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ABSTRACT

It is well-established that infections with viruses harboring oncogenic potential 
increase the cancer risk. Virus induced oncogenic processes are influenced by a 
complex and unique combination of host and environmental risk factors that are 
currently not fully understood. Many of the oncogenic viruses exhibit a prolonged, 
asymptomatic latency after a primary infection, and cause cancer in only a minority 
of carriers. From an epidemiologic point of view, it is therefore difficult to determine 
their role in cancer development. However, recent evidence suggests a neoplastic 
potential of one additional ubiquitous virus; human Cytomegalovirus (HCMV). 
Emerging data presents HCMV as a plausible cancer-causing virus by demonstrating 
its presence in >90% of common tumor types, while being absent in normal tissue 
surrounding the tumor. HCMV targets many cell types in tumor tissues, and can 
cause all the ten proposed hallmarks of cancer. This virus exhibits cellular tumor-
promoting and immune-evasive strategies, hijacks proangiogenic and anti-apoptotic 
mechanisms and induces immunosuppressive effects in the tumor micro-environment. 
Recognizing new cancer-causing mechanisms may increase the therapeutic potential 
and prophylactic options for virus associated cancer forms. Such approaches could 
limit viral spread, and promote anti-viral and immune controlling strategies if given 
as add on to standard therapy to potentially improve the prognosis of cancer patients. 
This review will focus on HCMV-related onco-viral mechanisms and the potential of 
HCMV as a new therapeutic target in HCMV positive cancer forms.
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INTRODUCTION

Human cytomegalovirus (HCMV) is an opportunistic 
DNA virus that infects a majority of the adult population 
worldwide [1], and is by far the largest and most complex 
of all human herpesviruses [2]. HCMV is transmitted by all 
body fluids including saliva and breast milk [3, 4]. Similar 
to other herpesviruses, it establishes a life-long latency and 
persistence, and cannot be cleared by the immune system. 

The viral genome persists in a dormant form predominantly 
in the CD34+ hematopoietic progenitor cell population, 
which is resident in the bone marrow. Latent HCMV can 
be reactivated when the progenitor cells differentiate into 
macrophages or dendritic cells, and disseminate the virus 
to multiple cell types in different organs [5–7]. HCMV 
encoded proteins regulate adaptive immune responses to 
evade immune recognition and avoid elimination in its host 
through complex immunologic, metabolic and molecular 
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interactions (Figures 1–2) [8]. While both primary 
infection and a reactivated HCMV infection rarely causes 
clinical symptoms in healthy individuals with a robust 
immune system, the virus may cause life-threatening 
disease in immunosuppressed patients. HCMV undergoes 
high mutation rates wherefore many viral genotypes exist. 
In vitro HCMV wild type strains rapidly lose some genes 
necessary for their persistence in vivo, which potentially 
affects their pathogenic potential. A comparison of the 
structure of both laboratory- and clinical HCMV strains is 
illustrated in Figure 3.

HCMV IN HUMAN CANCERS

During the past years, a significant association 
between HCMV and human malignancies has been reported 
by several independent research groups. This has been a 
controversial field due to parallel negative studies failing 
to detect HCMV in tumor tissues when adjusted techniques 
for virus detection were not employed [9–11]. In addition, 
several groups have proposed that HCMV detection may 
vary with time due to increasing vulnerability of viral DNA 
for degradation during the sample storage [12]. Using 
optimized methods, many research groups demonstrate high 

prevalence of HCMV in breast, colon, and prostate cancer, 
rhabdomyosarcoma, hepatocellular cancer, salivary gland 
tumors, neuroblastoma and brain tumors (medulloblastoma 
and glioblastoma (GBM)) [13–19]. Over 90% of these 
tumors were positive for HCMV proteins and/or nucleic 
acids when exploiting methods such as in situ hybridization, 
PCR, electron microscopy, DNA and RNA sequencing, 
immunostaining of tissue specimens, flow cytometry 
analyses of tumor cells from surgical resections and western 
blot analysis [20]. Also, most neoplastic cells in sentinel 
lymph nodes of > 90% of breast cancer [19, 21], as well 
as 98% of brain metastases of colon and breast cancers 
contain HCMV proteins and/or nucleic acids [22]. The virus 
infection is restricted to tumor cells and some inflammatory 
cells and does not spread to adjacent normal cells. 

