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ABSTRACT

Background: Metastatic triple negative breast cancer (mTNBC) is a heterogeneous 
disease with poor prognosis. Molecular evolution of TNBC through chemotherapy 
selection pressure is well recognized but poorly understood. PI3K/AKT/mTOR is one 
of the most commonly identified oncogenic-driver pathways in breast cancer. The 
current study is designed to understand the genomic and transcriptomic changes, 
focusing on the PI3K/AKT/mTOR pathway alterations in paired primary and metastatic 
TNBCs.

Results: Genomic analysis of 7 paired specimens identified 67 known mutations 
including those from the following signaling pathways: cell cycle, p53, PI3K/AKT/
mTOR, RAS/MAPK, and RTK/GF. Principle coordinate analysis (PCoA) identified 4 
distinctive molecular groups based on the gene expression patterns of PI3K/AKT/
mTOR pathway. Key differentially-expressed genes included AKT3, GSK3B, GNA11, 
PI3KR1, and GNAQ. Importantly, AKT-targeted therapy showed efficacy in a patient-
derived xenograft (PDX) model of TNBC in vivo. 

Conclusion: Genomic discordance of paired primary and metastatic TNBCs 
was identified, with significant increase in tumor proliferation pathways seen in 
metastases. Among the differentially expressed genes, AKT3 can potentially serve 
as a target for novel combination therapy for treatment of metastatic TNBC.

Methods: Paired specimens from 10 patients with TNBCs were identified through 
an IRB-approved protocol (2002–2015). FoundationOneTM sequencing was performed 
for genomic profiling, and Affymetrix Human Genechip 2.0st was used for mRNA 
expression profiling. The similarity among samples was calculated based on Pearson 
correlation coefficients, which were used to construct hierarchical clustering and 
heat maps. 
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INTRODUCTION

Triple negative breast cancer (TNBC) accounts 
for 15–20% of all breast cancers and is characterized 
by poor overall survival upon disease relapse. Unlike 
hormone receptor positive or HER2/neu positive breast 
cancer (BC), there is no effective targeted therapy for 
treatment of TNBC with the exception of those with 
germline BRCA1/2 mutations [1–5] or programmed death 
ligand-1 (PD-L1)-expressing TNBCs [6–8]. Despite these 
recent advances which led to moderate improvement in 
progression-free survival, the overall survival of patients 
with mTNBC has not changed. Therefore, there is still 
an unmet need to identify effective therapy targeting 
oncologic drivers. 

In order to develop effective targeted therapy, it is 
critical to identify targetable genomic or transcriptomic 
drivers accountable for chemotherapy resistance. 
However, this is highly challenging for TNBC because 
these tumors are very heterogeneous, with at least 
four molecular sub-types proposed to date based on 
transcriptomic mRNA expression [9–11]. The molecular 
classifiers of Lehmann/Pietenpol [9, 10] defines six 
molecular subtypes of TNBC: basal-like 1, BL1; basal-like 
2, BL2; mesenchymal, M; mesenchymal-stem-like, MSL; 
immune-modulatory, IM and luminal androgen receptor, 
LAR. The Burstein classifier defines 4 molecular subtypes 
of TNBC: basal-like immune-activated, BLIA; basal-like 
immunosuppressed, BLIS; luminal androgen receptor, 
LAR; and mesenchymal, MES [11]. Although these sub-
types have deepened our understanding of the complexity 
of TNBC tumor biology, the associated molecular 
classifiers have not yet been incorporated in any routine 
clinical practice, nor have they changed the paradigm of 
treatment regimen selection. In addition to the challenges 
of tumor heterogeneity at the time of initial diagnosis, 
acquired chemotherapy resistance further complicates 
our understanding and treatment of TNBC. Such genomic 
evolution of TNBC through chemotherapy selection 
pressure is well recognized but poorly understood. Large-
scale genomic databases such as The Cancer Genome 
Atlas (TCGA) and Molecular Taxonomy of Breast Cancer 
International Consortium (METABRIC) have provided 
valuable resources for understanding the biology of 
primary BC tumors [12, 13]. However, there is a lack of 
data obtained from tumor specimens collected through 
longitudinal studies. 

