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ABSTRACT

We demonstrate the clinical utility of combining quantitative ultrasound (QUS) 
imaging of the breast with an artificial neural network (ANN) classifier to predict the 
response of breast cancer patients to neoadjuvant chemotherapy (NAC) administration 
prior to the start of treatment. 

 Using a 6 MHz ultrasound system, radiofrequency (RF) ultrasound data were 
acquired from 100 patients with biopsy-confirmed locally advanced breast cancer prior 
to the start of NAC. Quantitative ultrasound mean parameter intensity and texture 
features were computed from the tumour core and margin, and were compared to the 
clinical/pathological response and 5-year recurrence-free survival (RFS) of patients. 
A multi-parametric QUS model in conjunction with an ANN classifier predicted patient 
response with 96 ± 6% accuracy, and a 0.96 ± 0.08 area under the receiver operating 
characteristic curve (AUC), compared to 65 ± 10 % accuracy and 0.67 ± 0.14 AUC 
achieved using a K-Nearest Neighbour (KNN) algorithm. A separate ANN model 
predicted patient RFS with 85 ± 7% accuracy, and a 0.89 ± 0.11 AUC, whereas the 
KNN methodology achieved a 58 ± 6 % accuracy and a 0.64 ± 0.09 AUC. 

The application of ANN for classifying patient response based on tumour QUS 
features performs well in terms of predicting response to chemotherapy. The findings 
here provide a framework for developing personalized a priori chemotherapy selection 
for patients that are candidates for NAC, potentially resulting in improved patient 
treatment outcomes and prognosis. 
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INTRODUCTION

Neoadjuvant chemotherapy (NAC) is the primary 
up-front treatment modality for patients with locally 
advanced breast cancer (LABC). This aggressive form of 
cancer typically presents with tumours larger than 5 cm 
and extensive nodal involvement. Since the tumours are 
often inoperable, the goal of NAC is to reduce tumour 
volume. NAC may also be given to facilitate breast 
conserving surgery for patients who would otherwise 
require a mastectomy.  There is a strong correlation 
between a pathological complete response (pCR) to 
NAC and cancer-free survival. Despite the availability 
of a wide spectrum of systemic and targeted drugs, due 
to genetic and epigenetic factors, most patients do not 
achieve pathologic complete response to NAC. Response 
is typically determined at the end of several months of 
treatment. In this light, there is growing interest in the 
discovery of biomarkers to predict therapy response 
with the aim of optimizing treatment reducing morbidity 
by avoiding futile treatments, and improving prognosis. 
For instance, diffusion-weighted MRI (DW-MRI) has 
been demonstrated to predict clinical response of breast 
tumours as early as after one cycle of chemotherapy 
[1]. Positron emission tomography (PET) imaging of 
breast cancer patients using a fluorodeoxyglucose (FDG) 
contrast agent has detected response-related changes in the 
tumour after one cycle of chemotherapy [2]. Additionally, 
diffuse optical imaging (DOI) studies of breast cancer 
have measured a significant increase in haemoglobin 
concentration, water content, and tissue optical index in 
responding patients as early as one week after the start of 
chemotherapy [3]. 

To date, the majority of studies have focused on 
biomarkers reflective of treatment-induced changes in 
functional and/or structural properties of the tumour (i.e. 
monitoring biomarkers). However, there is a growing 
shift of attention toward biomarkers reflecting inherent 
tumour biology (i.e. predictive biomarkers), which do 
not require any treatment to be administered. From 
a non-imaging perspective, pre-treatment levels of  
immunohistochemical markers, including Ki-67, HER2, 
and circulating nucleosomes have been linked to the 
likelihood of breast tumour’s response to NAC [4–7].  
From an imaging perspective, a growing body of research 
exists in the area of pre-treatment imaging biomarkers.  
In a recent study, diffuse optical spectroscopic (DOS) 
imaging of LABC patients indicated that patients with a 
pathologically complete response have significantly higher 
up-front haemoglobin concentration levels than those 
with pathologically incomplete response with p = 0.01, 
AUC =1.0 [8]. A more recent DOS study demonstrated 
that changes in tissue optical index and baseline oxygen 
saturation levels are indicators of pCR with an AUC of 
0.83 [9].  Intra-tumoural and peri-tumoural radiomic 
features of dynamic contrast-enhanced MRI (DCE-MRI) 

of the breast have been demonstrated to be predictive of 
pCR prior to treatment with AUC of 0.74 [10]. In the area 
of PET imaging, the median progression-free survival of 
patients with estrogen receptor (ERe)- positive, human 
epithelial growth factor 2 (HER2)- negative breast 
tumours undergoing endocrine therapy was linked to their 
FDG uptake prior to treatment [11].

