M arrest 
and apoptosis induced by bAP15, we performed western 
blotting to observe the expression level of epithelial-to-
mesenchymal transition related proteins following bAP15 
treatment. As shown in Figure 5F, bAP15 attenuated 
the increased expression level of β-catenin induced by 
TGF-β1 (10 ng/ml) whereas no dramatic effect on the 
“cadherin-switch” was detected in the MESOV cell line, 
and cleaved caspase was induced by various concentration 
of bAP15 treatment in both MESOV and SKOV3 cell 
lines (Figure 5G).

bAP15 inhibits cell growth via the TGF-β 
signaling pathway

To further examine the effect of bAP15 on the TGF-
β-induced signaling pathway, MESOV and SKOV3 cells 

were pretreated with increasing doses of bAP15 (0, 0.5, 
1, or 5 µM) for 1 h, and then treated with TGF-β1 (10 
ng/ml) for an additional 30 min. bAP15 attenuated the 
phosphorylation of Smad2 induced by TGF-β induction in 
a dose-dependent manner (Figure 6A), with a larger effect 
observed for MESOV than SKOV3 cells. The data were 
confirmed by immunofluorescence analysis (Figure 6B). 
Notably, both nuclear and cytoplasmic phospho-Smad2 
was upregulated in MESOV cells upon TGF-β induction; 
in turn, these were dramatically downregulated following 
bAP15 treatment (Figure 6B, left panel). In contrast, the 
expression pattern of phospho-Smad2 by TGF-β induction 
was not dramatically changed in SKOV3 cells (Figure 6B, 
right panel). The results were confirmed using the cell 
fractionation assay in MESOV cells, wherein the nuclear 
and cytoplasmic expression levels of phospho-Smad2 were 
downregulated by bAP15 treatment (Figure 6C). Although 
TP53-mutant ES2 cells comprise histologic types of clear 
cell carcinoma, the expression pattern of phospho-Smad2 
and Smad2 by TGF-β induction was significantly reduced 
following bAP15 treatment. In contrast, TGF-β induction 
was not dramatically changed in TP53-wild-type OVISE 
cells (Figure 6D).

Figure 3: Immunohistochemical staining pattern of UCHL5 in ovarian cancer. We analyzed UCHL5 expression in 135 
clinical ovarian cancer specimens using a tissue microarray. (A) UCHL5 cytoplasmic staining of serous carcinoma (upper panels a-d) 
and clear cell carcinoma (lower panels e-h) was scored according to intensity as either (a, e) 0, negative; (b, f) 1, weakly positive; (c, g) 
2, moderately positive; or (d, h) 3, strongly positive. (B) Progression free survival (PFS) and overall survival (OS) were analyzed using 
Kaplan-Meier survival curves and log-rank test. The higher expression of cytoplasmic UCHL5 was significantly correlated with PFS 
decline. OS: HR 2.075 (95% CI: 0.721–5.975); PFS: HR 3.119 (95% CI: 1.231–7.899).
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UCHL5 knockdown suppresses phosphorylation 
of Smad2 and bAP15 treatment suppresses the 
invasive capacity upon TGF-β signaling

To determine whether the effect of b-AP15 on 
Smad2/Smad3 reduction occurs through inhibition of 
UCHL5, we investigated whether the shRNA-mediated 
depletion of UCHL5 stabilizes TGF-β/Smad signaling 
in MESOV cells. In the control, Smad2 phosphorylation 
was observed upon the addition of TGF-β, whereas the 
expression of phospho-Smad2 remained low following 
UCHL5 shRNA (#1, #2) treatment even upon TGF-β 
stimulation (Figure 7A). Similar results were observed 
in SKOV3 cells (Figure 7B), which demonstrated that 
UCHL5 knockdown stabilizes TGF-β/Smad signaling in 
both TP53-mutant ovarian cancer cell lines. Ubiquitin 
accumulated in conjunction with increased concentration 
of bAP15 in both TP53-mutant MESOV and SKOV3 
cells, with a larger effect observed in the former (Figure 
7C). Next, to investigate whether bAP15-mediated 
dephosphorylation of Smad2 was dependent on poly-
ubiquitination of cellular proteins, we transfected 
MESOV cells with a plasmid encoding HA-tagged 

ubiquitin. Following subsequent culture of MESOV 
cells with bAP15, we examined changes in various 
proteins. Immunoprecipitation with anti-Smad2 antibody 
following the knockdown of UCHL5 by shRNA treatment 
in MESOV cells demonstrated an increased poly-
ubiquitination of Smad2 (Figure 7D).