Analyzing the genomic and transcriptomic changes 
between paired primary and recurrent TNBC can provide 
useful insights to improve our understanding of the 
underlying tumor heterogeneity and tumor evolution with 
chemotherapy therapy selection pressure, and potentially 
lead to identification of novel therapeutic targets. The 
phosphoinositide-3-kinase (PI3K)/AKT/mammalian target  
of rapamycin (mTOR) pathway is one of the most 
commonly altered oncogenic pathways identified in BC. 

Activation of the PI3K/AKT/mTOR pathway contributes 
to resistance to chemotherapy [14–16]. Despite the high 
frequency of alterations of the PIK3CA/AKT/mTOR 
pathway, the presence of these mutations does not warrant 
a significant response to single agent PI3K or mTOR 
inhibitors in early clinical trials [17, 18].

Previous genomic analysis comparing primary 
and metastatic breast cancers have provided inconsistent 
findings [19]. Some indicated concordant overall mRNA 
expression patterns between primary in-breast tumors and 
matched lymph nodes [20–22], while others identified 
discordant mRNA expression patterns [23] or somatic 
mutation profiles [24] of in-breast tumor and synchronous 
metastases. The current study is designed to characterize 
the genomic and transcriptomic alterations in paired 
longitudinal samples of primary and recurrent TNBC, with 
a focus on the PI3K/AKT/mTOR pathway. Our finding of 
AKT3 upregulation provides a rationale for ATK targeting 
in treatment of metastatic TNBCs. To our knowledge 
this is one of the few studies analyzing both genomic 
and transcriptomic changes between longitudinal paired 
primary and metastatic TNBC.

RESULTS

Patient and disease characteristics (N = 10 
patients)

The clinical characteristics, pathological features, 
treatment histories, and survival of a 10-pair TNBC 
cohort are described in Table 1. The majority of the 
tumors were infiltrating ductal carcinomas (IDC) (80%), 
stage I–III (90%), and the patients received standard-of-
care chemotherapy with anthracycline and/or a taxane-
containing regimen. Recurrence free survival (RFS) 
ranged from 2 to 39 months, and overall survival ranged 
from 9 to 92 months. Schematic paradigm of the treatment 
history and relapse pattern are shown in Figure 1, which 
illustrates the heterogeneity of treatment and duration of 
responses.

Genomic profiling of paired TNBCs (N = 7 
patients)

Genomic sequencing was successful in 7 paired 
specimens (N = 14 specimens; Figure 2). Due to lack of 
sufficient tumor tissue, sequencing could not be performed 
for 3 patients. A total of 324 genomic alterations including 
67 known mutations/amplifications and 257 variants of 
unknown significance (VUS) were identified. Genomic 
alterations were identified in the following signaling 
pathways: cell cycle, p53, PI3K/mTOR, RAS/MAPK, 
and RTK/GF [25]. The most abundant genomic alterations 
were found in the PI3K/AKT/mTOR pathway (PI3K/AKT 
genes were altered in 5 out of 7 patients in this cohort). 
There was significant inter-patient genomic heterogeneity, 
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but little intra-patient variability. These findings not only 
confirm the genomic heterogeneity of TNBCs, but also 
highlight the genomic stability of these tumors over time.

Transcriptomic profiling of paired TNBCs  
(N = 10 patients; 22 specimens)

Principal coordinate analysis (PCoA) and 
hierarchical clustering were applied to assess the global 
expression pattern of the tumors, and showed clustering 
of samples for each patient. Only one distant metastasis 
COH-2.3 is dissimilar to COH-2.1 and COH-2.2, and 
more similar to COH-8 and COH-9 based on clustering 
(Figure 3A). The Euclidian distances analysis suggests 
that the mRNA expression is more concordant in intra-
patient tumors than inter-patient tumors (Figure 3B).

