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ABSTRACT

Breast cancer remains a major health issue in the world with 1.7 million new 
cases in 2012 worldwide. It is the second cause of death from cancer in western 
countries. Genomics have started to modify the treatment of breast cancer, and the 
developments should become more and more significant, especially in the present 
era of treatment personalization and with the implementation of new technologies. 
With molecular signatures, genomics enabled a de-escalation of chemotherapy and 
personalized treatments of localized forms of estrogen-dependent breast cancers. 
Genomics can also make a real contribution to constitutional genetics, so as to 
identify mutations in a panel of candidate genes. In this review, we will discuss the 
contributions of genomics applied to the treatment of breast cancer, whether already 
validated contributions or possible future applications linked to research data.
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INTRODUCTION

Breast cancer is the first cancer in terms of 
incidence among women, with 1.7 million new cases 
in 2012 worldwide. It is also the second cause of death 
from cancer in western countries with 40,000 deaths per 
year [1, 2]. In the last 20 years, breast cancer mortality 
has continuously decreased as a result of mass screening 
programs and early diagnosis, but also as a consequence 
of improved treatment for both localized and metastatic 
disease [3, 4]. 

In the era of personalized cancer medicine, advances 
in genomics are essential assets. In this review, we will 
address current knowledge in genomics applied to the 
treatment of breast cancers.

HISTOLOGIC AND MOLECULAR 
CLASSIFICATIONS

There are schematically three main histologic types 
of breast cancer (Figure 1): i) estrogen-dependent breast 
cancers expressing the estradiol receptor (ER) and treated 
with a panel of drugs that target the estradiol receptor 
pathway [5]; ii) breast cancers overexpressing the human 
epidermal growth factor receptor 2 (HER2) oncoprotein 
and treated with anti-HER2-based chemotherapies, the 
first anti-HER2 being a therapeutic monoclonal antibody, 
trastuzumab [6]; and iii) “triple negative” breast cancers 
which lack the expression of the estradiol receptor, the 
progesterone receptor, and HER2. There are still no 
targeted therapies for triple-negative breast cancers, which 
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Figure 1: Breast cancers landscape evolution from histologic to molecular classifications.
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have a high metastatic potential, and consequently a bad 
prognosis [7].

Since 2000, several molecular subtypes have been 
identified, including the aforementioned histological 
subtypes (Figure 1). Peru et al. identified six molecular 
sub-types: Luminal A, Luminal B, Luminal C, HER2-
enriched, Basal-like and Normal-like [8–10]. The 
luminal A subtype has the best prognosis and the lowest 
proliferative potential, including highly estrogen-
dependent breast cancers. Luminal B subtype is also 
estrogen-dependent, but to a lesser extent, and corresponds 
to a sub-group of more aggressive cancers with a higher 
proliferative potential [11]. For the basal-like subtype, 
50 to 75% are triple-negative breast cancers. Their 
aggressiveness is frequently the result of the loss of the 
retinoblastoma protein 1 (pRb1), of a high rate of tumor 
protein 53 (TP53) gene mutations and also of mutations in 
genes involved in DNA-repair mechanisms, such as breast 
cancer type 1 susceptibility (BRCA1) gene [12].

This early molecular classification was later revised, 
with the following subtypes: Luminal A and B, HER2-
positive/ER-positive, HER2-positive/ER-negative, basal 
p53-altered and basal p53-normal (Figure 1). In this 
more recent version, 7% of cancers are of unknown sub-
type because of the heterogenic expression of markers  
[13, 14]. Since 2005, among ER-negative cancers, 
several teams have identified a “molecular apocrine” 
subtype, characterized by an activation of the androgen 
receptor (AR) pathway and by the expression of AR 
target genes in 50% of cases, or by HER2 overexpression 
[15–17]. In 2012, a new molecular classification was 
established which includes Luminal, molecular Apocrine 
and Basal-like subtypes (Figure 1) [18]. Different 
immunohistochemistry markers have been proposed for  
in situ characterization of molecular apocrine breast 
cancers, including androgen receptor (AR) and gross 
cystic disease fluid protein 15 (GCDFP15) [17]. 