The use of clinical ultrasound has been established 
in the field of medical imaging as a cost-effective modality 
with high penetration depth (~7 cm) and real-time imaging 
capability. Furthermore, the raw ultrasound radiofrequency 
(RF) backscatter signal contains information about tissue 
microstructure, which is not resolvable in conventional 
ultrasound images (B-mode images). Quantitative 
ultrasound (QUS) techniques examine the frequency 
dependence of the RF signal backscattered from tissues 
and have been applied in vivo in a variety of applications 
to reveal information about tissue microstructure, enabling 
the differentiation of disease from normal tissue and the 
characterization of disease into its subtypes. For instance, 
parameters derived from the linear regression analysis of 
the RF power spectrum, including midband fit (MBF), 
spectral slope (SS), and spectral 0-MHz intercept (SI), 
have been used to characterize intraocular tumours and 
to detect prostate cancer, cardiovascular disease, and 
cancerous lymph nodes [12–15]. 

Broader frequency bandwidths further permit 
the estimation of advanced parameters such as average 
(effective) scatterer diameter (ASD) and average 
(effective) acoustic concentration (AAC), which are 
derived by fitting a scattering model to the RF data 
[16]. These parameters have effectively differentiated 
mouse carcinomas from rat fibroadenomas [17] and have 
demonstrated potential for use in breast tumour grading 
[18, 19] and diagnosis [20].  Recent pre-clinical studies 
have determined, using both high frequency (>20 MHz) 
and clinical frequency (<10MHz) ranges of ultrasound, 
that QUS can be used to detect and quantify tumour cell 
death in vivo in response to various treatments including 
photodynamic therapy, radiation therapy, chemotherapy, 
and anti-vascular therapy [21–24]. Furthermore, a recent 
pilot clinical study [25] demonstrated the effectiveness 
of using textural features extracted from QUS spectral 
images (MBF and SI) to detect breast tumour responses 
to neoadjuvant chemotherapy as early as one week into 
several-month-long chemotherapy treatments. The mean 
of intensity of ASD and AAC images derived from 
ultrasound backscatter data have also been effective 
at detecting treatment response in a similar clinical 
application [26]. 

Scatterer spacing, also known as spacing among 
scatterers (SAS), has also been investigated as a tissue 
characterization biomarker for tissues containing detectable 
periodicity in their structural organization. Previous 
studies have investigated the potential of SAS mainly 
for characterizing diffuse diseases of the liver [27–30].  
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For instance, in [28], the inter-scatterer-distribution 
(ISS) and the mean scatterer spacing (MSS) have been 
investigated for characterizing focal diseases of the 
liver using wavelet transform-based methods [28]. The 
MSS was considered for characterization of pathological 
human liver using Fourier transform-based methods [29]. 
The terms SAS and MSS are used interchangeably in the 
literature to refer to the mean scatterer spacing. More 
recently, SAS demonstrated discriminative power in breast 
tumour grading and therapy response applications [19, 31].  
Motivated by those studies, we recently investigated 
whether pre-treatment values of QUS biomarkers can 
differentiate between therapy responsive and non-
responsive tumours [32].  A multiparametric QUS model 
was developed using two regions of interest (ROIs) – the 
tumour core and a 5 mm margin of surrounding tissue.  
For each ROI, mean of intensity and texture features 
of QUS images were computed and incorporated into a 
k-nearest neighbour (KNN) classifier. Results from 56 
LABC patients, indicated a response prediction accuracy 
of 88%, which was linked to a 5-year recurrence-
free survival (RFS). However, as data becomes more 
complex (i.e. as data dimensionality increases), KNN 
performance typically deteriorates. In classification 
problems with high dimensionality, such as this study, 
an artificial neural network (ANN) classifier is a suitable 
choice [33]. An ANN is a nonlinear classifier that learns 
patterns in a data set using an interconnected network of 
“neurons” (elements with multiple inputs and one output) 
with a predefined activation rule. In the present study a 
previously examined cohort [32] was expanded from 56 
patients to 100 patients. The data set was balanced prior to 
supervised learning and a more advanced model – an ANN 
model - was trained to predict the response and 5-year 
RFS of LABC patients undergoing NAC. The results were 
then compared with those obtained from the previously 
used KNN model. In addition to the conventional binary 
response classification (response versus non-response) 
done previously, a three-class grouping scheme was also 
investigated here. This included complete, partial, and 
non-response classification. Finally, whereas previous 
work reported Kaplan-Meier 5-year RFS curves of 
responding and non-responding patients, here, the 5-year 
RFS of patients was separately predicted using QUS-based 
biomarkers directly.