HCMV CAN PROMOTE ALL THE STEPS 
OF HALLMARKS OF CANCER

Hallmarks of cancer describe central, neoplastic 
processes, that are involved in tumor initiation and 
progression [23–27]. In addition to the earlier defined 
cellular oncogenic changes, the modern, wider concept 
of hallmarks of cancer brings in the complexity of 

Figure 1: Key proteins encoded by HCMV genome [8, 119]. This simplified diagram shows the HCMV genome, and its key gene 
products, their relative position and orientation, and their functional classifications [8]. The common places for mutations in the clinical 
strains are RL13 gene, (DB, Toledo, TB40/E, Merlin, Davis), UL9 gene (DB, Toledo), UL128 gene (Toledo, TB40/E), IRS gene (TB40/E),  
and US2 (TB40/E). The gene names in HCMV genome are not always placed according to their location due to historical precedence in 
nomenclature assignments and rearrangements among the strains. The HCMV genome contains from the left TRL1-14 (green box), UL1-
147, IRL 14-1 (green box), IRS1 (red box), US1-36, and TRS1 (red box).
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tumor microenvironment and presence of cancer causing 
inflammation, as essential onco-modulatory mechanisms 
[27], which relates tumor initiation directly to infections 
by oncogenic viruses. HCMV encodes from 170 [28] to 
750 proteins [29], and several of the HCMV encoded 
gene products are detected in tumors. Many of these gene 
products, especially the gene products expressed early 
during the HCMV life-cycle, regulate processes related to 
the hallmarks of cancer (as earlier reviewed by Herbein 
G. [30]). Expression of HCMV immediate early (IE) 
proteins (encoded by UL122 and UL123 genes), leads to a 
dysregulated cell cycle; and IE1 and IE2 gene products can 
promote immortalization by activating sustained hTERT 
telomerase activity and by blocking TNF-α mediated 
apoptosis [31, 32]. HCMV encoded early proteins also 
interfere with key cellular factors including retinoblastoma 

protein family (Rb), cyclins, p53, Wnt, PI3K/Akt, and 
NF-κB, and thereby they affect cell cycle control, cellular 
differentiation, proliferation, apoptosis and metabolism 
[33–35]. Another HCMV related gene, that is expressed 
during both latent and lytic HCMV infections, is US28, 
one of the four viral G protein-coupled receptors encoded 
by this virus. Constitutive US28 signaling results in 
activation of the hypoxia inducible factor-1α/pyruvate 
kinase M2 (HIF-1α/PKM2) axis, COX2 and 3-inducible 
nitric oxide synthase (STAT3-iNOS) mediating secretion 
of vascular endothelial growth factor (VEGF), and 
cellular motility [36–38]. US28 activates signaling 
pathways, that are involved in cell proliferation, survival, 
migration, angiogenesis and inflammation [36, 38–41]. 
Several studies have demonstrated mutagenic effects of 
HCMV encoded proteins IE1, pp65 and pp71 by inducing 

Figure 2: Innate and adaptive immune pathways inhibited by HCMV. After entrance in the target cells, HCMV encoded 
proteins downregulate intrinsic, but also innate and adaptive immune pathways to avoid elimination by the immune system. Viral lytic 
glycoproteins US2-US11 downregulate HLA class I- and class II-dependent antigen presentation to T cells [49, 50]. This affects both CD8+ 
cytotoxic tumor elimination and activation of CD4+ T-cell responses including activation of humoral immune response and B cells. In 
parallel, to counteract the NK cell dependent cell lysis, the HCMV encoded HLA class I homolog UL18 can bind to the NK cell inhibitory 
receptor NKG2A/CD94 and expression of HLA-E, a non-classical HLA protein, is upregulated [51–53]. HCMV enhances production of 
the immunosuppressive factors, such as T reg cells expressed membrane-bound transforming growth factor (TGF)-β and IL-10, where 
also TGF-β directly contributes to inhibit NK cell effector functions. In addition, HCMV exhibits a powerful immunosuppressive effect 
by expressing a cmvIL-10 (UL111A gene), which can promote maturation of pro-tumoral M2 macrophages and counteract the proper 
maturation of dendritic cells [56, 57]. Natural Killer (NK)-cells are able to eliminate virus-infected and altered cells, and they produce a 
number of important cytokines that stimulate the antiviral and antitumor adaptive immune response, especially interferon gamma [120]. 
Epigenetic reprogramming and disarmament of NK-cells is well-established HCMV mediated effect and may be a critical contributor 
during the carcinogenic process [121]. 
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chromosomal aberrations, DNA breaks and disrupted 
DNA repair pathways [42–46]. 