In 2011, Lehman et al. proposed a molecular 
classification of triple-negative breast cancers which we 
will discuss later [19]. 

MOLECULAR SIGNATURES AND 
ESTROGEN-DEPENDENT BREAST 
CANCERS 

For estrogen-dependent breast cancers, the 
contribution of genomics has been small. However, 
molecular signatures have substantially modified clinical 
practice, enabling the therapeutic decision for adjuvant 
chemotherapy to be redefined for localized breast 
cancers [20]. Three commercially available tests are 
currently used: MammaPrint® (Agilent, The Netherlands)  
[21, 22], OncotypeDx® [23] and PAM50 (Prediction of 
Microarray using 50 classifier genes plus 5 reference 
genes) (Prosigna® kit) (see Table 1) [24, 25]. These tests 
quantify the expression levels of a limited panel of genes 

in the primary tumor. Most of them were developed for 
formalin-fixed paraffin-embedded tissue samples for 
implementation in daily practice. 

These molecular signatures are used to classify 
patients according to their risk of metastatic relapse, to 
guide the decision for adjuvant chemotherapy when 
conventional criteria are insufficient [20]. This is 
particularly true for ER-positive, HER2-negative breast 
cancers without lymph node involvement (N0): in this 
sub-group of patients, adjuvant chemotherapy significantly 
reduces the risk of metastatic relapse only for high-risk 
patients [26–28]. The OncotypeDx® signature comprises 
three risk categories, raising the question of how to treat 
«intermediate-risk» patients. Recently, the TAILORx study 
clearly demonstrated the absence of benefit from adjuvant 
chemotherapy in this subgroup of intermediate-risk 
patients [29]. A meta-analysis of 147 articles concluded 
that molecular signatures for breast cancer enable 10% of 
patients at high clinical risk of relapse to be reclassified as 
low-risk patients, thus reducing the use of chemotherapy, 
with a favorable cost-efficiency ratio and improved quality 
of life for non-treated patients [30].

For estrogen-dependent breast cancers, the other 
contributions of genomics remain in the research field. 
For example, recent studies have identified the presence 
of mutations of the estrogen receptor 1 (ESR1) gene, such 
as the D538G or Y537S/C/N mutations, associated with 
resistance to anti-estrogens. These mutations change the 
conformation of the ligand binding site, thereby reducing 
the affinity of tamoxifen for the estrogen receptor  
[31, 32]. The systematic screening for these mutations is 
not currently recommended. Further studies are required to 
demonstrate their possible usefulness in guiding hormone-
therapy prescription in daily practice.

GENOMICS APPLIED TO 
THE TREATMENT OF HER2-
OVEREXPRESSING BREAST CANCERS

It is recommended to determine HER2 status 
in the primary tumor or in metastatic samples using 
a standardized immunostaining method. For doubtful 
cases, in situ hybridization methods are currently used to 
determine the HER2 gene copy number [33, 34]. In 2013, 
an international consensus clearly defined the criteria 
for HER2 protein overexpression and for HER2 gene 
amplification [35]. 

However, these methods entail certain limitations, 
typically for micro-invasive foci in a primary tumor or a 
micro-metastatic axillary lymph node [36].

Digital droplet PCR (ddPCR), easier to implement 
than in situ hybridization methods, seems to be a reliable 
alternative for the evaluation of the HER2 copy number 
in breast or gastric cancers [37–39]. A major limitation 
could be intra-tumor heterogeneity. Indeed, primary breast 
cancers are heterogeneous [28], and this is also the case 
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for HER2 status [40]. Combining laser-microdissection 
with ddPCR overcomes this limitation, by enabling a 
precise assessment of the HER2 copy number within a 
cancer sample. In a recent study, we validated the use of 
laser microdissection combined with ddPCR to assess 
HER2 copy number in micro-invasive breast cancers 
with at least 50 invasive cancer cells. We then applied 
this methodology to a 45-year-old patient with extensive 
in situ breast cancer, and no associated micro-invasion 
except a micro-metastasis found only on one section of the 
sentinel axillary lymph node. We first laser-microdissected 
the micro-metastatic foci, and then used ddPCR to 
demonstrate that HER2 was amplified. This led us to 
optimize the adjuvant treatment for our patient, and she 
received trastuzumab-based adjuvant chemotherapy [37].