Hierarchical clustering of genes in the PI3 kinase 
(PI3K) pathway (N = 10 patients; 22 specimens)

We next used hierarchical clustering to study 
the transcriptomic variation of PI3K pathway among 

the paired TNBCs. Four groups were identified in our 
clustering analysis, with one unique sample COH-6.2 
(distant metastasis) that could not be classified into 
any other group. The samples classified in each group 
had higher values in Pearson correlation coefficients 
(Figure 4A). Specifically, the 22 samples were classified 
into Group 1 (green rectangle), consisting of 4 samples 
from 3 patients, Group 2 (orange rectangle) consisting 
of 6 samples from 5 patients, Groups 3 (pink rectangle) 
with 5 samples from 4 patients, and Group 4 (blue) 
with 6 samples from 5 patients. Noticeably, whereas the 
metastatic samples of patient COH-3, COH-7 and COH-
9 were classified into the same groups as their primary 
cancer samples, the metastatic samples of 7 other patients 
(COH-1, COH-2, COH-4, COH-5, COH-6, and COH-10)  
were clustered into different groups. The samples of 
COH-2 were classified into Group 1, 2 and 4, and samples 
of COH-10 were classified into Group 3 and 4. PCoA 
analysis revealed similar classification of the 22 samples 
based on the expression of genes involved in the PI3K 
pathway (Figure 4B). The molecular subtyping using 
Lehmann/Pietenpol classifier was performed and there was 

Table 1: TNBC patient characteristics, N = 10 patients

Patient 
ID

Tumor
location

Histology 
type Age Stage

 
Neo(adjuvant) 
chemotherapy Radiation RFS

month
OS

month

COH-1.1
COH-1.2

Breast primary
Lung met

IDC 64 IIA AC-T Yes 34 89

COH-2.1
COH-2.2
COH-2.3

Breast primary
LN met

Bone met

IDC 51 IIIA AC Declined 17 60

COH-3.1
COH-3.2

Breast 2nd primary
LN met

IDC 41 IIIA AC Declined 39 92 

COH-4.1
COH-4.2

LN primary
Liver met

IDC 44 IIIB Carbo/Taxol Yes 10 28

COH-5.1
COH-5.2

Breast primary
Skin met

IDC 39 IIIC AC No 2 9

COH-6.1
COH-6.2

Brain met
Soft tissue met

IDC 50 IIA TAC Declined 31 67

COH-7.1
COH-7.2

Breast primary
LN met

IDC 58 IA Declined Declined 26 46

COH-8.1
COH-8.2

Endometrium met
LN met

IDC 38 IV N.A. No 11 58

COH-9.1
COH-9.2

Breast primary
Breast met

ILC 45 IIB AC-T Yes 8 23

COH-10.1
COH-10.2
COH-10.3

Breast primary
Lung met
Brain met

Metaplastic 51 IIB AC-T Yes 16 58

LN, lymph node; RFS, relapse-free survival; OS, overall survival; IDC, Invasive ductal carcinoma; ILC, Invasive lobular 
carcinoma; AC, doxorubicin, cyclophosphamide; AC-T, doxorubicin, cyclophosphamide followed by docetaxel; Carbo/
Taxol, carboplatin and paclitaxel. 
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no association between the subtypes and the 4 clusters. 
In addition, there was no association between the 4 
clusters and disease/treatment variables or survival. Taken 
together, these results suggest that the gene expression 
profile of the PI3K pathway reveals four distinctive 
patterns in these heterogeneous TNBC specimens. 