RESULTS

Patient clinical characteristics

Table 1 presents a statistical summary of patient 
clinical characteristics including age, tumour size, estrogen 
receptor (ERe) status, progesterone receptor (PRe) status, 
and human epithelial growth factor 2 (HER2) status. The 
patients are separated according to response groups. Based 
on the modified response (MR) scoring system and binary 

classification of response described previously, of the 100 
patients in the study, 83 patients responded to treatment 
and 17 patients did not respond to treatment. Responders 
had a mean age of 50 ± 10 years and non-responders 
had a mean age of 47 ± 12 years. Responders and non-
responders had similar mean initial tumour sizes of 5.6 
± 2.7 cm and 5.9 ± 2.8 cm, respectively. The proportion 
of patients with ERe, PRe, and HER2 positive tumours 
in responder and non-responder groups are presented 
in Table 1. Statistical analysis using a chi-square test 
of independence demonstrated a significant correlation 
between complete response and HER2-postivitiy (p = 
0.002), whereas no statistically significant correlation was 
found between response and any of the hormone-based 
markers. In terms of histological subtype, the majority of 
the patients in both groups were diagnosed with invasive 
ductal carcinoma (91 % and 94 % in responder and non-
responder groups, respectively), with a small number of 
other subtypes such as invasive lobular carcinoma and 
invasive mammary carcinoma, as presented in Table 1.  
Individual patient details are presented in Supplementary 
Tables 1 and 2 in Supplementary Information.

Classification results

In this study, both two-class and three-class response 
grouping schemes were examined. In order to attain 
a sufficient number of samples for applying machine 
learning, the three-class response groups were combined 
into several two-class groups in the following manner: 
complete response (CR) versus (partial response (PR) + 
non-response (NR3)); (CR + PR) versus NR3; and PR 
versus NR3. Please refer to Materials and Methods for 
the definition of response types. Random down-sampling 
was performed on the majority class in order obtain a 
balanced set. Table 2 presents the majority and minority 
class sizes, balanced set size, and the number of balanced 
sets obtained after down-sampling for each grouping 
scheme. As observed, the number of balanced sets varies 
between grouping schemes depending on the number of 
times random sampling was required to sample all patients 
in the database.

Figure 1 presents representative responder and non-
responder patient QUS images with outlines of the core 
and margin ROIs. Displayed are images of B-mode (A), 
SS (B), SI (C), MBF (D), SAS(E), ASD (F), and AAC 
(G) parametric maps of the patient’s tumour prior to 
treatment initiation. In Figure 2, the corresponding low-
magnification (A) and high magnification (B) images of 
hematoxylin and eosin (H&E) stained sections of breast 
tissue specimens (excised after treatment completion 
and surgery) are displayed. It is evident from this figure 
that there are spatial variations in pixel intensities of the 
parametric images, highlighting the importance of texture-
based features  when discriminating responding tumours 
from non-responding ones. 
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Figure 3 compares responding and non-responding 
patients through a panel of overlaid scatter plots and box 
plots of the top 15 QUS texture features and the top 15 
QUS margin features in order of statistical significance 
(t-test or Mann–Whitney test). None of the features 
plotted were found to be statistically significant on their 
own (p > 0.05). However, one parameter, AAC energy, 
was found to be marginally significant (p = 0.05). As 
evident from Figure 3, none of the individual QUS 
features are linearly separable between the responder and 
non-responder groups. This highlights the need for multi-
feature classification and non-linear classifiers in order 
to solve this complex classification problem. Table 3 
presents mean classification performance metrics obtained 
from running the ANN model on all balanced sets (the 

number of balanced sets varied from 5 to 41 depending 
on class distribution as reported in Table 2). Reported 
metrics include sensitivity, specificity, accuracy, and AUC 
evaluated on the test set. For conventional response (R) 
versus non-response (NR2) classification, mean values of 
sensitivity, specificity, accuracy, and AUC of 89 ± 9 %, 
85 ± 12 %, 87 ± 6 %, and 0.90 ± 0.07 were obtained, 
respectively. In a three-class grouping scheme, when 
CR and PR patients were combined into one group and 
were compared against the NR3 patients, a 9% higher 
classification accuracy was observed on average (over the 
samples) compared to the conventional grouping scheme. 
This permitted non-responder patients and patients 
with response (partial or complete) to be identified up-
front with an accuracy of 96 ± 6%. However, when CR 