Furthermore, to assess the effect of bAP15 on 
cell invasion ability, we performed Matrigel transwell 
invasion assays using MESOV cells. Cell invasiveness and 
migration are related to pathophysiological processes such 
as cancer metastasis. These processes include changes 
in cell structure and cytoskeleton dynamics, expression 
of adhesion molecules, and activation of epithelial-
mesenchymal transition signals. As shown in Figure 7E, 
MESOV cells were treated with TGF-β1 (10 ng/ml) then 
with bAP15 for 24 h. Although the invasive ability of 
MESOV cells was increased by the activation of TGF-β 
signaling, the invasive ability was suppressed in a bAP15 
concentration-dependent manner (Figure 7E). Similarly, 
the results of wound healing assays demonstrated that the 
cell migration activity increased upon TGFβ signaling but 
was suppressed by bAP15 (Figure 7F). Taken together, 
these data reveal that the inhibition of UCHL5 by bAP15 

Table 1: Association of UCHL5 cytoplasmic expression and clinicopathological parameters

UCHL5 expression p value
Number Low High

135 36 99
% %

Age (years)
< 50 46 8 22.22 38 38.38 0.07
≥ 50 89 28 77.78 61 61.62

Histology
Serous carcinoma 54 9 25.00 45 45.45 0.08
Clear cell carcinoma 52 15 41.67 22 22.22
Endometrioid carcinoma 27 8 22.22 19 19.19
Mucinous carcinoma 17 4 11.11 13 13.13

FIGO stage
Early (stage I–II) 77 27 75 50 50.51 0.009
Advanced (stage III–IV) 58 9 25 49 49.49

Lymph node metastasis
pN0 115 34 94.44 81 81.82 0.04
pN1 20 2 5.56 18 18.18

Distant metastasis
M0 118 31 86.11 87 87.88 0.786
M1 17 5 13.89 12 12.12

Peritoneal dissemination
– 76 27 75 49 49.49 0.007
+ 59 9 25 50 50.51
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stabilizes Smad2 and induces downregulation of TGF-β 
signaling.

Antitumor activity of bAP15 in vivo

The effect of anti-tumorigensis was examined using 
mice xenograft models of SKOV3. Two different doses 
of bAP15 (2.5 or 5.0 mg/kg) were injected daily into the 
peritoneum cavity of mice for three weeks. As shown 
in Figure 8, the administration of bAP15 significantly 
decreased the tumor size (Figure 8A) and tumor weight 
(Figure 8B) compared with a control (vehicle) in dose-
dependent manner. This demonstrates the actual role of 
UCHL5 inhibition in TP53-mutant ovarian cancer in vivo.

DISCUSSION

Our results suggested that UCHL5 activity is 
upregulated at a certain frequency in ovarian cancer. 
Notably, ovarian cancer comprises several different tumor 
types and different signaling pathways are involved 
in constitutive cell proliferation. For example, TGF-β 
signaling has been shown to regulate ovarian cancer 
development, whereas its disruption has been implicated 
in many cancers [30]. Initially, we hypothesized that a 
specific protein degradation system, the UPS, would 
constitute a key route to evaluate the critical targets in 
ovarian cancer progression. However, although targeting 
the UPS provides a new anticancer therapeutic strategy, 