Distinctive gene expression patterns in paired 
TNBCs

Further analysis was conducted to identify key genes 
within the PI3K/AKT/mTOR pathway which attributed 
to the distinctive expression pattern. Among all the 
differentially expressed genes, AKT3, GSK3B (glycogen 
synthase kinase-3 beta), PI3KR1 (phosphoinositide-3-
kinase regulatory subunit 1), GNAQ (G protein subunit 
alpha Q), and GNA11 (G protein subunit alpha 11) showed 
the strongest statistical significance (P < 0.0001; Figure 
5A and 5B). The expression level of AKT3 was highest 
in Group 1, followed by Group 4, Group 2, and lastly 
Group 3. The highest level of AKT3 expression is similar 

to the highest level of four other genes, including GSK3B, 
GNAQ, PIK3R1, and GNA11. These data suggest that 
AKT3, together with other genes in the PI3K signaling 
cascade, may be key players driving the molecular 
discordance in TNBC.

Differentially expressed genes and survival in 
public datasets

The association of these 5 differentially expressed 
genes with patient’s survival were tested using public 
datasets. AKT1 and AKT2 were also studied. Using the 
mRNA expression dataset in Rody et al. (N = 64) [26], 
increased expression of AKT3 (P = 0.0896), GNA11  
(P = 0.0369) and GNAQ (P = 0.0714) were associated with 
a trend of shorter disease free survival (Supplementary 
Figure 1). In METABRIC (N = 299), increased expression 
of AKT1 (P = 0.0312), GNA11 (P = 0.0639), and GSK3B 
(P = 0.0351) were associated with shorter overall survival 
(Supplementary Figure 2). There was no association of 
AKT1, AKT2, GNAQ and PIK3R1 with overall survival.

Figure 1: Clinical synopsis of treatment paradigm (N = 10 patients). TNBC specimens were collected at time of initial surgery 
and at first recurrence and/or metastasis (green triangles). Neo (adjuvant) chemotherapy, radiation, and lines of chemo/systemic therapy 
are also indicated.
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AKT inhibitor ipatasertib is effective alone or in 
combination with chemotherapy in a PDX model 
of TNBC

The synergistic effect of ipatasertib and carboplatin 
was tested in vivo using a TNBC patient-derived xenograft 
(PDX) with the following alterations: PIK3CA E542K 
mutation, PTEN loss and TP53 H179R mutation. Tumor 
volume changes over time within each treatment group 
are shown in Figure 6A. Of note, mice in all treatment 
groups maintained their initial weight over the course of 
treatment, as shown in Figure 6B. Statistically significant 
tumor suppression was seen in both ipatasertib alone  

(P = 0.05), and in the combination ipatasertib and 
carboplatin group (P = 0.005) (Figure 6C). 

DISCUSSION

Analysis of genomic and transcriptomic changes 
between paired primary and recurrent TNBCs may 
provide insight into the underlying tumor heterogeneity 
and tumor evolution with chemotherapy/radiation therapy 
selection pressure. A better understanding of these changes 
may ultimately lead to identification of potential targets 
for overcoming resistance. In this study, we identified 
4 unique groups of TNBCs based on the PI3K/AKT/

Figure 2: Genomic profiling of the PI3K pathway genes in TNBC (N = 7 patients). Tile plot illustrating patients ordered 
by primary/metastatic status (columns), and by mutation frequency (rows). Variants of unknown significance (VUS) were not included 
in this analysis. Prim, primary tumor; Met, metastatic tumor; Amp, amplification; Del, deletion; Sub, substitution; Ins, insertion; Dupl, 
duplication; Splice, splice site; WT, wild type.
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Figure 3: Intra- and inter-patient heterogeneity of mRNA expression in TNBC (N = 22 specimens). (A) Hierarchical 
cluster analysis of gene expression data (24,041 transcripts) from 22 TNBC specimens based on Pearson’s correlation. The color scale is 
based on the values of correlation coefficients. Distance between samples indicates the similarity of gene expression profiles. (B) mRNA 
expression is more concordant in intra-patient tumors than inter-patient tumors. Euclidian distances were calculated based on PC1, PC2, 
and PC3.