HCMV-pp65, operates further to disable intrinsic 
cellular immune responses [47]. Another tegument protein 
known as pUL48, is an HCMV encoded deubiquitinase 
enzyme (HCMV-DUB) that inhibits synthesis of I-IFNs, 
an anti-cancer factor, by deubiquitinating several 
signaling molecules such as TNF receptor-associated 
factor (TRAF)-6 and -3, interleukin-1 receptor-associated 
kinase-1 (IRAK1), interferon regulatory factor (IRF)-

7 or stimulator of interferon genes (STING), that 
play a key role in anti-viral innate immunity [48]. The 
viral proteins located in the HCMV US2-US11 region 
downregulate HLA class I- and class II-dependent antigen 
presentation to T cells [49, 50]. This will negatively 
influence activation of CD4+ T cell responses, activation 
of humoral immune response and CD8+ cytotoxic T 
cell elimination of the virus infected cells. In parallel, 
to counteract NK cell dependent cell lysis, the HCMV 
encoded HLA class I homolog UL18 can bind to the NK 

Figure 3:  (A) BLAST alignment of two human cytomegalovirus laboratory strains, Towne and AD169, with the DB clinical strain [8]. The 
laboratory strains have been extensively passaged in fibroblasts as vaccine candidates. They show 98% and 92% similarity, respectively, 
with the DB clinical strain. The Towne laboratory strain consists of a block of ORFs (UL147-151), that is not present in AD169. (B) BLAST 
alignment to compare the DB clinical strain with five other strains. These strains are considered as clinical isolates, since they have been 
passaged to a limited extent in the laboratory (Merlin, JP, VR1814, TB40/E and Toledo). The DB sequence is reported to be 99% similar 
to Toledo sequence, and 96–98% similar to other clinical isolates. Toledo, was isolated from the urine of a congenitally HCMV infected 
child [122]; DB was isolated from a pregnant woman in France [123]; TB40/E was isolated from a throat wash of a bone marrow transplant 
patient [124]; JP was isolated from prostate tissue of post mortem AIDS patient [123]; Merlin was isolated from urine of congenitally 
infected infant [125]; and VR1814 was isolated from cervical secretion of a pregnant woman with a primary HCMV infection [126] Each 
of the clinical isolates can replicate in several cell types in addition to fibroblasts, whereas the replication of the laboratory strains is limited 
to fibroblasts. 
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cell inhibitory receptor NKG2A/CD94 and expression 
of HLA-E, a non-classical HLA protein, is upregulated 
to inhibit NK cell activation [51–53]. HCMV further 
enhances production of immunosuppressive factors 
in the tumor microenvironment, such as transforming 
growth factor (TGF)-β and IL-10, and activation of 
regulatory T cells [54, 55]. TGF-β also directly inhibits 
NK cell effector functions. In addition, HCMV exhibits a 
powerful immunosuppressive effect by expressing an IL-
10 homologue, cmvIL-10, which can promote maturation 
of pro-tumoral M2 macrophages and counteract the 
proper maturation of dendritic cells [56, 57] (Figure 4). 

Other lytic cycle immunomodulatory genes include: 
UL37/vMIA; pUL144, a Tumor Necrosis Factor receptor 
homolog; pUL128, a CC-like chemokine that modulates 
monocyte activity.

The previously recognized human onco-viruses 
are able to fulfill the first definitions of the hallmarks of 
cancer, such as essential alterations in the cell physiology, 
that are required for the cellular transformation. 
HCMV´s role in tumors has traditionally been depicted 
as oncomodulatory, i.e. with an ability to affect tumor 
cells to become more aggressive by enhancing cellular 
proliferation, survival, immunosuppression, angiogenesis, 