Figure 4: Inhibition of cell viability and colony formation of ovarian cancer cells by the DUB inhibitors bAP15 and 
IU1. (A) MESOV and SKOV3 cells were treated with various concentrations of bAP15 (0–1000 nM). Cell viability was detected by MTT 
assay. Three independent experiments were performed in triplicate; means ± SD are presented. *p < 0.05 versus each vehicle control. (B) 
The inhibitory rate was calculated from the cell viability of various concentrations of bAP15 (24 h). *p < 0.05 versus each vehicle control. 
(C) MESOV and SKOV3 cells exposed to IU1 (0–100 µM) for 9 and 11 days respectively, and (D) images of colony formation are shown. 
bAP15 but not IU1 significantly induced the inhibition of cell growth. (E) ES2 ovarian cancer cells with TP53-mutant were treated with 
various concentrations of bAP15 (0–1000 nM). Cell viability was detected by MTT assay. Three independent experiments were performed 
in triplicate; the means ± SD are presented. (F) OVISE and RMG-1 ovarian cancer cells with wild-type TP53 were treated with various 
concentrations of bAP15 (0–1000 nM). Cell viability was detected by MTT assay. Three independent experiments were performed in 
triplicate; the means ± SD are presented.
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Figure 5: Proportion of apoptosis by bAP15. (A) MESOV and SKOV3 cells were treated with bAP15 for 18 h. The cells were 
harvested and stained by Annexin-V FITC/ propidium iodide (PI). Representative apoptosis analysis result is shown. (B) Quantification of 
the % of cells in early apoptosis (Q4) and late apoptosis (Q2). Relative ratios of apoptotic cells are shown. (C) MESOV and SKOV3 cells 
were treated with bAP15 for 18 h, and cell cycle status was analyzed by flow cytometry and PI staining. Representative apoptosis analysis 
result is shown. (D) Quantification of the % of cells in each quadrant treated with bAP15 for 18 h. Three independent experiments were 
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the use of clinically available UPS-targeted inhibitors 
including lenalidomide and bortezomib is limited to the 
treatment of solid tumors [16]. Alternatively, DUBs serve 
as highly specific enzymes to regulate signaling pathways 
[7]. In particular, DUBs can reverse the effect of E3 ligases 
by removing ubiquitin from target proteins; moreover, 
DUBs are also involved in ubiquitin maturation, recycling, 
and editing [37], suggesting that ovarian cancer cells 
may rely heavily on the regulation of DUBs. Therefore, 

we further hypothesized that the levels of UCHL5, as a 
potential DUB to regulate TGF-β signaling, may correlate 
with clinical outcome in ovarian cancer.

The primary clinicopathological variable that 
contributes to poor prognosis in ovarian cancer is residual 
tumors in the peritoneal cavity following the primary 
treatment. Accordingly, peritoneal dissemination is a 
significant factor in prognosis. Some of these problematic 
tumors can be eliminated through platinum-based 

performed in triplicate. *p < 0.05 versus each vehicle control. (E) Quantification of the % of cells in each cell cycle status treated with IU1 
for 18 h. Three independent experiments were performed in triplicate. (F) Western blot analysis of E-cadherin and β-catenin in MESOV 
cell line after various concentrations bAP15 treatment with TGFβ-1 (10 ng/ml) stimulation for 30 min. (G) Western blot analysis of cleaved 
caspase 3 after various concentrations of bAP15 treatment in MESOV and SKOV3 cell lines.

