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ABSTRACT

Estrogen-receptor negative (ERneg) breast cancer is an aggressive breast cancer 
subtype in the need for new therapeutic options. We have analyzed metabolomics, 
proteomics and transcriptomics data for a cohort of 276 breast tumors (MetaCancer 
study) and nine public transcriptomics datasets using univariate statistics, meta-
analysis, Reactome pathway analysis, biochemical network mapping and text mining 
of metabolic genes. In the MetaCancer cohort, a total of 29% metabolites, 21% 
proteins and 33% transcripts were significantly different (raw p <0.05) between 
ERneg and ERpos breast tumors. In the nine public transcriptomics datasets, on 
average 23% of all genes were significantly different (raw p <0.05). Specifically, 
up to 60% of the metabolic genes were significantly different (meta-analysis raw p 
<0.05) across the transcriptomics datasets. Reactome pathway analysis of all omics 
showed that energy metabolism, and biosynthesis of nucleotides, amino acids, and 
lipids were associated with ERneg status. Text mining revealed that several significant 
metabolic genes and enzymes have been rarely reported to date, including PFKP, 
GART, PLOD1, ASS1, NUDT12, FAR1, PDE7A, FAHD1, ITPK1, SORD, HACD3, CDS2 
and PDSS1. Metabolic processes associated with ERneg tumors were identified by 
multi-omics integration analysis of metabolomics, proteomics and transcriptomics 
data. Overall results suggested that TCA anaplerosis, proline biosynthesis, synthesis 
of complex lipids and mechanisms for recycling substrates were activated in ERneg 
tumors. Under-reported genes were revealed by text mining which may serve as 
novel candidates for drug targets in cancer therapies. The workflow presented here 
can also be used for other tumor types. 
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INTRODUCTION

Estrogen receptor signaling is one of the main 
molecular features that determines the aggressiveness 
and the clinical course of breast cancer. Estrogen receptor 
negative breast tumors are aggressive and have a poor 

prognosis due to their high proliferation rate and their 
resistance to many therapeutic approaches. The estrogen-
independent growth of ERneg tumors depends on a range 
of biological pathways, including central energy and 
nucleotide metabolism [1, 2], motivating to characterize 
metabolic dysregulations associated with the aggressive 
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tumor phenotype. Human metabolic network’s operation 
and regulation is governed by up to 10% genes in the 
human genome. Many of these genes and associated 
pathways are dysregulated and fuel a tumor’s growth, 
therefore they are potential drug targets. 

How to identify these dysregulations in aggressive 
breast tumors and rank them? One of the experimental 
approaches is to analyze the tumors with omics assays 
including metabolomics, proteomics and transcriptomics. 
In fact, breast tumors are extensively analyzed using these 
assays [3–13]. Tumor metabolomics reveals new insights 
into breast cancer metabolism [14–17]. MetaCancer 
consortium has been built to identify and validate new 
breast cancer biomarkers based on metabolomics [17, 
18]. We have previously shown that beta-alanine and 
glutamate to glutamine ratio (GGR) are associated with 
aggressive phenotype in the MetaCancer cohort [17, 
18]. Furthermore, a multi-omics approach has been 
successfully used to characterize metabolic dysregulation 
and identify potential new therapeutic targets in lung 
cancer [19], but such investigations are limited for breast 
tumors. These approaches yield different lists of potential 
targets, creating a challenge to identify which genes and 
pathways can be targeted in follow-up experiments. A 
handful of genes are over-studied in reference to tumor 
biology, for example IDH1 or FH, indicating a selection 
bias. However, poorly-studied significant genes and 
associated metabolic pathways provide an additional 
repertoire to identify new drug targets beyond the  
handful of genes. 

In the present study, we integrated tissue-based 
metabolomics with proteomics and transcriptomics 
in the MetaCancer cohort to identify the metabolites, 
proteins and metabolic genes that are associated with 
ERneg phenotype. To identify metabolic genes that were 
poorly studied in ERneg tumors, we performed Gene 
Expression Omnibus (GEO) based meta-analysis of nine 
publicly available datasets, and ranked the metabolic 
genes based on their significance in meta-analysis and 
literature count.

RESULTS 

Workflow to prioritize tumor metabolic genes 

We applied a new bioinformatics workflow (Figure 
1) to characterize metabolic dysregulations between ERpos 
and ERneg breast tumors. We used metabolite, protein and 
transcript measurements data from the MetaCancer cohort 
[17, 18], in addition to publicly available gene expression 
data (Supplementary Table 1). The workflow incorporates 
significance testing, gene expression meta-analysis, 
pathway analysis, network mapping and text mining. The 
output of this workflow yields lists of metabolic pathways 
and under-studied metabolic genes, here associated with 
ERneg breast tumor biology.