Table 2: Majority and minority class sizes, balanced set size, and number of balanced sets used for each classification 
type, including responder (R) vs non-responder (NR2), complete responder (CR) + partial responder (PR) vs NR3, 
CR vs (PR+NR3), PR vs NR3, and survivor vs non-survivor

Majority class Minority class Balanced set size No. of balanced sets
R vs NR2 R (83) NR2 (17) 34 (17+17) 21
CR vs (PR+NR3) PR+NR3 (55) CR (45) 90 (45+45) 5
(CR+PR) vs NR3 CR+PR (92) NR3 (8) 16 (8+8) 41
PR vs NR3 PR (47) NR3 (8) 16  (8+8) 22
Survival Survived (86) Not survived (14) 28 (14+14) 27

Table 1: Summary of clinical characteristics including age, initial tumour size, hormone receptor statuses, and cancer 
subtypes, of the studied LABC patients grouped by their clinical/pathological response to NACT

Responders (N = 83) Non-responders (N = 17)
Age (yr) Min 31 29

Max 83 67
Mean 50 47
SD 11 12

Tumor size pre (cm) Min 1 3
Max 12 13
Mean 6 6
SD 3 3

ERe positive No. 51 12
% 61 71

PRe positive No. 45 11
% 54 65

HER2 positive No. 31 4
% 37 24

IDC No. 76 16
% 92 94

Other (ILC, IMC) No. 7 1
% 8 6

Abbreviations: ER, estrogen receptor status; PR, progesterone receptor status; HER2, human epithelial growth factor 
receptor 2 status; IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; IMC, invasive mammary carcinoma.
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Figure 1: QUS images from a representative non-responder (NR2) patient and a representative responder patient with 
outlines of core and margin ROIs. (A) B-mode images, (B) SS image, (C) SI images, (D) MBF images, (E) SAS images, (F) ASD, 
and (G) AAC images obtained prior to chemotherapy treatment initiation. Scale bars: 1 cm.
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patients were compared against PR+NR3 patients, the 
classification accuracy dropped by 8% compared to the 
conventional grouping scheme. Classification of PR versus 
NR3 patients yielded an accuracy of 86 ± 10 %. However, 
due to the relatively small sample size (47 PR and 8 NR3), 
the model has limited statistical power compared to the 
other classification types. 

Classification performance for survival was also 
evaluated. The classification performance measures 
for classifying 5-year survivors versus patients with 
recurrence were similar to those for the conventional 
response classification (sensitivity, specificity, accuracy, 
and AUC of 89 ± 8 %, 84 ± 11 %, 85 ± 7 %, and 0.89 ± 
0.11, respectively).

Figure 4 compares the AUCs obtained using the 
ANN and KNN classifiers for predicting two-class 
and three-class responses and survival of patients. In 
classification tasks, the ANN classifier outperformed 
the KNN classifier. Table 4 presents, for each grouping 
scheme, the five QUS and hormone features selected 

by the sequential forward feature selection method that 
yielded the highest AUC. As evident, QUS texture features 
contributed prominently to the response prediction 
models in all grouping schemes. Hormone features did 
not contribute to the binary classification (conventional 
response prediction and survival prediction), whereas 
the opposite was true when patients were grouped based 
on their three-category response criteria:  for CR vs 
(PR+NR3) classification, ERe and PRe contributed to the 
prediction; and for PR vs NR3 prediction, ERe contributed 
to the prediction.

DISCUSSION

In this study, the statistical features of QUS images 
combined with an artificial neural network classifier were 
demonstrated, for the first time, to be effective in the pre-
treatment prediction of response and 5-year recurrence-
free survival of LABC patients receiving neoadjuvant 
chemotherapy. Both the conventional clinical response 