For HER2-overexpressing breast cancers, another 
issue remains to be deciphered: is there any clinical 
benefit to be drawn from the systematic determination 
of HER2 amplification level within the tumor? Singer et 
al. demonstrated a correlation between the level of HER2 
amplification and the response to anti-HER2 treatments 
in the neoadjuvant setting [41]. Laser-microdissection of 
cancer cells from a metastatic tumor biopsy combined 
with ddPCR could be used to overcome signal dilution by 

enrichment with tumor cells. So, in a skin metastasis of 
a HER2-expressing breast cancer, we have demonstrated 
that HER2 copy number evaluated by ddPCR passed 
from 6 to 34, without and with prior laser microdissection 
respectively (Figure 2).

GENOMICS APPLIED TO THE 
TREATMENT OF TRIPLE-NEGATIVE 
BREAST CANCERS

Triple-negative breast cancers remain a therapeutic 
challenge. Lehmann et al. established a molecular 
classification with six molecular subtypes to personalize 
the treatment of these breast cancer sub-types: Basal-like 
1 (BL1), Basal-like 2 (BL2), Immunomodulatory (IM), 
Mesenchymal-like (M), Mesenchymal stem-like (MSL), 
and Luminal androgen receptor (LAR) (Figure 1) [19]. 
In the neoadjuvant setting, Masuda et al. demonstrated 
significant associations between these molecular subtypes 
and pathological complete response under chemotherapy. 
BL1 subtype is associated with greater chemo-sensitivity, 
whereas BL2 and LAR subtypes are more chemo-resistant 
subtypes [42].

Table 1: Gene panel tests used for therapeutic decision of localized breast cancers (Adapted from [28])

Signature Number of genes Clinical application Risk category References

MammaPrint 70 N−, ER+ or ER− 
Estimates relapse risk

Low and high [22]

OncotypeDX 21 ER+, HER2−, N−
Estimates chemotherapy benefit 

and relapse risk during 
hormonotherapy

Low, intermediate 
and high

[23]

EndoPredict 11 ER+, HER2−, N− or N+
Predicts local and metastatic relapse 

during hormonotherapy

Low and high [74]

Prosigna 
(PAM50)

50 ER+/N− and N+ treated 
by hormonotherapy

Predicts 10-year metastasis-free 
survival

Low, intermediate 
and high 

[25]

Breast Cancer 
Index

5 and 2 genes ratio ER+, N− 
Estimates metastatic risk 

Predicts late metastatic risk 
and efficacy of prolonged 

hormonotherapy

Low and high [75]

Rotterdam 76 ER+, N−
Predicts relapse under 

treatment with tamoxifen

Low and high [76]

BluePrint 80 Discriminates sub-types with 
different level of sensitivity to 

adjuvant treatment

Not applicable [77]

N: Node status in TNM classification; ER: Estradiol Receptor; RT-PCR: Reverse Transcription-Polymerase Chain Reaction.
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Unfortunately, this classification still has few 
clinical applications, even in clinical trials dedicated 
to triple-negative breast cancers. For example, the BL2 
subtype, characterized by an activation of the epidermal 
growth factor pathway, could respond to anti-epidermal 
growth factor receptor (EGFR) therapies. A phase II 
study assessed the benefit of cetuximab, a monoclonal 
anti-EGFR antibody, in the treatment of 173 women with 
metastatic triple-negative breast cancers. The results were 
disappointing, with a non-significant survival gain of 2.2 
months [43]. For anti-EGFR-based treatments, a study 
could be dedicated exclusively to BL2 subtypes, ideally 
with high EGFR copy numbers and a quadruple wild-type 
status of KRAS, NRAS, BRAF, and PIK3CA genes, as for 
colon cancers [43, 44].

The same arguments can be applied to the LAR 
subtype, characterized by androgen receptor signaling 
pathway activation, and corresponding to certain 
molecular apocrine sub-types [16]. The LAR subtype 
accounts for 11% of triple-negative breast cancers [19]. In 
two phase II studies using anti-androgens for the treatment 
of patients with metastatic triple-negative breast cancers, 
disease stabilization at 6 months was observed for less 
than 20% of patients [45, 46]. It should be noted that the 
patients were not pre-selected according to LAR subtype.