Figure 6: bAP15 induces downregulation of TGFβ-1 signaling via Smad2/3. (A) MESOV and SKOV3 cells were pre-treated 
with various concentrations of bAP15 (0–5 µM) for 1 h and then treated with TGFβ-1 (10 ng/ml) for 30 min. Phospho-Smad2, Smad2, 
Phospho-Smad3, Smad3, and Smad4 were detected by western blotting. β-actin was used as a loading control (upper panels). Quantification 
of the ratio of Phospho-Smad2 and Smad2 (lower panels). Independent experiments were performed in triplicate; means ± SD are presented. 
*p < 0.05 versus each vehicle control. (B) Immunofluorescence analysis. MESOV and SKOV3 cells were pre-treated with bAP15 (500 
nM) for 1 h and then treated with TGFβ-1 (10 ng/ml) for 30 min. Expression of p-Smad2 was detected by immunostaining. DAPI was used 
for nuclei staining. Scale bar = 50 µm. (C) Subcellular fractionation analysis. Western blot analysis of nuclear and cytoplasmic extracts of 
MESOV cells were analyzed to detect the expression level of p-Smad2 and Smad2 in each fraction. PCNA was used as a loading control of 
nuclear extract and α-tubulin for cytoplasmic extract. (D) ES2 and OVISE clear carcinoma cells was pre-treated with various concentrations 
of bAP15 (0–5 µM) for 1 h and then treated with TGFβ-1 (10 ng/ml) for 30 min. Phospho-Smad2, Smad2, Phospho-Smad3, and Smad3 
were detected by western blotting. β-actin was used as a loading control.
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Figure 7: Knockdown of UCHL5 by shRNA suppresses phosphorylation of Smad2. (A) MESOV cells were co-transfected 
with scramble shRNA as a control and two different designs of UCHL5 shRNA (#1.2). UCHL5 was detected by western blotting. (B) 
MESOV of control and transfected shRNA were treated with TGFβ-1 (10 ng/ml) for 1 h. Phospho-Smad2, Smad2 were detected by western 
blotting. β-actin was used as a loading control. (C) Western blot analysis of ubiqutin, UCHL5 and USP14 after various concentrations of 
bAP15 treatment in MESOV and SKOV3 cell lines. Ubiquitin accumulated in conjunction with increased concentration of bAP15. (D) 
MESOV cells were transfected with HA-tagged ubiquitin (HA-Ub) for 48 h, treated with leupeptin (100 µM) for 2 h, and treated with 
bAP15 for 1 h. Cell lysates were subjected to immunoprecipitation with an anti-Smad2 antibody, followed by immunoblotting with HA-tag 
antibodies. Smad2 and β-actin were also analyzed by immunoblotting. (E) MESOV cells were seeded onto the top of a Matrigel Invasion 
Chamber for 24 h and removed from the upper chamber. The cells attached to the lower chamber were stained using the Diff-Quick reagent. 
Three independent experiments were performed in triplicate. *p = 0.035. (F) MESOV cells were seeded in the insert of the plate. Wounded 
cultures were incubated for 48 h and stained. Three independent experiments were performed in triplicate. *p < 0.05.
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Figure 8: In vivo effect of bAP15 intraperitoneal treatment using SKOV3 xenograft mice models. (A) Subcutaneous tumor 
xenograft models in nude mice by using SKOV3 cells. bAP15 was dissolved in Dimethyl sulfoxide/Cremophor EL/NaCl (1:3:6). Each 
mouse was treated daily for three weeks with bAP intraperitoneal injection (2.5 mg/kg or 5.0 mg/kg) or vehicle. The mice were randomly 
assigned into three groups of 6 mice. *p < 0.05. (B) Pictures of tumors and the evaluation of tumor weight after the termination of treatment 
for 21 days. Comparison of tumor weight was evaluated by Student t-test. *p < 0.05.

Figure 9: bAP15 inhibits the stabilization of Smad2/3 and aberrant TGF-β signaling in TP53 mutant ovarian cancer. 
Schematic model demonstrating that the downregulation of UCHL5 by bAP15 or UCHL5 shRNA causes Smad2/Smad3 poly-ubiquitination, 
which promotes Smad2/3 degradation and attenuates aberrant TGF-β signaling in TP53 mutant ovarian cancer.
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chemotherapy followed by primary debulking surgery; 
however, sites that have developed chemoresistance 
will exhibit gradual recurrence shortly thereafter 
[40]. Although growing numbers of oncoproteins and 
metastatic genes have been extensively characterized 
by comprehensive analyses, such as through the TCGA, 
many of these tumor-promoting proteins do not constitute 
good drug targets, which represents a major barrier to 
curing ovarian cancer. There is an urgent need, therefore, 
for alternative therapeutic approaches to neutralize cancer-
promoting proteins. Thus, the investigation of specific 
UPS pathways to identify novel targets for personalized 
ovarian cancer treatment is warranted.