Figure 2:  (A) H & E stained histology images of the excised breast specimen after resection. (B) High-magnification images. Scale bars: 
H & E low magnification – 1 cm, H & E high magnification – 100 μm.
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Figure 3: One-dimensional scatter plots and overlaid boxplots of the top 15 QUS texture featuers and top 15 QUS 
margin features comparing responder (R) and non-responder (NR2) groups. The features are plotted in order of statistical 
significance (smallest p-value to largest p-value) from left to right, top to bottom in a raster fasion.  
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and recurrence-free survival were predicted with high 
accuracies (87 % and 85 % on average, respectively). 
Importantly, the best results were obtained when 
differentiating patients with no response versus those with 
some response ((CR+PR) versus NR3) with an accuracy 
of 96% on average (93 % sensitivity, 98% specificity 
and 0.96 AUC). The classification results were validated 
with patient modified response scores determined using 
post-surgical pathology data. The method proposed here 
can be incorporated, as a pre-treatment screening step, in 

the clinical workflow of LABC patients. This step would 
provide insight into the effectiveness of a given treatment 
regimen and allow the personalization of treatment. If 
it is known up-front that a patient will not respond to a 
particular chemotherapy, other agents or treatments can be 
selected instead of embarking on a several-month course 
of ineffective chemotherapy. 

In this study, the ANN provided the best 
classification results. Results obtained using a KNN 
classifier were worse but were limited to 5 input 

Table 3: Comparison of classification performances by ANN for different types of patient classification
Sensitivity (%) Specificity (%) Accuracy (%) AUC

R vs NR2 Mean 89 85 87 0.90
SD 9 12 6 0.07

CR vs (PR+NR3) Mean 83 75 79 0.79
SD 3 1 1 0.04

(CR+PR) vs NR3 Mean 93 98 96 0.96
SD 9 6 6 0.08

PR vs NR3 Mean 88 84 86 0.89
SD 12 16 10 0.11

Survival Mean 89 84 85 0.89
SD 8 11 7 0.11

Reported values are mean and standard deviation (SD) values obtained by averaging the results over the subsets.

Figure 4: Comparison of prediction performance AUCs of the ANN and KNN classifiers for two-class and three-class 
response and survival prediction tasks. 
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parameters to avoid overfitting, whereas our previous 
work used more than 10.  The high accuracy attained here 
is important for such methods to be used clinically. This 
can potentially lead to an improvement in patient quality 
of life as well as substantial savings in time, costs, and 
resources for both the patient and the health care provider.

The results demonstrated that the gray-level co-
occurrence matrix (GLCM)-based texture features 
contributed to both response prediction models 
(conventional and three-class). The sensitivity of QUS 
texture features to therapy responsiveness are likely 
linked to the heterogeneous nature of tumour response 
to chemotherapy at the early stages. This theory has been 
suggested in previous studies examining GLCM-based 
[25] and local binary pattern-based [34] QUS texture 
analyses of LABC tumours undergoing chemotherapy. 
Aside from treatment response characterization, a previous 
LABC tumour characterization study demonstrated that 
QUS texture features provide a strong discrimination 
between low grade and medium-to-high grade tumours. 
[19], suggesting a link between QUS texture features and 
tumour heterogeneity. 

Our response prediction results highlighted the 
sensitivity of the QUS feature set, identified by the ANN 
classifier, to the labels used in the training data set (Table 
4). This may be due, in part, to the small number of non-
responding patients (N = 17) compared to responding 
patients (N = 83). As data from new non-responding 
patients is collected in the future, the inter-patient variations 
in QUS features will be more effectively accounted for 
through machine learning and a more robust set of QUS 
features will be identified. The partial correlations between 
QUS features here are acknowledged. In parameters 
calculated through linear regression of the RF power 
spectrum, SS is related to the size of diffuse scatterers, SI 
is related to the acoustic concentration, and MBF is related 
to SS and SI.  Among parameters using the Gaussian form 
factor model, ASD is an estimate of scatterer size and AAC 
is an estimate of acoustic concentration. However, due to 
the difference in the underlying models and assumptions, 
ASD and SS are partially correlated, and (MBF, SI) and 
AAC are partially correlated. In terms of ASD versus SAS, 
ASD characterizes the size of diffuse scatterers whereas 
SAS measures the spacing between both regular and 

diffuse scatterers. In a study characterizing diffuse liver 
disease, SAS measurements have been correlated with 
the distribution of collagen fibers [35]. In breast studies, 
ASD measurements have been correlated with the size of 
cells [17, 18]. Thus, it is plausible for SAS measurements 
in this study to be correlated with collagen fibers and 
cells, whereas ASD measurements are correlated with the 
distribution of cells. 