In 2012 and 2013, we conducted a pilot study among 
five women with metastatic triple-negative breast cancers. 
For the five patients, we performed transcriptomic analyses 
on metastasis biopsies, and classified their respective 
metastatic cancers according to Lehmann’s classification. 

Figure 2: Laser-microdissection of cancer cells combined with ddPCR to precisely assess HER2 amplification 
level on a skin metastasis of recurrent HER2-overexpressing breast cancer. (A) HER2 is typically overexpressed using 
immunohistochemistry (left panel). The right panel shows the laser-microdissected HER2-overexpressing cancer cells. (B) the HER2 copy 
number is much higher in the laser-microdissected cells than in the whole tumor. MDA231 triple-negative breast cancer cell lines serve as 
a negative control while the BT474 HER2-overexpressing cancer cell line serves as a positive control.

www.oncotarget.com


Oncotarget4791www.oncotarget.com

We also established individual xenograft models from 
the same metastasis biopsies. For each patient xenograft 
model, we tested a panel of drugs or drug combinations, 
guided by transcriptomic data. One patient was classified 
BL2, with EGF pathway activation and no mutation of the 
EGF pathway genes. In the corresponding xenograft, the 
most effective regimen was a combination of paclitaxel 
and cetuximab. This regimen was offered to the patient 
as a third-line resort treatment with almost complete 
metabolic response [47]. On the basis of transcriptomic 
analyses and chemosensitivity data obtained from the 
different xenografts, we personalized the resort treatment 
for the four other women in our study. In all cases, despite 
the fact that this resort treatment was third-line or fourth-
line, the time-to-progression was longer than that observed 
with previous lines of treatment [48].

GENOMICS AND TUMOR 
HETEROGENEITY

Tumor heterogeneity is probably insufficiently taken 
into account in daily clinical practice, particularly for the 
treatment of metastatic disease. Most molecular analyses 
are performed on primary tumors, even in metastatic 
stages. However, metastatic clones can be a minority in the 
primary tumors they are deriving from [49, 50]. For HER2 
status assessment, we have previously noted the benefit of 
combining molecular and tissue analyses, particularly with 
the contribution of laser-microdissection to overcome the 
limitation of tumor heterogeneity [37–39, 51, 52].

Molecular analyses on metastases are rare, mainly 
because of difficulties in obtaining these samples, and 
despite the fact that radiology-guided biopsies have 
considerably reduced this limitation [53]. For breast 
cancer, eleven studies have been dedicated to whole-
genome analyses of metastatic biopsies (Table 2). In 
addition, most of these studies only included small 

numbers of patients, and the genome analyses were 
generally performed on tumors that were not laser-
microdissected. One large study included 216 metastatic 
samples, some of them paired with samples from the 
corresponding primary breast cancers. They showed that 
metastatic clones are enriched with certain molecular 
abnormalities compared to the primary tumors [54]. 

Our research team is conducting a program on 
brain metastases. As part of this program, we performed 
transcriptomic analyses on laser-microdissected metastatic 
lymph-nodes of 28 women with HER2-overexpressing 
or triple negative metastatic breast cancers. Supervised 
analyses compared the transcriptomic profiles of women 
who developed brain metastases with those who did not. 
We identified CDKN2A/p16 as a gene associated with the 
risk of brain metastases and decreased survival [55].

GENOMICS AND CONSTITUTIONAL 
GENETICS OF BREAST CANCER

In the last ten years, a panel of genes has been 
proposed for the diagnosis of hereditary familial cancers. 
In the context of hereditary predisposition for breast 
and/or ovarian cancers, the United States National 
Comprehensive Cancer Network recommends a panel 
of nineteen genes and proposes corresponding clinical 
screening tests (Table 3) [56]. In France, the Genetics 
and Cancer Group, supported by the French National 
Cancer Institute, recently updated their recommendation 
to test a panel of 13 genes accompanied by prevention and 
screening measures for patients and their families (Tables 
4 and 5) [57, 58]. With twenty-eight platforms covering 
the French territory and dedicated to molecular biology, 
patients at risk for hereditary cancer can have the benefit 
of recent technologies applied to constitutional genetics. 
These platforms have implemented high-throughput 
sequencing tools like the Next Generation Sequencing 

