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ABSTRACT

Cystic Fibrosis (CF) is the most frequent lethal monogenetic disease affecting 
humans. CF is characterized by mutations in cystic fibrosis transmembrane 
conductance regulator (CFTR), a chloride channel whose malfunction triggers the 
activation of transglutaminase-2 (TGM2), as well as the inactivation of the Beclin-1 
(BECN1) complex resulting in disabled autophagy. CFTR inhibition, TGM2 activation 
and BECN1 sequestration engage in an ‘infernal trio’ that locks the cell in a pro-
inflammatory state through anti-homeostatic feedforward loops. Thus, stimulation 
of CFTR function, TGM2 inhibition and autophagy stimulation can be used to treat CF 
patients.  Several studies indicate that patients with CF have a higher incidence of 
celiac disease (CD) and that mice bearing genetically determined CFTR defects are 
particularly sensitive to the enteropathogenic effects of the orally supplied gliadin 
(a gluten-derived protein). A gluten/gliadin-derived peptide (P31–43) inhibits CFTR 
in mouse intestinal epithelial cells, causing a local stress response that contributes 
to the immunopathology of CD. In particular, P31–43-induced CFTR inhibition elicits 
an epithelial stress response perturbing proteostasis. This event triggers TGM2 
activation, BECN1 sequestration and results in molecular crosslinking of CFTR and 
P31-43 by TGM2. Importantly, stimulation of CFTR function with a pharmacological 
potentiator (Ivacaftor), which is approved for the treatment of CF, could attenuate the 
autophagy-inhibition and pro-inflammatory effects of gliadin in preclinical models of 
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INTRODUCTION

The proteostasis network ensures intracellular 
homeostasis in spite of endogenous and exogenous 
perturbations that lead to changes in protein conformation 
and abundance [1].  Autophagy is a major player in the 
proteostasis network, allowing for the regulated turnover 
of large protein aggregates and even entire organelles. 
Moreover, components of the autophagy machinery 
dynamically interact with multiple signaling pathways 
to optimize cellular adaptation to cell-autonomous or 
environmental stress signals [2, 3]. 

Cystic fibrosis (CF) transmembrane conductance 
regulator (CFTR) is a unique member of the ATP-
binding cassette (ABC) transporters family that acts as 
a cyclic adenosine monophosphate (cAMP)-regulated 
anion channel mediating chloride/bicarbonate transport 
across epithelia [4, 5]. Emerging evidence indicates that 
CFTR does not merely function as an anion channel 
but that it also orchestrates the proteostasis network. 
Indeed, CFTR operates in a context-specific dynamic 
system of interactor proteins that is connected to, and 
influenced by, the proteostasis network [6–8]. Functional 
perturbation of CFTR can result from inherited loss-of-
function mutations that cause CF [5] or pharmacological 
inhibition of CFTR channel activity [8]. In either case, 
CFTR inhibition leads to a major derangement of 
cellular proteostasis. CFTR malfunction increases the 
generation of reactive oxygen species (ROS) that induce 
post-translational modifications of transglutaminase 2 
(TGM2), a versatile multifunctional enzyme that catalyzes 
several post-translational modifications of target proteins 
[9, 10]. TGM2 undergoes small ubiquitin like-modifier 
(SUMOylation), a post-translational modification that 
inhibits TGM2 ubiquitination leading to persistent high 
TGM2 protein levels and TGM2 activation as the result 
of permissive elevated Ca2+ levels [11].  Activated TGM2 
targets a plethora of substrates, among which the essential 
autophagy protein Beclin 1 (BECN1) [6–8], that is essential 
for autophagosome formation [2].  BECN1 targeting by 
TGM2 causes its dislodgement, as well as that of several 
BECN1 interactors, away from the endoplasmic reticulum, 
leading to its functional sequestration in intracellular 
aggregates [6–8]. Inactivation of the protein complex 
organized around BECN1 has two major negative effects 
on cellular proteostasis. First, the functional sequestration 
of phosphatidylinositol 3-kinase catalytic subunit type 
3 (PIK3C3) and of UV radiation resistance-associated-
gene (UVRAG), two major components of the BECN1 
complex, negatively impacts on intracellular trafficking 
in CF epithelial cells, as it reduces the availability of 