There is mounting evidence suggesting that 
molecular subtypes (i.e. hormone receptor expressions) 
of tumours play an important role in developed or 
inherent drug resistance [36]. The fact that ERe and PRe 
contributed to the CR vs (PR+NR3) differentiation and 
that ER status was determined as a contributing parameter 
to PR vs NR3 differentiation confirmed the importance 
of tumour hormone receptor expression as a predictive 
marker. This has also been suggested in previous studies 
[6, 7]. Here, a hybrid model consisting of image-based 
and molecular-based markers was constructed employing 
an ANN classifier, which yielded similar accuracy to that 
of our previous work [32]. The current study includes two 
improvements: the patient cohort investigated is nearly 
double the size of cohort in the previous study, and data 
imbalance correction was made prior to classification 
through random sub-sampling. Furthermore, in this 
study, a survival predictor model was developed using an 
ANN classifier. In the previous study [32], retrospective 
survival analysis was performed (Kaplan-Meier survival 
curves), providing predictive insight into patient survival. 
In addition, various three-way classifiers resulted in 
better results for what is an important clinical indicator- 
identifying patients a priori who will have no response to 
chemotherapy. 

The method developed here may also be combined 
with monitoring of cell-death responses using quantitative 
ultrasound. Sadeghi-Naini et al [25] have recently used 
similar approaches to monitor treatment response based 
on cell death detection using quantitative ultrasound. 
They indicated that QUS markers of response to NAC 
capture microstructural changes in the tumour induced 
by anticancer drugs, which correlate very well with long-
term outcomes. Thus, it is not surprising that such markers 
could provide insight into the likelihood of response prior 
to starting treatment. 

Table 4: The five best QUS + molecular features obtained by the ANN classifier for different types of classification
Best Features

R vs NR2 AACENE_IN AACHOM_IN MBFCMR SIHOM_IN SASENE_IN

CR vs (PR+NR3) ER SASENE_IN SASCON_IN PR MBFHOM_IN

(CR+PR) vs NR3 SSENE_IN SASHOM_IN AACENE_IN ASDHOM_IN ASDCOR_IN

PR vs NR3 SASHOM_IN SASENE_IN SASCON_IN SICOR_IN ER
Survival AACCON_IN ASDCON_IN ASDCORE_IN ASDMARGIN SIENE_IN

Reported are the five QUS + molecular features that were determined by way of cross-validation to yield the highest AUC.
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Previous studies have investigated methods for 
a priori prediction of treatment response. Tran et al. 
[37] recently demonstrated the utility of diffuse optical 
spectroscopy imaging, particularly the homogeneity 
texture feature of oxygenated haemoglobin concentration 
within the breast in predicting breast tumour response 
to NAC with an accuracy of 88%. However, that study 
was limited to a smaller analysis of 37 patients, nearly 
a third of the size of the cohort used here. Furthermore, 
uncertainties in tumour delineation arose due to the 
relatively low resolution of DOS. 

Molecular markers have also been used to predict 
breast cancer recurrence. A  21-gene reverse transcriptase-
polymerase chain reaction (RT-PCR) assay, or Oncotype 
DX [38], has been used to grade a recurrence risk of breast 
cancer in patients with lymph node negative, estrogen 
receptor-positive breast cancer. The recurrence score was 
found to be predictive of whether or not a patient would 
benefit from adjuvant chemotherapy. However, for now 
that technique applies only to the aforementioned sub-
group of breast cancer patients, whereas the QUS method 
proposed here applies to all LABC patients. Furthermore, 
our method is potentially extendable to early breast cancer 
patients receiving up-front chemotherapy or adjuvant 
chemotherapy, regardless of their lymph node or hormone 
receptor statuses. 

Drug resistance of cancer cells to chemotherapy 
can be inherent or developed through exposure to the 
drug [36]. A large body of research has established 
multidrug resistance (MDR) transporter proteins as 
one of the key mechanisms of cancer cell resistance to 
chemotherapy drugs [36], particularly anthracyclines 
and taxanes. Thus, as a future investigation, correlating 
QUS properties of a tumour with its MDR biomarkers 
may shed light on the mechanism by which QUS 
could detect inherent MDR in a tumour. As mentioned 
previously, Ki-67 is also an important pre-treatment 
biomarker of tumour responsiveness [4]. As Ki-67 is a 
cell proliferation biomarker that is present in the active 
phases of the cell cycle (G1, S, G2, and mitosis), it is a 
marker of cellular and glandular morphology. QUS- based 
tissue characterization works by discriminating tissues 
based on differences in their microstructure. In the 1-10 
MHz range of frequencies used in clinical applications, 
ultrasound is sensitive to scatterers in the range of 20-500 
µm in diameter [16].  Thus, it is plausible that ultrasound 
is sensitive to differences in the glandular morphology 
of tumours, which ultimately determines the likelihood 
of chemotherapy response. Most likely cellular changes 
associated with malignancy have an effect at one level, 
and as tumours become more aggressive the organization 
of cells becomes more and more deranged at the ductal 
level and then at the glandular level.