Molecular differences between ERneg and 
ERpos breast tumors

Table 1 summarizes significantly different 
transcripts, proteins and metabolites between ERneg and 
ERpos tumors in the MetaCancer and the public datasets. 
We used raw p-values to interpret the molecular differences 
across all multi-omics levels of cellular regulation using 
bioinformatics approaches. Hence, we did not correct 
p-values for multiple hypothesis testing because our 
objective was not to find a diagnosis biomarker panel that 
can distinct the tumor subtypes. 

MetaCancer dataset 

The metabolomics data of the MetaCancer 
study consisted of 470 metabolites detected by gas 
chromatography/time of flight mass spectrometry, 
including 161 identified metabolites and 309 unidentified 
metabolites. Breast tumors from 251 women were studied, 
of which 192 were ERpos and 59 were ERneg. A total 
of 164 metabolites (63 identified and 101 unidentified 
metabolites) were significantly different between ERpos 
an ERneg cancer groups (raw p-value <0.05) with an 
average effect size of 1.37-fold changes, ranging from 
0.59–3.03-fold. The levels of 133 metabolites were higher 
in ERneg tumors and 31 metabolites were lower in ERneg 
tumors (Figure 2C, 2D and Supplementary Table 4). 

The proteomics MetaCancer data consisted of 125 
formalin-fixed paraffin embedded (FFPE) samples using 
96 ERpos tumors and 29 ERneg tumors. FFPE samples 
were not available for all 251 patients. ER status for one 
sample was not known. We could not use the exact same 
fresh frozen tumors as used for the metabolomics analysis 
because of limited sample availability. Conversely, FFPE 
samples are not useful for metabolomics analysis due to 
the FFPE fixation process. Out of total 1500 detected 
proteins, 1231 were found in at least six samples in either 
ERpos or ERneg groups and were kept in the dataset for 
statistics analysis (Supplementary Table 5). A total 295 
proteins were found to be significantly different regulated 
(raw p-value <0.05) using the Mann-Whitney U test. The 
levels of 97 proteins were lower in ERneg tumors and 198 
proteins were higher in ERneg tumors (Figure 2B, 2D, 
Supplementary Table 5). 

The transcriptomics MetaCancer dataset was 
downloaded from the gene expression omnibus (GEO) 
database with accession number GEO59198. The data 
set included 18401 genes determined in 122 ERpos and 
32 ERneg breast tumors (Table 1). A total of 6040 genes 
(33%) were significantly different (raw p-value <0.05) 
between ERpos and ERneg groups using the GEO2R 
utility (Figure 2D) [20]. Among those genes, 3103 were 
under-expressed and 2937 were over-expressed in the 
ERneg tumors (Table 1, Supplementary Table 6). We 
have then utilized the Expasy database to obtain enzyme 

www.oncotarget.com


Oncotarget3896www.oncotarget.com

commission (EC) annotations for all human genes from 
NCBI. We selected the EC numbers that chemically 
transform small-molecules by excluding enzymes that 
use proteins or genes as substrates, yielding a total 
of 1549 human genes coding for metabolic enzymes 
(Supplementary Table 7). 540 metabolic genes (35%) 
were found to be significantly different (raw p-value 
<0.05) in ERneg tumors compared to ERpos tumors in 
the MetaCancer cohort (Figure 2A, Supplementary Table 
7 and Supplementary Figure 1).

Breast tumor public gene expression datasets

We collected eight additional gene expression 
datasets for which the ER status was known. The eight 
additional GEO studies consisted of total 540 for ERpos 
and 299 ERneg breast cancer samples, ranging between 
32–138 samples for ERpos tumors and 10–88 ERneg 
tumors (Table 1). On average, we found 23% of all 
transcripts to be significantly different expressed between 
ERpos and ERneg, ranging from 5–42% (Figure 2E). 
Similar to the MetaCancer study, 47% of all significant 
genes were over-expressed, 53% were under-expressed. A 
meta-analysis by comparing the raw p-value distribution of 

each gene with across all datasets with a null-distribution 
using the Kolmogrov-Smirnov test (KS) yielded a total of 
929 metabolic genes which were significant (raw p-value 
<0.05) (Figure 2F, Supplementary Table 7, Supplementary 
Figure 1). Estrogen receptor 1 (ESR1) gene expression was 
lower in ERneg tumors across all gene expression datasets 
(Supplementary Table 6). 