Figure 4: Subgroup clustering of PI3 kinase (PI3K) pathway genes (N = 22 specimens). (A) Hierarchical cluster analysis 
based on expression of 45 genes involved in PI3K pathway in 22 TNBC specimens. The color scale indicates the degree of correlation. 
Distance between samples indicate the similarity of gene expression profiles. Groups 1–4 are marked in green, orange, pink and blue boxes, 
respectively. COH-6.2 (gray) is an outlier and cannot be classified into any of the 4 groups. (B) PCoA based on gene expression involved 
in PI3K pathway (samples are color-coded into 4 groups as in 4A).
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Figure 5: AKT3 is the most differentially expressed gene in the PI3K pathway in TNBC (N = 22 specimens). (A) Heat 
map of gene expression profile of the PI3K pathway. The four groups identified in Figure 3A are indicated with respective color bars labeled 
above the heat map. The top 5 genes with the largest expression variance are highlighted. (B) Relative mRNA expression level of the top 5 
differentially expressed genes in the 4 respective groups; *P < 0.0001.
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mTOR pathway genes. The AKT inhibitor ipatasertib 
was tested in a PDX model of TNBC with PI3K/PTEN 
alterations and synergistic tumor suppression confirmed 
the efficacy of AKT targeting. Our study demonstrates 
the importance of genomic analysis in assisting targeted 
therapy development.

The serine-threonine protein kinase AKTs are central 
proteins in many cellular pathways such as cell survival, 
proliferation, glucose uptake, metabolism, angiogenesis, 
as well as radiation and drug response [27]. The three 
isoforms of AKT (AKT1, AKT2 and AKT3) have been 
proposed to have different physiological functions, 
properties, and expression patterns depending on the cell 

types [28]. Knockout mouse studies have shown AKT1 
to be essential for cell survival, AKT2 to have a more 
prevalent role in glucose homeostasis, while AKT3 is 
involved in brain development [29]. Little is known about 
the influence of the different AKT isoforms in the genome 
and their effects in TNBC. 

The five genes identified to display distinctive 
expression patterns in this cohort have been shown to be 
closely implicated in cancer biology. AKT3 is involved 
in various biological processes such as proliferation, 
differentiation, apoptosis, and tumorigenesis [30]. Several 
studies have suggested AKT3 to be an oncogene and a 
potential therapeutic target in TNBC [1–3]. One study has 

Figure 6: Synergistic effect of carboplatin and ipatasertib in a PDX model of TNBC. The dose of ipatasertib was 20 mg/kg 
for 9 days, followed by 30 mg/kg for 14 days; the dose of carboplatin was 10 mg/kg for two weeks, followed by 20 mg/kg for 1 week (total 
3 doses). (A) PDX tumor volume changes over time; (B) Mice maintained their initial weight throughout the treatment; (C) Tumor volume 
among different groups: vehicle, ipatasertib, carboplatin, and combination ipatasertib plus carboplatin. *P = 0.05, **P = 0.005.
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further correlated the expression of AKT3 with metastasis 
of TNBC [3]. The AKT3 copy number gain is frequently 
observed in TNBC (26%, copy number > 4) and associated 
shorter RFS [31]. In line with these studies, we found that 
AKT3 is significantly overexpressed in groups 1 and 4 
compared with groups 2 and 3 (Figure 5), suggesting that 
AKT3 may be an important driver in TNBC progression 
and chemotherapy-resistance. Furthermore, GSK3B, a 
serine-threonine protein kinase downstream of AKT3 
showed a similarly distinctive expression pattern. Given 
the reported role of GSK3B in mitosis, proliferation, 
motility and survival [32], it is likely involved in AKT3-
regulated TNBC biology. PIK3R1 phosphorylates inositol 
and indirectly activates AKT3. The activating mutations of 
PI3KCA, and PI3K signaling pathway-related genes have 
also been frequently observed, and are known to activate 
AKT3 [9]. GNAQ and GNA11 can form a Gq alpha 
subunit, and both are subunits of guanine nucleotide–
binding proteins. Gq alpha interacts with cell membrane 
receptors and plays a role in signaling multiple pathways, 
especially growth signaling [4]. Activating Q209L/P 
mutations in GNAQ or GNA11 (GNAQ/11) are present 
in approximately 5.6% of tumors and 80% of uveal 
melanomas. Combination of small molecules inhibiting 
MEK and PI3K enhances uveal melanoma cell death in 
a mutant GNAQ/GNA11-dependent manner [33, 34]. A 
phase II study with selumetinib (an ATP-independent 
inhibitor of mitogen-activated protein kinase) showed 
improved clinical activity compared with temozolomide 
in GNAQ/GNA11 mutant uveal melanoma [35]. Taken 
together, our findings suggest that the discordant 
expression of these genes may underlie the heterogeneity 
of TNBC and can serve as targets for novel combinations. 