Figure 4: HCMV effects during carcinogenesis. Cancer predisposing risk factors are known to cause cellular injury, which in turn 
activates normal inflammatory response. HCMV can be reactivated as the latently infected monocytes differentiate into macrophages during 
migration as a part of this inflammatory response. The classically activated macrophages (M1) carrying a re-activated virus infection, can 
then infect other cell types, such as fibroblasts, endothelial and epithelial cells, which are more permissive to lytic HCMV infections. 
HCMV infected cells promote inflammatory and angiogenic secretome, that paracrinally, by intercellular signaling through secretion 
of cytokines, such as IL-6, TGFβ, GM-CSF and cmvIL-10, induce haemangiogenesis, lymphangiogenesis, cell proliferation as well as 
immune evasion/immunosupression. HCMV infection in the epithelial cells is evidenced to cause transformation to tumor cells [69]. The 
presence of HCMV infection in the tissue macrophages (M1) or secretion of GM-CSF by the tumor cells can result in activation of M2 
macrophage differentiation pathway. Presence of M2 macrophages favor a pro-tumoral microenvironment due to their matrix-remodeling 
and anti-inflammatory properties [110, 111]. These immunosuppressive M2 macrophages display a phenotype that is closely related to 
tumor-associated macrophages (TAMs), of which presence in the tumors is known to play an important prognostic value. In addition, 
tumors contain a subpopulation of cancer cells, called cancer stem cells or tumor initiating cells (TICs), that have undergone an epithelial-
mesenchymal transformation (EMT). The close vicinity of TAMs and cancer cells undergoing EMT at the invasive front of tumors, suggests 
that these cell types might interact mutually [5, 102]. The TAM-like macrophage phenotype secretes CCL5 stimulating EMT and migration 
of the cancer cells, and thereby increases the invasiveness and metastasis of the tumor [127]. Despite the transformation and tumor forming 
process involving epithelial cells, TAMs, TICs, endothelial cells and cancer associated fibroblasts (CAFs), the HCMV infection contributes 
to disarm the NK cells and adaptive immune responses (see Figure 2). NK cells activation of the cytotoxic T-cell responses displays a 
crucial function in the cell-mediated first-line host responses against viral infections and cancer initiation [128–130]. NK cells are also 
involved in antibody-dependent cellular cytotoxicity by B cell activation through CD4+ T cells [120].
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invasion and by creating a pro-inflammatory environment 
[58]. This latter role is indeed highly relevant, since 
functions of the tumor micro-environment have recently 
become recognized as key elements in tumor progression 
and metastasis in addition to the transforming ability of 
the virus. 

HCMV CAN TRANSFORM  
EPITHELIAL CELLS

While involved in all steps of the hallmarks of 
cancer as discussed above, several HCMV proteins can 
potentially participate to initiate cellular transformation. 
Some historical evidence, published between 1976–
1993, has reported that HCMV is able to induce in vitro 
transformation of human embryonic lung fibroblasts and 
rodent fibroblasts [59–64]. Early evidence suggested that 
fragments of the viral genome can transform cells [65]; 
expression of HCMV IE or US28 proteins have been 
shown to lead to cellular transformation under certain 
conditions. Expression of US28 led to tumor development 
in mouse 3T3 cells. Targeted US28 expression in the 
colon of transgenic mice resulted in tumor transformation, 
especially under inflammatory challenge [66]. Expression 
of the HCMV IE proteins together with the adenovirus 
E1A protein promoted cellular transformation through 
a “hit and run” mechanism [67], as IE was no longer 
detected in the transformed cells. 

Recent studies by Lepiller et al. showed that 
infection of primary hepatocytes and HepG2 cells with 
a newly isolated strain, HCMV-DB, led to tumor colony 
formation in soft agar cultures [68]. HCMV-DB, was also 
able to transform human primary mammary epithelial 
cells (HMECs), which led to tumor development 
in immunodeficient mice [69]. These recent results 
confirm data from the old studies, demonstrating that 
perhaps only particular HCMV clinical strains exhibited 
oncogenic properties and led to tumor development 
in immunodeficient mice [62]. A common feature of 
these virus strains seems to be their lack of a rapid lytic 
infection, which is expected by most HCMV strains, and 
would protect cells from oncogenic transformation. A 
non-lytic infection will allow for many virus mediated 
mechanisms to act in an oncomodulatory and oncogenic 
fashion without killing the cells, and allow for oncogenic 
transformation. 

In primary HMECs infected with the clinical isolate 
HCMV-DB, the molecular requirements for oncogenic 
immortalization and transformation in vitro were met: 
inactivation of p53 and Rb, telomere maintenance, 
acquisition of constitutive mitogenic signals provided by 
Ras/cMyc, Akt activation, STAT3 activation and cyclin 
D1 overexpression with a consequence of enhanced 
cellular proliferation [69]. The transformed HMECs 
displayed an HCMV RNA signature and gave rise to 
rapidly growing triple negative breast tumors when 

injected in NOD scid gamma (NSG) mice. A similar 
HCMV RNA signature was detected in tumor biopsies 
of patients with breast cancer, but not in healthy breast 
tissue [69]. Our team has recently shown that HCMV is 
highly prevalent in triple negative breast tumors, and a 
newly published clinical study demonstrate a potential 
role of HCMV infection in the development of a triple 
negative breast cancer phenotype [70]. Taken together, 
these results suggest that certain HCMV strains may 
not only have an oncomodulatory capacity, but in some 
cellular context exhibit direct oncogenic and tumor 
promoting mechanisms. 