phosphatidyl-inositol-3-phosphate (PtdIns3P) at early 
endosomes and perturbs endosomal fusion/maturation 
and trafficking [6, 12, 13].  Second, BECN1 inactivation 
disables autophagy, leading to defective autophagosome 
formation and accumulation of the autophagic substrate 
sequestosome 1 (SQSTM1) at endosomal level with 
subsequent reduced availability of the small GTPase RAB5 
and RAB7, which are essential for endosomal maturation 
[14]. In addition, the ubiquitin-binding-protein SQSTM1 
accumulates at the plasma membrane (PM) and favors the 
disposal of several surface proteins, including epidermal 
growth factor receptor (EGFR) and CFTR itself [7, 8]. 
Importantly, defective CFTR results in the activation of the 
innate immune system at the mucosal surface, as it leads 
to TGM2-mediated sequestration of the anti-inflammatory 
peroxisome proliferator-activated receptor-γ (PPARγ), and 
of nuclear factor kappa-light-chain-enhancer of activated 
B cells (NF-κB) inhibitor alpha (NFKBIA) within 
histone-deacetylase 6 (HDAC6)+/vimentin+ intracellular 
aggresomes. The neutralization of NFKBIA results in 
nuclear translocation of the pro-inflammatory transcription 
factor of NF-κB, thus increasing the transactivation of 
genes coding for pro-inflammatory cytokines [7, 11]. Thus, 
downstream of the CFTR defect and ROS generation, 
TGM2 activation can function as a rheostat of the post- 
translational network.

CFTR, TGM2 and autophagy

Notably, CFTR, TGM2 and autophagy are engaged 
in a feed-forward loop, meaning that CFTR dysfunction 
activates TGM2 and disables autophagy, while the 
inhibition of TGM2 and the restoration of autophagy 
re-establishes CFTR function at the cell surface. 
This intimate connection between CFTR, TGM2 and 
autophagy, can be conceived as a common platform for the 
surveillance of cellular homeostasis. In this perspective, 
CFTR can be viewed as a major sensor of stress, that 
alerts the autophagy machinery when a stressful event 
risks to perturb cellular physiology. Accordingly, CFTR 
malfunction in macrophages of CF patients compromises 
the autophagy-mediated clearance of Pseudomonas 
aeruginosa and Burkholderia cepacia [15, 16]. Defective 
bacterial clearance can be reverted by restoring CFTR 
function at the cell surface. In addition, the interaction of 
functional CFTR with caveolin-1 (CAV1) in airways is 
required to avoid excessive Toll-like receptor 4 (TLR4) 
signaling upon exposure to bacterial products [17]. 

 The correction of deficient proteostasis by 
means of so-called proteostasis regulators constitutes 
an emerging strategy for palliating CFTR malfunction 

CD. Thus, CD shares with CF a common molecular mechanism involving CFTR inhibition 
that might respond to drugs that intercept the "infernal trio". Here, we highlight how 
drugs available for CF treatment could be repurposed for the therapy of CD.
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arising from loss-of-function mutations in the CFTR gene 
[18–20]. The approximately 2000 CFTR mutations have 
been categorized in 6 classes according to their impact 
on the synthesis (class I), processing (class II), gating 
(class III), conductance (class IV), quantity (amount) 
(class V) or recycling (class VI) of the CFTR protein [5]. 
Among these mutants, the most frequent one is the class 
II F508del-CFTR mutant that occurs in 70 to 90% of CF 
patients either in a heterozygous or homozygous form. 
Mutation-specific drugs have been approved by regulatory 
instances (such as the Food and Drug Administration, 
FDA, and the European Medicine Agency, EMA) and 
directly target the mutated CFTR protein to increase its 
PM expression (correctors) or improve its ion transport 
function (potentiators) [5]. In contrast, proteostasis 
regulators aim at targeting the cellular environment in 
which mutant CFTR traffics and functions [18–20]. 
Proteostasis regulators interrupt the feed-forward loop 
between CFTR, TGM2 and autophagy to reestablish 
autophagy flux that is deranged by, but can also impact 
on, the CFTR defect. In line with this evidence, the 
proteostasis regulator cysteamine, a TGM2 inhibitor that 
prevents TGM2-mediated BECN1 sequestration, can 
reestablish autophagic flux and restore the function of 
the F508del-CFTR mutant at the epithelial surface, both 
in patients and in mice models bearing a similar CFTR 
mutation [18–20]. Interestingly, the beneficial effects of 
cysteamine on both CFTR function and autophagy persist 
for several weeks after cysteamine withdrawal. Thus, 
restoration of proteostasis results in transient homeostasis 
before the system again loses its balance. Of note, in 
CF patients bearing class II CFTR mutations, treatment 
with epigallocatechin-gallate (EGCG, an inhibitor of the 
autophagy-inhibitory acetyl transferase EP300) [21] can 
prolong the beneficial effects of cysteamine with respect 
to autophagy induction and restore CFTR function in 
nasal respiratory epithelial cells [18, 19]. Preclinical 
studies involving F508del-CFTR mice indicate that the 
aforementioned combination treatment (cysteamine plus 
EGCG) loses its capacity to restore CFTR function in a 
Becn1 haploinsufficient (Becn1+/-) background [19]. 
Thus, autophagy is required for sustaining a functional 
CFTR at the cell surface. 