AKT targeting has made progress in recent clinical 
trials. Pan-AKT inhibitors have shown promising 
responses in patients with metastatic TNBC [36–38]. 
Ipatasertib is a highly selective ATP-competitive small-
molecule AKT inhibitor, and showed activity in cell lines 
and xenograft models of a broad range of cancer types 
including breast cancer [39]. Sensitivity to ipatasertib 
was associated with high phosphorylated AKT levels, 
PTEN protein loss, or genetic mutations in PTEN and 
PIK3CA, whereas KRAS and BRAF mutations were 
typically associated with resistance to ipatasertib [39]. In 
a recent update of the Phase II LOTUS trial, paclitaxel 
in combination with ipatasertib showed a higher response 
rate and more durable responses in patients with TNBC 
tumors harboring PI3K/AKT/PTEN alterations [39]. 

DNA-damaging agents such as platinum drugs 
(cisplatin and carboplatin) are active in TNBC. In the 
TNT trial, patients with TNBC and germline BRCA1 
and/or BRCA2 mutations were found to have a higher 
response rate and longer progression-free survival rate 
favoring carboplatin over docetaxel [40]. Our data from 
this PDX model showed promising synergistic effects 
combining ipatasertib and carboplatin. Hence, there is a 

strong rationale for testing this combination in the clinical 
setting. A phase II clinical trial combining ipatasertib and 
carboplatin is currently ongoing. 

Our study is limited by its small sample size due 
to the challenge of obtaining longitudinal specimens over 
a long time course. Future studies elucidating the impact 
and biological significance of the 4 distinctive patterns of 
PI3K/AKT/mTOR pathway seen in this study are currently 
in progress. 

Differential gene expression between paired primary 
and metastatic TNBCs was observed in this 10 patient 
cohort, with an increase in growth-promoting signals. 
Among the genes involved in PI3K pathway alterations, 
AKT3 appears to play a critical role and is a potential 
target for novel therapies for metastatic TNBC. Our 
mTNBC PDX model further confirms AKT as a potential 
target for treatment of TNBC. A phase I/II clinical is 
planned for further assessment of the clinical activity of 
this combination. 

MATERIALS AND METHODS

Patient selection

Longitudinal paired primary and metastatic TNBC 
specimens were identified through an Institutional 
Review Board (IRB)-approved protocol from patients 
with recurrence between 2002 and 2018. The eligibility 
criteria were: stage I–III breast cancer; ER negative, PR 
negative and HER-2neu negative defined by ASCO/CAP 
guideline; at least one tumor biospecimen available from 
initial surgery and metastatic biopsy. A total of 10 patients 
were studied in the current cohort. Of these, 2 patients 
had 3 samples each, resulting in a total of 22 specimens 
in the study. All pathology samples were formalin-fixed 
and paraffin-embedded (FFPE). Demographic data such 
as age, gender, date of birth, date of diagnosis, date of 
relapse, and date of death or last follow-up (if applicable) 
were obtained. Disease characteristics such as tumor 
grade, TNM stage, and ER/PR/HER2 status, as well as 
treatment variables including surgery, chemotherapy, and 
radiation therapy were also obtained. 