Our data revealed that cytoplasmic UCHL5 
was upregulated in ovarian cancer, suggesting that 
cytoplasmic UCHL5 may serve as a marker of ovarian 
cancer progression. The TCGA database is a very useful 
resource to explore whether the expression levels of 
the genes near the UCHL5 locus are in fact affected by 
copy number alteration. Figure 1B suggests that UCHL5 
mRNA is upregulated concomitant with its copy number 
alteration in response to growth stimulation in ovarian 
cancer. In addition, a cytoplasmic and nuclear UCHL5 
staining pattern was observable in 135 patients with 
ovarian cancer (Figure 3A). Although the findings are 
limited owing to the rather small sample size in this 
study, notably, we found that cytoplasmic UCHL5 was 
significantly correlated with poor PFS in patients with 
characterized clinical data and long-term follow-up in a 
single institute. Moreover, the statistical analysis of the 
clinicopathological factors showed that the differentiation 
of ovarian cancer, FIGO stage, lymph node metastasis, 
and peritoneal dissemination were significantly associated 
with the expression level of cytoplasmic UCHL5. This 
raised the possibility that cytoplasmic UCHL5 may 
directly interact with TGF-β signaling in the cytoplasm 
before Smad2/3 enter the nucleus and participate in the 
regulation of cell proliferation and epithelial-mesenchymal 
transition-related genes.

TGF-β signaling is important in a wide range of 
cellular processes with regard to both normal physiological 
and pathological function. It is widely believed that 
TGF-β switches its role from tumor suppressor in normal 
cells to tumor promoter in advanced cancers, favoring 
invasiveness and metastasis depending on the tumor stage 
[30]. Numerous studies have implicated the potential of 
DUBs to regulate the TGF-β signaling pathway including 
USP4, USP11, USP15, CYLD, OTUB1, and UCHL5, 
which interact with Smads to regulate TGF-β signaling 
[38, 41–46]. In turn, Smads comprise direct targets 
of TGF-β receptor kinase and mediate transcriptional 
regulation through their intrinsic ability to bind to DNA. 
Consistent with this role, DUB function is frequently 
dysregulated in cancer [17]. In the present study, we 
confirmed that the blockade of UCHL5 activity by the 
DUB inhibitor bAP15 inhibited expression of phospho-
Smad2/Smad3 in a concentration-dependent manner and 

induced apoptosis in ovarian cancer cells. In addition, 
we also used the pharmacological USP14 inhibitor IU1 
to investigate the effect on cell growth in ovarian cancer 
cells. However, IU1 did not significantly affect cell growth 
in the present study, which suggested that USP14 is not 
critical in ovarian cancer and implied the lack of USP14-
mediated androgen receptor signaling in ovarian cancer 
progression [22, 23].

In general, TGF-β signaling is frequently found 
to be activated in ovarian cancer. A recent publication 
showed that TGF-β signaling appears to play a role in 
ovarian physiology as well as acting as a tumor promoter 
that controls proliferation in ovarian cancer [30]. Although 
mutations in this pathway are rare in ovarian tumors, there 
are other mechanisms by which TGF-β is directly or 
indirectly associated with the promotion of ovarian cancer 
cell proliferation [30]. To investigate this mechanism 
further, we found that bAP15 could effectively suppress 
cell growth in the p53 null and mutant ovarian cancer cell 
lines SKOV3 (loss-of function TP53, nonsense mutation), 
MESOV (R282, hot spot mutation), and ES2 (S241F, 
missense mutation), respectively (Figure 4B, 4E). In 
contrast, the wild-type p53 ovarian cancer cells RMG-1 
and OVISE did not show any significant effect of bAP15 
(Figure 4F). Our observations were further reinforced 
through use of a data retrieval tool available at the KM 
plotter (http://kmplot.com/ovar) [39]. As p53 mutations 
are frequently observed in ovarian cancer (approximately 
40–80% of all ovarian cancers), we evaluated the 
possibility that UCHL5 expression might be correlated 
with p53 status using the KM plotter. Notably, high 
expression level of UCHL5 was significantly correlated 
with poor PFS in patients with mutant p53 ovarian 
cancer (Figure 1D) whereas the opposite correlation 
was observed in patients with wild-type p53 ovarian 
cancer (Figure 1E). Although these data are insufficient 
to confirm the effect of p53 status on UCHL5 expression 
level and the effect of bAP15, we demonstrated that 
ovarian cancer cells null for or expressing mutant p53, 
but not wild-type p53, were growth inhibited by bAP15 
(Figure 4B, 4E, and 4F). Obviously, further investigation 
toward delineating the mechanisms involved in the role 
of p53 mutation is essential, with emphasis on a “gain-of-
function” mechanism related to DUBs rather than focusing 
on specific cross talk between TGF-β and the mutant p53 
protein in ovarian cancer at the molecular level. Taken 
together, these findings suggest that the development of 
novel UCHL5-specific inhibitor might have a dramatic 
effect on TGF-β-activated metastatic advanced TP53-
mutant ovarian cancer.