Due to the highly heterogeneous nature of tumours, 
particularly those of the breast, the prediction of their 
response to NAC requires advanced machine learning 

algorithms that can effectively learn a non-linear pattern 
from data and build a strong classifier from several weak 
classifiers (QUS & molecular features). One of the most 
popular machine learning techniques with this capability 
is artificial neural networks. Recently, artificial neural 
networks have gained interest in oncology through 
successful applications in the detection of breast cancer 
in mammography images (AUC of 0.82) [39] and in the 
detection and localization of cancer metastasis in whole-slide 
pathology images of lymph nodes (AUC above 0.97) [40]. 

In the study here, an image-based model including 
textural features and tumour/periphery analyses was 
proposed for predicting response to NAC and survival 
of LABC patients. The sonographic analyses here can 
be thought of as generating “sonomic” biomarkers of 
response prediction akin to genomic biomarkers for 
predictive or prognostic assays but derived through 
ultrasound analyses as opposed to genetic analyses. Pre-
treatment image-based biomarker surrogates of response 
stand to personalize health care by minimizing drug 
toxicity and maximizing chances of long-term survival. 
The technology can be incorporated into existing 
commercial clinical ultrasound imaging systems capable 
of RF data acquisition and potentially extended to other 
cancer types.

MATERIALS AND METHODS

This prospective study was reviewed and approved 
by the institution’s research ethics board. After obtaining 
informed consent, ultrasound RF data were acquired 
from 100 patients with biopsy-confirmed LABC prior 
to start of their NAC. Data acquisition was performed 
by an experienced sonographer using a Sonix RP system 
(Ultrasonix, Vancouver, Canada) equipped with a 6 
MHz linear array transducer (L14-5/60W) with a digital 
sampling rate of 40 MHz. The focus was set at the midline 
of the tumour using electronic beam focusing, and the 
imaging depth ranged from 4 to 6 cm, depending on 
tumour size and location. Images were acquired at 5 mm 
intervals over the tumour volume.

Patient clinical characteristics

Patient data including age, initial tumour size 
(measured by imaging), ERe status, PRe status, and HER2 
status were recorded. The clinical/pathological tumour 
response of each patient to treatment was determined 
at the end of their treatment using a modified response 
(MR) grading system which was based on RECIST 
[41] and histological [42] criteria. The MR score was 
defined as follows: MR Score 1: no diminishment in 
tumour size (cNR); MR2: up to 30% diminishment 
in tumour size (cNR); MR 3: between an estimated 
30% and 90% reduction in tumour size (cPR); MR 4: a 
diminishment of more than 90% in tumour size (almost 
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pCR); MR 5: no evident tumour and no malignant cells 
identifiable in sections from the site of the tumour; only 
vascular fibroelastotic stroma remains, often containing 
macrophages; however, ductal carcinoma in situ may be 
present (pCR).

Both binary and three-class classifications were 
investigated. In the binary scenario, a patient with an 
MR score of 3-5 was deemed to be a responder (R) and 
a patient with an MR score of 1–2 was deemed to be a 
non-responder (NR2). In the three-class scenario, a patient 
with MR grade of 4–5 was deemed to be a complete 
responder (CR), 2–3 a partial responder (PR), and 1 a 
non-responder (NR3). The number proceeding NR (i.e. 
NR2 or NR3) differentiates the non-responders in the 
two-class and three-class grouping schemes. All patients 
received anthracycline/taxane-based treatment lasting 
several months. Each patient received a treatment regimen 
according to their disease type, stage, and hormone 
receptor expressions. Details about the specific types of 
treatments administered to individual patients are provided 
in Supplementary Table 1 in Supplementary Information. 
Recurrence-free survival was determined based on a 
5-year follow up timeframe, during which the patient was 
free of any local or distant cancer recurrence.