CF AND CD:  NEW MECHANISM OF 
CONNECTION

CF features

CF is best known for its respiratory phenotype, 
which results from increased viscosity of the mucus in 
the lung, increased pulmonary infections, and chronic 
inflammation [5, 22]. Thus, defective CFTR function 
ultimately drives inflammation, persistent and untreatable 
bacterial colonization and recurrent chest infections, 
mostly by Pseudomonas aeruginosa, Staphylococcus 

aureus and Burkholderia cepacia, causing chronic 
progressive lung disease with bronchiectasis and alveolar 
destruction culminating in respiratory insufficiency [23]. 
Beyond its respiratory manifestations, CF is a systemic 
disease because CFTR is expressed in, and is relevant to 
the function of, many tissues, including the small and large 
intestines, pancreas, the biliary tree, the male reproductive 
tract and sweat glands [5, 24]. Gastrointestinal symptoms 
of CF are not only attributable to thick and sticky mucus in 
the intestine and in pancreatic ducts that lead to exocrine 
pancreatic insufficiency, but are also due to a constitutive 
intestinal inflammation owing to CFTR malfunction 
[5, 24]. Preclinical evidence indicates that defective 
autophagy downstream to CFTR malfunction is pivotal 
for driving the disease phenotype at the intestinal level. 
Thus, CF mice feed with a standard diet usually succumb 
to intestinal obstruction after weaning unless they are 
orally treated with cysteamine to restore autophagy and to 
consequently rescue CFTR function [18]. 

CD pathogenesis

The intestine of CF patients is exposed to a 
particularly high antigenic load due to the exocrine 
pancreatic insufficiency. Indeed, patients suffering 
from CF may exhibit increased levels of antibodies 
against dietary antigens, increased fecal calprotectin 
levels, alteration of the intestinal microbiota, as well as 
increased intestinal permeability [24]. In particular, a ~4% 
prevalence of positive anti-TGM2-IgA autoantibodies, 
a serological marker of celiac disease (CD), has been 
reported in several cohorts of CF patients [25–28]. 
Moreover, the prevalence of CD is three times higher in 
CF patients than in the general population [28]. Moreover, 
mice that are CFTR deficient due to the CFTR knock-out 
mice or the F508del-CFTR knock-in mutation differed 
from wild type mice in thus far that they developed signs 
of ileal inflammation when they were fed with the gluten 
component gliadin. Thus, inherited CFTR malfunction 
favors gliadin responsiveness [28]. Based on these 
results, the question arises as to whether CFTR might 
be conceived as a protective mucosal shield that usually 
prevents CD. CD manifests as a permanent intolerance 
to dietary proteins from wheat, rye and barley, occurring 
in ~1 % of individuals worldwide. In the CD intestine, 
the ingestion of gluten proteins including gliadin results 
into an adaptive immune response against gliadin-derived 
peptides with an autoimmune component [29, 30]. It 
is known that some peptide fractions from gliadin are 
particularly pathogenic. Thus, the peptide P31-43 must 
ignite an innate immune response in epithelial cells, while 
the peptide P57-68 can induce cognate immune responses 
by T cells and antibodies in a subset of genetically 
susceptible individuals bearing the human leukocyte 
antigen (HLA) DQ2/DQ8 [31–33]. In intestinal epithelia 
from celiac patients, P31-43 enters the endosomal 
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compartment, triggers TGM2 activation, perturbs 
endosomal maturation and trafficking, and activates the 
NF-κB pathway [34], which are all features reminiscent of 
those occurring in respiratory epithelia from CF patients. 