Table 2: Genomics studies on breast cancer metastasis samples
Number of samples References
8 Weigelt, Proc Natl Acad Sci U S A. 2003 [78]
14 Wang, Genes Chromosomes Cancer 2009 [79]
30 Desouki, J Cancer Res Clin Oncol 2011 [80]
14 Craig, Mol Cancer Ther 2013 [81]
15 Lee, Oncotarget 2015 [82]
62 Onstenk, Cancer Lett 2015 [83] 
13 McBryan, Clin Cancer Res 2015 [84]
55 Lang, Breast Cancer Res Treat 2015 [85]
80 Kimbung, Clin Cancer Res 2016 [86]
88 Fumagalli, Ann Oncol 2016 [87]
216 Lefebvre, PLoS Med 2016 [54]
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Table 3: National Comprehensive Cancer Network guidelines for breast and ovarian cancer management based on 
genetic and familial high-risk assessment (Adapted from [56])

Gene Breast cancer 
risk management

Ovarian cancer 
risk management

Other cancer 
risk management

ATM Increased risk
Annual mammography and breast MRI starting 

at 40 years
RRS: based on FH

Potential increase in risk 
with insufficient evidence 

to recommend RRS

Insufficient evidence 
for pancreas or 
prostate cancers

BRCA1 Increased risk
25–29 years, annual breast MRI 

or mammogram
30–75 years, annual mammogram 

and breast MRI
>75 years, based on IR

RRS: based on IR and FH

Increased risk
RRS: based on individual 

risk and FH between  
35-40 years

Prostate, uterine 
(possible)

BRCA2 Increased risk
25–29 years, annual breast MRI 

or mammogram
30–75 years, annual mammogram 

and breast MRI
>75 years, based on IR

RRS: based on IR and FH

Increased risk
RRS: based on IR and FH 

between 40-45 years

Pancreas, prostate, 
melanoma

PALB2 Increased risk
Annual mammography and MRI starting at age 

30 years
RRS: based on FH

Insufficient evidence Insufficient evidence

TP53 Increased risk
20–29 years, annual breast MRI
30–75 years, annual breast MRI 

and mammogram
>75 years, based on IR 

RRS: based on IR and FH

No increased risk Neurological cancers, 
colon, skin cancers

CDH1 Increased risk for lobular cancer
Annual mammogram and breast MRI starting at 

age 30 years
RRS: based on FH

No increased risk Diffuse gastric cancer

PTEN Increased risk
Annual mammogram with breast MRI starting 

at age 30–35 years 
or 5-10 years before earliest breast cancer in 

family
>75 years, based on IR 

RRS: based on IR and FH

No increased risk Endometrial cancer, 
thyroid, colon, renal 
cancer, skin cancers

BRIP1 Insufficient evidence Increased risk
Consider RRS at  

45–50 years

Not available

CHEK2 Increased risk
Annual mammogram and breast MRI starting at 

age 40 years
RRS: based on FH

No increased risk Colon cancer
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NBN Increased risk
Annual mammogram and breast MRI starting at 

age 40 years
RRS: based on FH

Insufficient evidence Insufficient evidence

NF1 Increased risk
Annual mammogram 

from age 40 years 
and consider breast MRI 

from 30–50 years 
RRS: based on FH

No increased risk Malignant peripheral 
nerve sheath tumors, 

GIST, others

STK11 Increased risk
Annual mammogram and breast MRI starting at 

age 25 years 
RRS: based on FH

Increased risk 
of non-epithelial cancers

Annual pelvic examination 
and PAP smear 

Colon, stomach, 
pancreas, cervix, 

uterine, testis, lung

RAD51C Insufficient evidence Increased risk
Consider RRS at  

45–50 years

Not available

RAD51D Insufficient evidence Increased risk
Consider RRS at  

45–50 years

Not available

MLH1
MSH2
MSH6
PMS2
EPCAM

Insufficient evidence, 
manage based on FH

Increased risk Colon, uterine, others

MRI: Magnetic Resonance Imaging; RRS: Risk reduction surgery; FH: Family History; IR: Individual Risk.