NON-LYTIC OR LATENT HCMV 
INFECTIONS MAY LEAD TO 
ONCOGENIC TRANSFORMATION

Establishment of HCMV latency is associated with 
post-translational modifications of histones that regulate 
repression of major immediate-early promoter (MIEP) 
activity in a cell differentiation-dependent manner. 
The complex interaction between cellular transcription 
factors and a highly chromatinized histones around the 
MIEP promotes inhibition of IE gene expression and 
preserves HCMV latency [71–73]. Latency is established 
in myeloid lineage progenitor cells and secure life-
long persistence of the infection [5, 74]. Several viral 
gene products are expressed, and latently infected 
cells control the virus survival through a number of 
immunosuppressive mechanisms [75]. In contrast to the 
latent stage when the histones around the MIEP sequence 
are heavily methylated and prevent expression of the 
lytic genes, the MIEP sequence was no longer detectable 
in transformed HMECs infected with the HCMV-DB 
wild-type strain after 14 days in the soft agar cultures 
[69]. Such scenario would have profound effects on the 
virus life cycle. Most early and late genes are controlled 
by the IE proteins that are transcription factors [13, 14, 
22, 70, 76]. If viral IE and early genes are expressed 
without viral replication and in the absence of cell 
lysis, they may contribute to cellular proliferation and 
survival of infected tumor cells and lead to oncogenic 
transformation [69]. This may be mediated by infections 
of HCMV strains causing a non-lytic infection. Most 
HCMV strains are not able to replicate efficiently in 
transformed cells such as hepatocellular carcinoma 
HepG2 cells or in fibroblasts expressing SV40 T antigen 
(TAg) and oncogenic H-Ras [68, 77]. This was proposed 
to be caused by a block of viral cellular entry and 
nuclear delivery of viral DNA and pp65 protein through 
TAg mediated downregulation of the HCMV receptor 
platelet-derived growth factor receptor (PDGFR), which 
impacted on accumulation of the major immediate early 
(MIE) transcripts. Overexpression of PDGFR and IE 
transcripts increased the HCMV gene expression, but 
did not rescue the production of infectious virions [77]. 
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The reason for this phenomenon is unknown, but may be 
dependent on the requirement of the virus to halt cells in 
G0 phase of the cell cycle to proceed into a lytic phase 
[78]. Genomic sequence analysis of HCMV strains in 
glioblastoma suggests that the virus is not replicating in 
these cells either, as much fewer mutations than expected 
during HCMV replications were observed [79]. Thus, the 
virus may express many viral genes while lacking some 
critical factor for virus DNA replication and/or assembly 
to produce new viral progeny. Nevertheless, the viral 
proteins expressed could act in oncomodulatory and 
oncogenic processes. 

HCMV INFECTS SEVERAL CELL  
TYPES IN THE TUMOR

HCMV infection of freshly isolated glioblastoma 
multiforme (GBM) cells in vitro induced stemness, and 
maintained cells in an undifferentiated stem-like state [80]. 
In addition, the HCMV infection is shown to be present 
in both microglia and in CD133 expressing cells and 
promotes a M2 macrophage phenotype differentiation in 
tumors [57]. This scenario may increase the aggressiveness 
of GBM tumors, and enhanced number of CD133 stem 
cells in tumors is indeed associated with poor prognosis 
[80]. Consistently, recent data from Krenzlin et al. shows 
that mouse CMV (MCMV) promotes glioblastoma 
growth in vivo. Reactivation was shown in perivascular, 
intra-tumoral pericytes, that seem to be protected from 
elimination by tumor induced immunosuppression [81]. 
MCMV infection was also present in the tumor cells 
as shown by immunostaining [81]. This multicellular 
HCMV infection might explain the confusion regarding 
the expression of HCMV latent/lytic proteins in tumors. 
The poorly differentiated, stem-cell-like cancer cells 
may contain latent HCMV infection and only express a 
set of viral proteins, whereas the infection in some other 
surrounding cell-types is productive, and produce late 
HCMV proteins as was shown by Bahador et al. [12]. 
The immunosuppression induced by the HCMV infected 
tumor cells through secretion of GM-CSF [82], and 
other immunosuppressive mediators such as TGF-β and 
cmvIL-10 [54, 55], creates a tumor micro-environment that 
protects the productively infected cells from destruction by 
disarming NK-cells and impairing the CD8+ cytotoxic T 
cell mediated tumor elimination (Figure 4) [56, 57]. The 
productive infection in the tumor microenvironment would 
further promote a stem-cell-like state of tumor cells [82] 
and enhance tumor aggressiveness. Thus, the multicellular 
HCMV infection creates a vicious circle, resulting in a non-
lytic infection followed by transformation of the epithelial 
cells, and HCMV reactivation in M1 macrophages 
promoting an M2/TAM shift in surrounding macrophages, 
which could drive the neoplastic process. Supporting 
these assumptions, glioblastoma patients exhibit signs of 
immunosuppression that are similar to those observed in 