In conclusion, our findings provide novel insight 
regarding UCHL5 and the TGF-β/Smad pathway in 
TP53-mutant ovarian cancer. To date, no data has been 
available regarding the prognostic role of UCHL5 in 
ovarian cancer. However, although various histological 
subtypes may not equally share TGF-β/Smad/UCHL5 axis 
function with those carrying TP53 mutation, we consider 
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that the concept may be applicable to the possibility of 
a critical role of UCHL5 at least in TP53-mutant serous 
carcinoma. In the present study, we revealed, for the first 
time, evidence of the clinical significance of cytoplasmic 
UCHL5 expression in ovarian cancer, and demonstrated 
that bAP15 significantly suppressed UCHL5 in TP53-
mutant ovarian cancer cell lines in a dose-dependent 
manner through downregulation of the TGF-β/Smad 
signaling pathway (Figure 7). Notably, bAP15 had a 
growth inhibitory effect on SKOV3 and MESOV cells at 
a very low dose. Furthermore, we found that cytoplasmic 
expression of UCHL5 is significantly correlated with 
its regulation of ovarian cancer. Thus, targeting UCHL5 
might serve as a promising novel therapy in advanced 
TP53-mutant ovarian cancer (Figure 9). Although 
UCHL5 inhibitors including bAP15 are currently being 
investigated for clinical use, future discovery of a novel 
in silico compound drug that specifically targets UCHL5 
alone is warranted. Ongoing in vivo pre-clinical work 
will help elucidate the various contributions of UCHL5 
toward TGF-β signaling, clarifying the ultimate outcome 
and potential benefits of inhibition of UCHL5 in patients 
with ovarian cancer.

MATERIALS AND METHODS

Materials

bAP15 (11324) was purchased from Cayman 
Chemical (Ann Arbor, MI). The USP14 inhibitor IU1 
(662210) was obtained from EMD Millipore Corporation 
(Billerica, MA). UCHL5 shRNA plasmid (h) (sc-76797-
SH) was purchased from Santa Cruz Biotechnology 
(Dallas, TX). HA-ubiquitin (Plasmid 18712) was 
purchased from Addgene (Cambridge, MA).

Antibodies were obtained as follows; anti-β-actin 
(sc-47778), anti-UCHL5 (sc-271002), anti-USP14 (sc-
100630), anti-β-catenin (sc-7963), anti-Vimentin (sc-
6260), anti-Ub (sc-166553), and anti-HA-probe (F-7) 
(sc-7392) (Santa Cruz Biotechnology), anti-E-cadherin 
(610181), anti-N-cadherin (610920)(BD Bioscience, 
San Jose, CA), anti-Smad2 (5339), anti-Phospho-Smad2 
(3108), anti-Phospho-Smad2 (18338), anti-Smad3 (9523), 
anti-Phospho-Smad3 (9520), and anti-Smad4 (38454) 
(Cell Signaling Technology, Danvers, MA).

Patients and analysis of tumor sample specimens

For generation of a tissue microarray for UCHL5 
expression analysis, 135 clinical ovarian cancer specimens 
were obtained from the Teikyo University Hospital 
from January 2003 to December 2012. All patients had 
not undergone any treatment and ovarian cancer was 
confirmed by surgical and pathologic diagnosis. All 
patients provided written informed consent for the research 
use of their samples, and the collection and use of tissues 

for this study were approved by the Human Genome, Gene 
Analysis Research Ethics Committee at Teikyo University.

Immunohistochemistry

Tissue samples were formalin fixed, embedded in 
paraffin wax, and cut into 4-µm sections. Paraffin sections 
were dewaxed in xylene and rehydrated through graded 
ethanol to water. Antigens were retrieved by boiling in 10 
mM citrate buffer (pH 6.0) and endogenous peroxidase 
activity was quenched in methanol containing 3% hydrogen 
peroxide. The sections were incubated in phosphate 
buffered saline containing 3% bovine serum albumin to 
block nonspecific binding and incubated for 30 min with 
primary antibodies including anti-UCHL5 (1:100). We 
tested normal ovarian tissue as a positive control, and 
negative control tissues were incubated without primary 
antibodies. The sections were subsequently incubated 
with secondary antibodies and Envision FLEX (DAKO, 
Glostrup, Denmark). The antibody binding was visualized 
using a 3,30-diaminobenzidine solution (DAKO). After 
the sections were briefly counterstained with Mayer’s 
hematoxylin, the sections were dehydrated through a 
graded ethanol series and mounted.