QUS feature evaluation

QUS analysis was carried out using the dual ROI 
method published previously [32]. In each B-mode breast 
ultrasound image, two separate ROIs consisting of 1) 
tumour core and 2) a rim of surrounding tissue of 5 mm 
thickness were manually contoured. This process was 
repeated on 4-7 image planes across the tumour. All images 
were para-sagittal. All images were non-overlapping. For 
each ROI, QUS features were computed within sliding RF 
windows that were 2 × 2 mm in size and had 94% overlap 
in axial and lateral directions to produce a parametric map. 
From each parametric map, mean of intensity, texture, 
and image quality metrics were extracted and averaged 
across the image planes and subsequently used as features 

(inputs) for the ANN-based patient response classifier. 
The QUS parametric maps that were generated from the 
raw ultrasound data were: MBF, SS, SI, ASD, AAC, SAS, 
and attenuation coefficient estimate (ACE). In order to 
characterize structural patterns in the parametric maps, a 
gray-level co-occurrence matrix (GLCM)–based texture 
analysis was performed on the newly obtained parametric 
images as described in Tadayyon et al. [19]. This method 
was originally developed by Haralick et al. [43]. The 
texture features that were extracted from the parametric 
maps were contrast (CON), correlation (COR), energy 
(ENE), and homogeneity (HOM). Additionally, two 
image quality metrics were extracted from the parametric 
maps that compared the statistical properties of the core 
ROI to those of the margin ROI: core-to-margin ratio 
(CMR), and core-to-margin contrast ratio (CMCR) as per 
the method described in [32]. Table 5 presents, in detail, 
the QUS-based features that were included in the ANN-
based response classifier model based on ROI location 
and image metric. In addition to above-mentioned QUS 
features, tumour receptor expression statuses including 
PRe, ERe, an HER2 were investigated in the analysis. In 
total, 52 features were investigated as potential predictors 
of response. Details about the QUS analysis are provided 
in Supplementary Information. 

Response and recurrence-free survival 
classification

Prior to applying a classification rule, a data balancing 
step was performed by way of down-sampling to account 
for the smaller sample size of non-responding patients 
(MR=1-2, N=17) compared to responding patients (MR=3-
5, N=83). In this step, random samples (with replacement) 
were drawn from the majority class QUS data (responding 
patients) with a size equal to that of the minority class (non-
responding patients). This was repeated as many times 
as required to sample all patients in the majority class. 
Sequential forward feature selection (SFFS) [44] with 
p-value initialization was applied to the balanced dataset 

Table 5: QUS image-based features that were computed per patient, identified by ROI (core or margin) and image 
metric (mean, texture, CMR, or CMCR)
 Core ROI Margin ROI Core vs. Margin no. of features
Mean MBF, SS, SI, SAS, 

ASD, AAC, ACE
MBF, SS, SI, SAS, 
ASD, AAC

13

Texture (CON, COR, 
ENE, HOM)

MBF, SS, SI, SAS, 
ASD, AAC,

24

CMR MBF, SS, SI, SAS, 
ASD, AAC,

6

CMCR MBF, SS, SI, SAS, 
ASD, AAC,

6

TOTAL 49
A total of 49 features were computed per patient.
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to determine the optimal feature set for classification. This 
involved sorting the features based on their p-values of 
significance (from smallest to largest) obtained from an 
unpaired two-sample t-test or Mann–Whitney test, starting 
with the first feature as the initial feature set and adding or 
discarding features using the SFFS method until all features 
were evaluated. The maximum feature size was set to 5 in 
order to avoid overfitting due to the high dimensionality 
of the data set. The ANN classifier was configured as a 
single hidden layer model. In each balanced set, the data 
was randomly split into 70% training, 15% validation, 
and 15% test sets. In the training phase, hyper-parameter 
tuning was performed on the hidden layer size (1–10 nodes) 
using the training set to train the network and the validation 
set to evaluate it based on AUC. The test set was used to 
evaluate the generalization error of the network after fixing 
its hyper-parameters. The process was repeated 10 times on 
10 bootstrapped, train-validate-test sets in order to account 
for variations in the ANN output due to random sampling. 
For each balanced set, a verification step was conducted to 
ensure that there was at least one sample from each class 
in each of the training, validation, and testing sets. For 
each balanced set, classifier performance metrics including 
sensitivity, specificity, accuracy, and AUC were measured 
on the test sets, which were obtained by averaging the 
values over the 10 bootstrap samples. For comparison, a 
KNN model was trained and tested in the same manner.  
Sensitivity was defined as the ratio of the number of true 
positives (responders) to the total number of positives in the 
test set. Specificity was defined as the ratio of the number 
of true negatives (non-responders) to the total number of 
negatives in the test set. Accuracy was defined as the ratio 
of the number of correctly classified patients to the total 
number of patients in the test set. All values are reported in 
percentages.
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