HCMV infected individuals, (Figure 2) [83], and enhanced 
viral load in glioblastoma tumors is associated with poor 
patient outcome [84].

TREATMENT OF ONCOGENIC HCMV 
INFECTIONS

Novel approaches for treatment of HCMV infections 
are areas of great research interest. No vaccines aimed 
at ameliorating the severity of disease and preventing 
HCMV infections have so far been successful in achieving 
durable and protective immunity [85, 86]. Several new 
promising vaccine strategies against HCMV have been 
developed and evaluated ex vivo and in animal models 
[82, 87, 88]. A pp65 mRNA dendritic cell vaccination 
approach was recently used in glioblastoma patients and 
indicated highly improved survival rates in a small subset 
of patients [89, 90]. Likewise, adoptive immunotherapy 
with HCMV specific T cells show promising results with 
improved outcome in individual GBM patients [91]. These 
observations suggest that immune activating strategies 
against HCMV may be of benefit for HCMV positive 
glioblastoma patients. 

The accessibility of antiviral therapy such as 
ganciclovir, valganciclovir, cidofovir and foscarnet against 
HCMV has offered a great improvement in the treatment 
and prevention of HCMV infection and has ensued 
considerably better prognosis for immunocompromised 
patients. Consecutively, the clinical benefit of most of 
these agents is restricted by low oral bioavailability, 
related toxicities, and the risk of developing drug 
resistance with prolonged use. Most antiviral agents 
target actively replicating viruses, but not their latent 
states. However, latently expressed protein products of 
EBV, and potentially also HCMV, may have significant 
effects on cancer biology. Induction of lytic gene 
expression results in elimination of virus-infected cells, 
and increases their vulnerability to antivirals and most 
likely also to immunotherapy. Chemotherapeutic drugs, 
such as doxorubicin, gemcitabine, cisplatin, etoposide, 
5-fluorouracil, and paclitaxel have shown their potential 
to induce EBV reactivation [86, 92]. Combination therapy 
may therefore be a favorable approach in the treatment of 
herpes virus associated malignancies by induction of viral 
lytic gene expression followed by exposure of the tumor 
cells to antiviral drugs and immunotherapy. 

Some earlier promising data arising from the 
studies in glioblastoma patients indicates, that the effect 
of antiviral treatments of HCMV positive cancers should 
be investigated further. Animals with HCMV positive 
human medulloblastoma or neuroblastoma xenograft 
tumors, that were treated with anti-HCMV drugs, showed 
significantly reduced tumor sizes, when treated with anti-
HCM drugs than placebo treated animals [81, 93, 94]. 
Our interdisciplinary team has considerable experience 
in treating cancer patients with valganciclovir, the 
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mainstay treatment for clinical HCMV infections. We first 
performed a pilot double blinded study on 42 glioblastoma 
patients. This study was underpowered and failed its 
primary end point. However, survival benefits were noted 
and additional patients were prescribed valganciclovir as 
add on to standard therapy for glioblastomas. In 2013, 
we reported our first follow up data; treatment of 50 
glioblastoma patients who received anti-CMV treatment 
as an add-on to standard adjuvant therapy at Karolinska 
University Hospital, Sweden, demonstrated a 2-year 
survival of 70% among 40 patients receiving 6 months 
of anti-viral therapy, and as high as 90% survival among 
patients with continuous treatment (n = 25) compared with 
18% in contemporary controls (n = 137). Strikingly, the 
latter treatment group showed a median OS of 56.4 months 
compared with 13.5 months in controls (P < 0.0001) [19]. 
Overall survival at four years was 27.3% in anti-HCMV 
treated patients versus 5.9% in controls [95]. Today, we 
have treated 135 glioblastoma patients with valganciclovir, 
and we continue to observe highly improved survival 
rates among glioblastoma patients with both primary and 
recurrent disease. We are currently preparing for initiation 
of a clinical trial to assess the effect of valganciclovir 
treatment as add on to standard therapy in glioblastoma 
patients in a double blinded multicenter trial. First patients 
are expected to be enrolled in June 2019.