CFTR and P31-43 peptide relationship

Recently, we have demonstrated that CFTR and 
autophagy are major players in the pathogenesis of CD. 
In intestinal epithelial, P31-43 encounters CFTR in 
clathrin+ vesicles and binds to, and reduces the ATPase 
activity of the nuclear-binding-domain-1 (NBD1) of 
CFTR, thus impairing CFTR function [28]. Similarly, to 
the inherited CFTR defect associated with CF, the gliadin-
induced CFTR malfunction occurring in CD results 
in the activation of TGM2 and perturbs the autophagy 
machinery. Indeed, P31-43-mediated inhibition of CFTR 
drives TGM2 activation that covalently crosslinks P31-
43, CFTR and TGM2 in a trimolecular complex, thus 
amplifying the detrimental effects of gliadin. This results 
in reduced activity of the BECN1 complex with reduced 
availability of PtdIns3P and UVRAG at the endosomal 
level together with SQSTM1 accumulation. In addition, 
CFTR malfunction suffices to increase the production of 
interleukin-15 (IL15), a pro-inflammatory cytokine critical 
for CD pathogenesis [29, 32, 33, 35–37], as the result of 
TGM2-mediated NF-κB activation, exactly as this occurs 
in CF epithelia [28]. 

In sum, important alterations of cellular activity 
such as TGM2 activation and autophagy inhibition related 
to CFTR malfunction (due to mutations in CF or gliadin-
derived peptide in CD), represent an "infernal trio" [38] 
(characterized by three alterations: inhibition of CFTR, 
activation of TGM2, disablement of autophagy) that 
eliminate a loops of cellular stress.

Drug repurposing in CD?

Of note the CFTR chloride channel function 
constitutes a potential therapeutic target in CD. Thus, 
maintaining CFTR in an open conformational state by 
means of pharmacological potentiators (such as the FDA/
EMA-approved drug Ivacaftor, formerly called VX-770), 
can avoid P31-43 binding to NBD1, thus preventing its 
inhibitory effect on CFTR. As a consequence, CFTR 
potentiators can protect intestinal epithelial cells 
from P31-43 induced stress response as they control 
TGM2 activation, restore the function of the BECN1 
complex, prevent the accumulation of SQSTM1 and 
restore endosomal trafficking [28]. Importantly, CFTR 
potentiators prevent IL15 upregulation and control P31-
43 driven immune activation [28]. These effects were 
initially observed in cultured human epithelial cells and 
then reproduced in vivo, in gliadin-sensitive BALB/C 
mice, as well as in non-obese diabetic (NOD) mice which 
are particularly susceptible to oral challenge with gliadin  
[39–42]. In these models of gliadin sensitivity, 

pretreatment with the CFTR potentiator Ivacaftor, a 
drug approved for the treatment of CF patients bearing 
particular CFTR mutations [5, 43], prevents the gliadin-
induced suppression of the CFTR-mediated chloride 
current (as observable in the small intestine mounted 
in Ussing chambers responding to the CFTR stimulator 
forskolin) and controls the gliadin-induced intestinal 
inflammation. Importantly, Ivacaftor also controls 
the adaptive immune response, and instead promotes 
a tolerogenic response to gliadin in peripheral blood 
mononuclear cells (PBMC) from celiac patients that are 
co-cultured with gliadin-challenged intestinal epithelial 
cells [28].

Based on these findings, other additional strategies 
might intercept central mechanisms of both CD and CF, 
targeting the aforementioned ‘infernal trio’ [38]. First, it 
may be possible to use other CFTR potentiators including 
Vrx-532 [28] or genistein [44] that would be expected to 
act similarly to Ivacaftor [28]. Second, the inhibition of 
TGM2 with cysteamine or other, more specific agents 
that are currently in development [6, 11, 28, 45–49], 
should restore BECN1 and autophagy, thereby protecting 
CftrF508del mice from the increased responsiveness 
to gliadin [50]. Finally, autophagy stimulation could be 
achieved by inhibition of the acetyltransferase EP300 
(examples: aspirin, epigallocatechin gallate, EGCG, 
and spermidine) [21, 51, 52], neutralizing BECN1 
inhibitory proteins from the BCL2 family (examples: 
ABT737, navitoclax, venetoclax) [53] or inhibitors of the 
mechanistic target of rapamycin complex-1 (mTORC1; 
examples: rapamycin, tacrolimus) [54].