Table 4: Recommendations of the Cancer and Genetics Group and the French National Institute of Cancer concerning 
gene panel analyses in the context of a hereditary predisposition to breast and ovarian cancers (Adapted from [57])

Gene Cytogenetic 
location Penetrance Protein functions Cumulate risk 

of breast cancer References

BRCA1 17q21.31 High Repair of DNA double-strand 
breaks using homologous 

recombination, cell cycle control, 
maintaining of genome integrity

46–87% 
lifetime risk [88, 89]

BRCA2 13q13 .1 High Repair of DNA double-strand 
breaks using homologous 

recombination

38–84% 
lifetime risk [88, 90]

PALB2 16p12.2 Moderate Partner of BRCA2 and regulator 
of its stability and its nuclear 

localization 

35% at 70 years 
[91, 92]

TP53 17p13.1  High Transcription Factor, cellular 
cycle, apoptosis, senescence, 

DNA Repair

80% life-time risk 
(premenopausal) [93, 94]

CDH1 16q22.1 Moderate E-cadherin, cellular adhesion 
molecule 

39–52%
before 40 years 
(lobular cancer) 

[95, 96]

PTEN 10q23.31 High Tumor phosphatase suppressor 
inhibiting PI3K and MAPK 

pathways

25–50% 
lifetime risk [97, 98]
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RAD51C 17q22 Moderate Repair of DNA 
using homologous recombination 

in interaction with BRCA1/2

Not known 
[99–102]

RAD51D 17q12 Moderate Repair of DNA 
using homologous recombination 

and maintaining of telomere

Not known
[103–105]

MLH1 3p22.2
High

Mismatch repair system 5–18%

[106–111]
MSH2 2p21-p16
MSH6 2p16.3

Moderate
Not known

PMS2 7p22.1
EPCAM 2p21 Partner of MSH2

Table 5: Screening or prevention recommendations for persons carrying mutations of genes analyzed in the Cancer 
and Genetics Group panel (Adapted from [58])

Gene Breast surveillance
Risk reduction surgery

Gynecologic surveillance 
Breast Pelvis

BRCA1
BRCA2

30 - 65 year, 
annual MRI + mammogram 

(± Ultrasound)
After 65 years, mammogram 

± Ultrasound
(Recommendations HAS 

2014* 
and INCa 2017**)

Prophylactic 
mastectomy 

(Recommendations 
HAS 2014 * and 

INCa 2017**)

Prophylactic 
annexectomy 

(discussed from 
the age of 40 years 

and according 
to mutations and 

FH of OC) **

Before RRS: 
standard surveillance 

and no efficacious ovarian 
screening available *

PALB2
CDH1

No specific 
gynecological 

guidelines 
If FH of OC: MDC

Standard surveillance 

PTEN Standard surveillance
If gynecologic lesions 

of CD: MDC
TP53 Starting at 20 years, 

annual MRI + Ultrasound
(no systematic mammogram)

Standard surveillance

RAD51C
RAD51D

No specific breast 
surveillance 

To be adapted to FH of BC 
according to guidelines HAS 

2014*

Not indicated

Prophylactic 
annexectomy 

(discussed from 
the age of 45 years 

and according to 
FH of OC)

Before RRS: 
standard surveillance 

and no efficacious ovarian 
screening to be proposed **

MLH1
MSH2
MSH6
PMS2
EPCAM

Ovarian and/or 
uterine RRS

To be discussed in 
MDC according 

to Lynch syndrome 
guidelines

Uterine surveillance according 
to Lynch syndrome guidelines 

BC: Breast Cancers; OC: Ovarian Cancers; FH: Family History; CD: Cowden disease; MDC: Multidisciplinary Committee; 
RRS: Risk reduction surgery.
*Recommendation of French Health Authority (HAS) 2014: French Breast cancer National screening program. 
**©/Recommendation of French National Cancer Institute (INCa), April 2017.
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(NGS) systems, to identify mutational hot-spots in a 
panel of high penetrance genes. Several types of NGS 
sequencers are currently used for routine care and also for 
research purposes, such as Illumina, Applied Biosystems 
SOLiD System, 454 Life Sciences (Roche), Helicos 
HeliScope, Complete Genomics, Pacific Biosciences 
PacBio and Life Technologies Ion Torrent [59]. 