Most likely patients would benefit from combined 
therapies targeting HCMV. Both COX-1 and COX-
2 inhibitors are efficient anti-viral drugs that prevent 
HCMV replication [96, 97]. A synergistic treatment effect 
together with antiviral therapy was observed with a COX-
2 inhibitor in medulloblastoma, which resulted in a 72%-
97% reduced medulloblastoma tumor growth in an animal 
model and in vitro [13]. Cidofovir reduced glioblastoma 
growth and improved glioblastoma survival in recently 
published MCMV glioblastoma mice model [81]. New 
anti-CMV therapies are under development. Letermovir is 
a new type of antiviral treatment, that can offer a treatment 
choice for patients with resistance to classical antivirals, 
and was approved for clinical use against HCMV in US 
in 2017 [98]. Additionally, a very recent study reported 
the repurpose of manidipine dihydrochloride (MND), a 
calcium antagonist, which is clinically approved to treat 
hypertension, as a new anti-HCMV agent [99]. It remains 
to be seen if combination of different set of antiviral-
strategies against HCMV can give better efficacy and 
less resistance development without compromising safety 
and treatment efficacy aspects. In HIV patients, the virus 
was not controlled with one anti-viral drug, but needed 
combined antiviral therapy for clinical control of virus 
replication [100].

SHALL HCMV BE CONSIDERED AS AN 
ONCOGENIC VIRUS?

The precise role of HCMV as a cancer-causing 
agent in human cancers has not been clarified, and the 
virus is not included in the list of oncogenic viruses  
[9, 69]. However, in addition to being present in tumors, 
the biological properties of HCMV may fulfill the criteria 
for an oncogenic virus, when established modified 
standards based on Hill’s 9 criteria, proposed by Fredericks 
and Relman [101], are used. The existing literature 
reports, that i) HCMV can be found in over >90% of 
human epithelial tumors such as breast, colon, ovarian 
and prostate cancer, rhabdomyosarcoma, hepatocellular 
cancer, salivary gland tumors, neuroblastoma and brain 
tumors (medulloblastoma and glioblastoma) [13–19, 21, 
102–104]. ii) HCMV infected cells are confined within 
tumors and metastasis, and not found in adjacent normal 
tissues [19, 22, 105]. iii) The level of HCMV infection in 
the tumors correlates negatively with the positive disease 
outcome [22, 70, 84, 106]. iv) Treatment of the infection 
with antiviral therapy in HCMV positive cancer patients 
indicate improved prognosis and potentially represents a 
new effective anti-cancer strategy [13, 19]. v) HCMV gene 
products regulate multiple tumorigenic cellular pathways 
and processes related to all the “Hallmarks of cancer” 
[27, 101, 107]. Several HCMV encoded proteins exhibit 
biological properties that are directly related to cellular 
transformation and tumor development [33–35, 69, 80]. 
vi) HCMV infection shows a broad cellular tropism, and is 
present in tumor epithelial cells, macrophages, endothelial 
cells and sometimes in the stroma cells of the tumors [70, 
108–112]. HCMV differs from other onco-viruses on this 
point, but as discussed earlier in this paper, the broad tissue 
tropism of HCMV may have strong oncogenic impact 
on both tumor cells, through consequences in the tumor 
microenvironment and on the immune system. vii) The 
reproducibility of the results (i-vi) have historically been 
variable, and arguments against a role of HCMV in cancer 
have disputed that several studies have failed to confirm the 
association of HCMV with glioma, breast cancer, or other 
malignancies by polymerase chain reaction (PCR), in situ 
hybridization, and immunohistochemical methods [9–11]. 