UCHL5 cytoplasmic staining was scored according 
to its intensity as either negative (0), weakly positive (1), 
moderate positive (2), or strongly positive (3). UCHL5 
immune expression was dichotomized into either low 
(score 0–1) or high (score 2–3), and the maximum score 
for each sample served for statistical analysis.

Cell culture

The ovarian cancer cell lines MESOV, SKOV3, 
OVISE, RMG-1, and ES2 were obtained from the 
American Type Culture Collection (Manassas, VA) 
and cultured in McCoy’s 5A (Gibco, Grand Island, 
NY) containing 10% fetal bovine serum (Gibco) and 
maintained at 37°C in 5% CO2. The cell lines were 
authenticated by short tandem repeat (STR) profiling.

Cell viability assay

Cells were seeded at the concentration of 1,000 
per well in 100 μl medium in 96-well plates and treated 
with the indicated various concentrations of bAP15 and 
IU1. Cell Counting Kit-8 solution of 10 μl (Dojindo, 
Tokyo, Japan) was added and incubated for 3 h. Formazan 
dye was quantified using a microplate reader (BioTek, 
Winooski, VT) to measure the absorbance at 450 nm. Each 
experiment was performed in triplicate.

Colony formation assay

Cells (1 × 102 cells/well) were seeded in 6-well 
plates. After 24 h, the media were replaced with McCoy’s 
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5A containing the indicated concentration of bAP15. The 
cells were allowed to grow for 10 days, then fixed with 
100% methanol for 10 min and stained with 0.5% crystal 
violet (Sigma-Aldrich, St. Louis, MO) for 10 min.

Detection of apoptosis

Cells (5 × 104 cells/well) were seeded in 6-well 
plates. After 24 h, the media were replaced with McCoy’s 
5A containing the indicated concentration of bAP15 
and IU1 and further incubated for 16 h. The cells were 
then washed with phosphate buffered saline and stained 
using Annexin V and propidium iodide (Annexin V-FITC 
Apoptosis Detection Kit I; BD Biosciences, San Jose, CA). 
Cell cycle distribution was analyzed by flow cytometry 
(FACS Canto II; BD Biosciences). Each experiment was 
performed in triplicate.

Western blot analysis

Equal amounts of proteins were fractionated 
by sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis and transferred onto a polyvinylidene 
difluoride membrane (Millipore, Bedford, MA). The 
membranes were blocked, primary antibody added, 
and incubated with secondary antibodies. Signals were 
detected using an Image Quant LAS 4000 Mini instrument 
(GE Healthcare, Wauwatosa, WI).

Subcellular fractionation assays

Differential extraction of MESOV cells to obtain 
cytoplasmic and nuclear fractions was performed using 
the Nuclear/Cytosolic Fractionation Kit (Cell Biolabs, San 
Diego, CA) according to the manufacturer’s instructions.

Cell cycle analysis

Cells (1 × 105 cells/well) were seeded in 6-well 
plates. After 24 h, the media were replaced with McCoy’s 
5A containing the indicated concentration of bAP15 
and IU1 and further incubated for 16 h. The cells were 
stained with a BrdU Flow Kit (BD Biosciences, San 
Jose, CA, USA). Cell cycle distribution was analyzed by 
flow cytometry (FACS Canto II). Each experiment was 
performed in triplicate.