In sporadic breast cancers, NGS sequencing enables 
four subtypes to be discriminated on the basis of different 
genetic and epigenetic modifications, with three genes 
(PIK3CA, TP53, and GATA3) that are modified in more 
than 10% of patients. Basal-like breast cancers typically 
harbor mutations in the TP53, RB1, and BRCA1 genes, 
together with MYC amplifications [60].

Because of the potential therapeutic applications, the 
identification of inactivating mutations in the BRCA1 gene, 
a tumor suppressor gene, is important. BRCA1, because 
of its critical role in DNA repair mechanisms through 
homologous recombination, is one of the most important 
genes associated with hereditary breast cancer [61]. More 
than 75% of BRCA1-mutated breast cancers have a triple-
negative phenotype and are classified as basal-like [8]. 
Constitutional BRCA1 mutations are of high penetrance, 
occur in 10% of breast cancer patients and in 20% of young 
women with triple-negative breast cancers [62]. BRCA1 
sporadic mutations are also found in 1% of breast cancers, 
and the promoter can be hypermethylated in 11 to 14% of 
cases, resulting in BRCA1 gene inactivation [63–65].

A deficit in homologous recombination via BRCA1 
inactivation has provided the rationale to concomitantly 
inhibit other DNA repair pathways, particularly the (ADP-
ribose) polymerase (PARP) enzyme pathway. Olaparib, a 
PARP inhibitor, showed considerable benefit in patients 
with metastatic BRCA1-mutated breast cancers [66, 67]. 
We, therefore, need to look for BRCA1 germline mutations 
in patients at risk for hereditary breast cancer. For sporadic 
breast cancer, particularly for the triple negative sub-type, 
we also need to identify BRCA1-inactivating mutations in 
tumors.

In this domain of constitutional genetics, many 
questions remain unanswered, particularly the translational 
value of identifying mutations of unknown significance in 
genes of low to moderate penetrance. The contributions 
of Genome-Wide Association Studies (GWAS) have not 
been very great. To date, more than sixty GWAS have 
been conducted on breast cancer samples. A meta-analysis 
of these GWAS identified 84 loci of interest possibly 
associated with an increased risk of breast cancer [68, 69]. 
Numerous low penetrance variants have been identified, 
without validating their functional significance. One of 
these variants concerns the oncogene FGFR2, the FGFR2 
protein being overexpressed in 5% of breast cancers. This 
variant corresponds to a single nucleotide polymorphism 
(SNP) that affects the binding site of FGFR2, thus 
activating the downstream signaling pathway in a ligand-
independent manner [70]. It is necessary to address the 

potential benefit of targeting FGFR2 for therapeutic 
purpose. Another SNP, in the 8q24 region, participates in 
regulating MYC oncogene transcription which is distant 
from this SNP by more than 300 kb [71]. Most GWAS 
studies suggest that mutations in low penetrance genes 
could partially explain genetic predisposition to breast 
cancer, even though their functional significance remains 
unclear [72].

CONCLUSIONS

The contribution of genomics applied to the 
treatment of breast cancer remains moderate. In practice, 
it is limited to informing adjuvant treatment decisions for 
early-stage diseases and to HER2-overexpressing breast 
cancers whatever the stage. However, breast cancers 
are heterogeneous and complex. Treatments need to be 
adjusted according to molecular subtypes and guided 
by the underlying genetic events. Several programs are 
ongoing to map the complex genetics of breast cancer, 
using multi-omic approaches such as the Molecular 
Taxonomy of Breast Cancer International Consortium 
(METABRIC) [73], which will help to take tumor 
heterogeneity into account more efficiently. Also, the 
increasingly widespread utilization of NGS will help to 
decipher the individual molecular complexity of breast 
cancers. This will rapidly increase the contribution of 
genomics in shaping breast cancer treatment in the next 
few years, especially in the present era of personalized 
treatments.
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