Increasing recent evidence suggests a need to 
reconsider why some of the previous results have been 
inconsistent, and whether they reflect some common 
characteristics of the HCMV. It is now well known that 
antigen retrieval protocols are needed to unmask HCMV 
proteins if tumors are embedded in paraffin, while viral 
proteins are readily detected in frozen sections. In situ 
hybridization easily detects viral DNA, whereas PCR and 
sequencing methods generally fail to consistently detect 
the HCMV genome in tumor specimens. In addition, as 
already mentioned, the infection is different in permissive 
cells, in which the virus replicates and produce infectious 
virus, compared to in transformed cells in vivo or in vitro. 
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HCMV infected tumor cells often express cytoplasmic 
IE proteins, which are rarely observed in other infected 
tissues and not in in vitro studies. These observations 
suggest an alternative behavior of HCMV in tumor 
cells or the existence of a tumor associated unique virus 
strains. Rescuing of the virus from tumor cells of primary 
tumors, primary tumor cell cultures or established tumor 
cell lines [113] seems to be difficult or impossible. In 
contrast, HCMV is easily retrieved from infected tissue 
specimens during an acute infection. The oncogenic 
related HCMV infection in the epithelial cells might 
therefore resemble to that of latent HCMV infection, 
since the true biological character of latency is simply, 
that these are cells not making infectious virus while 
still expressing numerous viral genes [75]. This latent 
gene expression might become uncontrolled due to the 
changes on the MIEP sequence: It is also possible that 
HCMV transformed tumor cells lose the entire, or parts 
of the viral genome, or develop numerous mutations 
during the transformation process, and that tumors arise 
through a “hit and run mechanism” [69]. This scenario 
would similarly explain the difficulty in finding viral 
DNA in tumor cells by PCR [69], while the viral genome 
is detectable with large probes used in situ hybridization. 
Macrophages or stroma cells in close vicinity to the 
tumor may still contain an intact HCMV genome, and 
represent the small amounts of viral DNA reported 
in tumors by several investigators [13, 81, 113–116].  
However, after years of work trying to resolve this issue, 
we instead favor the hypothesis that unresolved technical 
problems account for the lack of detection of HCMV DNA 
in tumors by PCR and sequencing methods. This may 
be due to high level of genetic variance of CMV and/or 
difficulties of Taq polymerases to read the viral DNA or 
RNA (cDNA) code [81]. 

Another point of criticism against a potential role 
of HCMV in tumorigenesis is that, in contrast to all other 
known onco-virus, most HCMV strains are unable to 
transform normal human cells in vitro. However, there 
might be several, natural explanations for some failed 
efforts to show transforming properties of the HCMV 
in the past. It is well established that HCMV changes 
its characteristics quickly under in vitro conditions and 
behaves differently compared to in vivo situations [117]. 
The fact that different virus infected cells may cooperate 
during a transformation process in vivo, may explain 
failures to induce oncogenic transformation in in vitro 
experiments, as it has been difficult to recapitulate the  
in vivo requirements for this process in experimental 
models. Target cells may also need to acquire accumulation 
of relevant somatic mutations before an HCMV infection 
could lead to oncogenic transformation. Equally, 
mutations may lead to a non-lytic infection and enhanced 
oncogenic capacity. Most importantly, alternative strains 
of HCMV have been poorly characterized for oncogenic 
capacity, although they may be of significant importance 

in vivo. So far, wild-type strain HCMV-DB indicate 
a possible ability to transform human epithelial cells  
in vitro [69], likewise a clinical strain used by Fred 
Rapp´s group in the 1970th exhibited similar properties 
[62]. What characteristics these strains may have, making 
them potentially oncogenic and perhaps only in certain 
cellular context, is unknown. Questions therefore arise 
whether certain HCMV strains are tumor causing, and 
if so, what the carrier prevalence of such altered strains 
is in the human population? Such viruses are likely not 
leading to lytic infection in cell types in which oncogenic 
transformation may occur. They may also be highly cell 
associated, or defective, and thereby difficult to culture 
under conditions generally used for culturing HCMV  
in vitro. In support of this hypothesis, an HCMV strain 
from a paraganglioma was rescued with protocols not 
generally used for virus propagation [118]. As infections 
with specific cancer associated HCMV strains could 
explain why not all HCMV infected individuals develop 
cancer, studies to clarify the identity of HCMV strains in 
cancer specimens are promptly needed. 

In conclusion, a profound understanding of the 
link between HCMV infections, cancer initiation and/or 
cancer progression as well as clarification of the identity 
of the cancer associated viruses might help to identify 
individuals with higher cancer risk and to identify patients 
who could benefit from anti-viral strategies. To realize 
this goal, clinical trials are urgently needed to explore 
the efficacy and safety of antivirals in combination with 
classical cancer treatments such as surgery, radiation 
therapy, chemotherapy and immunotherapy in patients 
with HCMV associated malignancies, to assess whether 
HCMV provides a target for precision-based oncology 
treatment protocols. 
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