It is important to note that each of the 
aforementioned strategies for the treatment of CD (for 
which one of the primary causes apparently is the gluten-
mediated CFTR inhibition) has been successfully applied 
to CF (which is due to inherited loss-of-function CFTR 
mutations): i) Ivacaftor has initially been designed for 
improving the function of specific CFTR mutants in 
CF and is right now FDA and EMA-approved for the 
treatment of CF [43, 55–58]; ii) cysteamine can be used 
to inhibit TGM2 and is able to restore CFTR protein and 
function at the PM of cultured cells from patients with 
the CFTRF508del/F508del mutation [18, 19, 47]; iii) the 
autophagy activator EGCG, combined with cysteamine, 
improves and prolongs its rescuing effect [19, 58]. 
Altogether, these findings illustrate the clinical feasibility 
of tackling the ‘infernal trio’. 

CONCLUSIONS

In conclusion, CFTR can be inhibited in two 
apparently different diseases, in CF, where CFTR 
is mutated, and in CD, where CFTR is inhibited by 
gluten/gliadin-derived peptides [59] (Figure 1).  In both 
conditions, CFTR inhibition ultimately compromises 
autophagy, thus reducing the capacity of cells to withstand 
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Figure 1: Schematic view of common pathogenic events downstream of CFTR inhibition in cystic fibrosis (CF) and 
celiac disease (CD). Loss-of-function mutations in the CFTR gene cause CFTR inhibition in CF. In the intestine from CD patients, the 
gliadin-derived P31-43 peptide interacts with, and binds to, specific residues of the NBD1 domain of CFTR, if the domain is in its inactive 
conformation, thus competing with ATP binding and blocking CFTR function. In both CF and CD epithelial cells, CFTR inhibition disrupts 
cellular proteostasis through two effects (i) transglutaminase-2 (TGM2) activation and (ii) BECN1 complex inhibition. In CD, TGM2 
accessorily is recruited to a tripartite complex that stabilizes P31-43 binding to CFTR, thus worsening CFTR inhibition. In both conditions, 
CFTR inhibition leads to impaired endosomal trafficking, cytoskeleton disassembly, inflammasome activation resulting in interleukin-1β 
(IL1β) secretion, NF-κB activation and consequent interleukin-15 (IL15) production. Stressed enterocytes stimulate local inflammation in 
both CF and CD. In the gut from CD patients, this ignites the immune responses against gliadin, in particular P57-68, in a context of HLA-
DQ2/DQ8. This pathogenic cascade can be interrupted by CFTR potentiators that prevent P31-43 binding to CFTR or by reconstitution of 
cellular proteostasis by TGM2 inhibition or BECN1 complex activation. 
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stress and maintain tissue homeostasis. Downstream 
of CFTR, TGM2 plays a major role to connect CFTR 
malfunction and autophagy inhibition in a vicious cycle, 
as TG2 inhibition can interrupt this feed-forward loop [9, 
10, 49]. As a perspective, stimulation of CFTR function 
by pharmacological potentiators, inhibition of TGM2, as 
well as reactivation of autophagy by suitable drugs, may 
be used for the treatment of both CF and CD.

It might be important to explore the possibility to 
combine such close-to-etiological treatments with suitable 
life style interventions to avoid excessive gluten/gliadin 
uptake, as well as with non-specific measures designed 
to dampen inflammation and to improve the gut barrier 
function.

As a final note, it should be mentioned that new 
findings suggest that CFTR dysfunction contributes to 
the pathogenesis of other inflammatory state affecting 
epithelia [60, 61]. Thus, it is tempting to speculate, yet 
remains to be demonstrated, that impaired autophagy and 
CFTR malfunction are often associated among each other 
to drive the phenotype of a variety of human diseases. 
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