Immunofluorescence

Cells were cultured on Chamber SlidesTM (Nunc, 
Rochester, NY) for 24 h. After treatment, cells were 
fixed with 4% paraformaldehyde for 30 min and blocked 
with 6% bovine serum albumin for 1 h. The cells were 
immunostained with a primary antibody for 1 h at room 
temperature and incubated with the fluorescent probe-
conjugated secondary antibody for 1 h in the dark. Images 
were captured using a confocal fluorescence microscope 
(FV10i; Olympus, Tokyo, Japan).

shRNA

We transfected UCHL5 shRNA plasmid DNA 
into the MESOV cell line cultured in 6-well plates using 
shRNA Plasmid Transfection Reagent (sc-108061; Santa 
Cruz Biotechnology) and shRNA Plasmid Transfection 
Medium (sc-108062; Santa Cruz Biotechnology). A 
scramble shRNA plasmid-A (sc-108060) was used as 
a negative control for the experiments. The cells were 
incubated for 2 weeks in medium containing puromycin 
(1 μg/ml). We also established stable control shRNA 
expression clones in these cell lines. The drug-resistant 
clones were further incubated in the medium with 
puromycin and tested for the knockdown effect by western 
blotting using the UCHL5 antibody.

Immunoprecipitation

MESOV cells (1.5 × 106 cells/well) were seeded 
in D100 plates. After 24 h, cells were transfected with 
HA-tagged ubiquitin (HA-Ub Plasmid 18712; Addgene) 
according to the transfection protocol. The cells were 
analyzed 48 h after transfection. Cell lysates were 
incubated with anti-Smad2 antibodies overnight at 4° C, 
followed by the addition of 20 µl Protein A Agarose Beads 
(9863; Cell Signaling Technology) and incubation for 3 h 
at 4° C. The immunoprecipitated complex was analyzed 
by immunoblotting.

Wound healing assay

Cell suspension (5 × 105 cells/well) was added 
onto 24-well plates in the insert in the plate (CBA-120; 
Cell Biolabs, San Diego, CA). Wounded cultures were 
incubated for 48 h and stained. Subsequently, 3 fields 
(40×) were randomly picked from each wound and 
visualized by microscopy to assess cell migration ability.

Matrigel invasion assay

Invasion assays were performed according to the 
manufacturer’s instructions. Cells (1 × 105 cells/well) in 
0.5 ml of serum-free medium were seeded onto the top of 
a Matrigel Invasion Chamber (354481; Corning, Armonk, 
NY), and 0.75 ml of complete growth medium containing 
10% fetal bovine serum was added to each well in the 
lower chamber. TGFβ and bAP15 were added to the top 
of the chamber. Following incubation for 24 h at 37° C, 
non-invasive cells were removed from the upper chamber, 
then the cells attached to the lower chamber were stained 
using Diff-Quick reagent (Sysmex, Kobe, Japan).

Tumor xenografts in nude mice

Specific pathogen-free female nude mice (BALB/
cAJc1-nu/nu) were purchased from CLEA Japan, Inc. 
(Meguro, Tokyo, Japan). Nude mice bearing SKOV3 
tumor xenografts were established as described 

www.oncotarget.com


Oncotarget5946www.oncotarget.com

previously [47]. The mice were randomly assigned into 
three groups of six mice and received a daily peritoneal 
injection of bAP15 (2.5 mg/kg or 5.0 mg/kg) and 
vehicles. Tumor growth was measured daily and volume 
was calculated according to the formula ([major axis] × 
[minor axis]2) / 2.

Statistical analysis

Survival was analyzed using the Kaplan-Meier 
survival plot and log-rank test. The HR with 95% CI were 
calculated. Statistical significance was determined using 
a Student’s t-test or one-way ANOVA in GraphPad Prism 
6 software (GraphPad, San Diego, CA) and JMP 10 (SAS 
Institute, Tokyo, Japan), with p < 0.05 considered to be 
significant.

Database retrieval

The survival information of patients with ovarian 
cancer was available from the Gene Expression Omnibus 
and The Cancer Genome Atlas (Affymetrix HG-U133A, 
HG-U133A 2.0, and HG-U133 Plus 2.0 microarrays). The 
prognostic value of UCHL5 mRNA expression in ovarian 
cancer was assessed using the Kaplan-Meier plotter (http://
kmplot.com/ovar). The UCHL5 gene was used to screen 
the database; patient samples were divided into two groups 
(high vs. low expression) according to median expression, 
and the overall survival and PFS investigated using a 
Kaplan-Meier survival plot and log rank test, which were 
calculated automatically on the KM plot webpage. p value 
< 0.05 was considered to have statistical difference.
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