mRNA expression of primary and recurrent 
TNBCs

Messenger RNA (mRNA) expression was profiled 
using GeneChip® Human Gene 2.0 ST array. Raw data 
were normalized and processed using Expression Console, 
and linear regression was performed using Limma to 
identify the differentially expressed genes between 
primary and recurrent/refractory TNBC. The expression 
of 24,041 transcripts was normalized by robust multi-array 
average (RMA) using R Bioconductor “oligo” package 
[41–44]. The annotation of the genes was constructed 
based on R Bioconductor “AnnotationDbi” package [45]. 
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Gene expression was summarized by max approach. The 
similarity among samples was calculated based on Pearson 
correlation coefficients, which were used to construct 
hierarchical clustering and heat maps. Pathway-related 
heat maps were constructed, and hierarchical clustering 
based on the gene expression correlation of the genes 
defined in the pathways of Panther database (V3.4.1) 
were analyzed according to the methods described [46]. 
Pathways with differential gene conserved expression 
pattern were selected. The genes of the PI3 kinase pathway 
(P00048) defined in the Panther database (V3.4.1) 
[46] were selected for further analysis. The Principal 
Component Analysis (PCA) and Principal Coordinates 
Analysis (PCoA) were performed using the methods 
described in Past 3.14 [47]. The Euclidian distances 
between samples were calculated based on the coordinates 
of PC1, PC2 and PC3. The P-value of differential gene 
expression between the different groups of PI3K pathways 
were calculated by 2-way ANOVA multiple comparison 
using GraphPad Prism 7. 

Gene expression and survival analyses using 
public databases

Gene expression and survival data of 64 patients 
with TNBC from Rody, et al. [26] and 299 patients 
with TNBC from METABRIC [12] were downloaded. 
The “high” and “low” groups were separated based 
on median mRNA expression values. Kaplan–Meier 
survival analyses, and were used to determine the survival 
differences between “high” and “low” mRNA expression 
groups. P-values were calculated by log-rank test using the 
Survival package in R [48]. The survival differences were 
considered to be statistically significant when P-values 
were < 0.05. 

Akt inhibitor ipatasertib and carboplatin in 
patient derived xenograft (PDX) model 

After obtaining informed written patient consent, 
TNBC tumor samples were obtained from patients at the 
time of surgery or biopsy at COH under protocol approved 
by COH Institutional Review Board (IRB). Fresh primary 
tumor tissues (2–3 mm in diameter) were surgically 
implanted into the mammary fat pad of 6- to 8-week-old 
female NOD/SCID/IL2Rgamma-null (NSG) mice. Once 
the xenograft was established, the tumor was removed, 
cut into small fragments, and subsequently passaged 
from mouse to mouse to expand the xenograft number. 
These mice were then used for the experiment. When the 
xenografts were palpable, animals were randomized into 
4 groups and treated daily by oral gavage with vehicle, 
carboplatin, ipatasertib or a combination of both agents. 
Tumor volumes were assessed using calipers one to two 
times a week. The dose of ipatasertib was 20 mg/kg for 
9 days, followed by 30 mg/kg for 14 days; the dose of 

carboplatin was 10 mg/kg for two weeks, followed by 
20 mg/kg for 1 week (total 3 doses). The mice were 
sacrificed at day 23. Tumor volumes were calculated using 
the formula (width) 2 × length × 0.52. Body weight was 
monitored weekly as an indicator of drug-induced toxicity 
and overall health of the mice. All animal studies were 
carried out under protocols approved by the Institutional 
Animal Care and Use Committee (IACUC) at COH in 
accordance with all applicable federal, state, and local 
requirements and institutional guidelines. 

Ethics

All procedures performed in studies involving 
human participants were in accordance with the ethical 
standards of the institutional and/or national research 
committee, and with the 1964 Helsinki declaration and 
its later amendments or comparable ethical standards. 
Informed consent was obtained from all participants 
included in the study. All tumor specimens were identified 
through a City of Hope IRB-approved retrospective 
protocol from patients consented to City of Hope 
Biorepository Protocol.
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