Integrated pathway analysis and visualization

Next, we investigated whether these different omics 
data can be grouped by functional relationships. Here, we 
focused on integrated analysis of metabolic pathways. 
We used statistical over-representation as generic tool to 
summarize and rank the differential regulation of genes, 
proteins and metabolites by mapping to the Reactome 
database [21]. We used Reactome as reference database 
because it uses GO terms and because it provides more 
comprehensive mapping of genes to metabolic pathways 
than KEGG pathways, BioCyc or HMDB. We then 
confined the Reactome analysis to significantly regulated 
molecular markers, yielding a joint list of 542 genes, 
104 proteins and 56 metabolites Supplementary Table 
8). Notably, 20 metabolites, 7 proteins and 45 genes 

Figure 1: Overview of multi-omics data mining to reveal metabolic dysregulation by integrating raw p-values from 
metabolite, protein and gene expression analysis. Results of significance testing on individual omics-levels were subsequently 
analyzed by pathway enrichment analysis, by mapping to biochemical networks and by text mining. The overall outcome of such analysis 
is a list of key pathways and genes that includes well-studied genes as well as genes that have rarely been reported before in the context 
of breast cancer.

www.oncotarget.com


Oncotarget3897www.oncotarget.com

could not be mapped to any pathway set and therefore 
had to be discarded from further analysis. The lists of 
remaining molecular markers were summarized by 
Reactome overrepresentation analysis into 886 pathways 
(Supplementary Table 9) of which 88 (~10%) were found 
to be significantly enriched (Figure 3). Interestingly, 
for most pathways, the over-representation analysis 
was based on all three omics levels, while 15 pathways 
were supported by only protein and gene lists and 8 
pathways were based solely on gene set enrichments. 
This finding is based on the larger size of gene lists 
compared to proteins or metabolites, in addition to bias 
in proteomics and metabolomics data acquisitions. For 
example, the metabolomics platform used here did not 
cover biosynthesis of complex lipids, while our FFPE-
based proteomics method failed to observed low-abundant 
proteins. We did not use lipidomics analysis here because 
most lipids are not annotated by specific enzymes in 
Reactome. Consequently, only gene lists supported the 
finding of dysregulation of conjugation of amino acids 
or carboxylic acids (xenobiotic metabolism, Figure 3, 
branch 5a) and only gene- or gene/protein lists supported 
the finding of dysregulation of complex lipids (Figure 
3, branch 7a). Importantly, Reactome pathway mapping 
highlighted various biological pathways involved in amino 
acids (Figure 3, branch 9), carbohydrates (Figure 3, branch 
1), nucleotides (Figure 3, branch 3), fatty acid metabolism 
(Figure 3, branch 7b), and mitochondrial oxidation (TCA 
cycle, Figure 3, branch 2) (Supplementary Table 9). Key 
specific pathways within these branches were glycolysis, 
pentose phosphate pathway, TCA cycle, nucleotide 
salvage, glutathione conjugation, steroids metabolism, 
fatty acyl-CoA biosynthesis, serine biosynthesis and 
metabolism of aromatic amino acids. These pathways 

were also found to be significantly associated with 
ERneg phenotype when genes, protein and metabolite 
lists were analyzed separately (Supplementary Tables 
10–13). Several branches indicate the importance of 
lipids, nucleotides and amino acids for sustaining tumor 
growth and cell division in the more aggressive ERneg 
tumors. Other branches such as carbohydrates and TCA 
metabolism can be summarized in altered utilization of 
energy sources, amino acid conjugation for neutralizing 
xenobiotic including anti-tumor drugs, cholesterol 
biosynthesis regulation by SREBP and coenzyme 
biosynthesis to support fatty acid production. 

Next, we integrated differentially regulated genes, 
proteins and metabolites into network maps (Figure 
4) using their chemical and biochemical relationships 
[22]. The networks complemented the pathway over-
representation analysis by visualizing individual entities 
and their relationships (also see Supplementary Figure 2, 
Supplementary Tables 2 and 3). For example, an increase 
in nucleotide metabolism is substantiated by altered 
levels of 10 metabolites, 19 metabolic genes and six 
enzymes including increased levels of 5NTC, NAMPT, 
BPNT1, PNPH and KCRU (Figures 4, Supplementary 
Tables 4, 5, 6), in addition to decreased levels of 15 genes 
(Supplementary Table 6). Similarly, glycolysis and TCA 
cycle metabolism (Figure 4) was altered by increased 
levels of 7 metabolites, 33 genes and 13 proteins, 
including G6PD, PGM1, MAOM, IDHP, CISY and lower 
levels of F16P2 (Supplementary Table 5). The combined 
action of these genes and proteins supports metabolic 
reprogramming towards the pentose phosphate pathway 
(PPP) and TCA anaplerosis. NADPH metabolism (Figure 
4) was activated via the PPP to provide more reducing 
potential for fatty acid synthesis and increased levels of 

Table 1: Statistical results for ten GEO studies comparing ERneg vs ERpos breast tumors

GEO 
ID entity type

ERneg ERpos
Total entities

Altered
DOWN UP

Samples Samples entities
59198* transcript 32 122 18401 6040 3103 2937
59198* proteins 29 96 1185 244 77 167
59198* metabolites 59 192 470 164 31 133
22093 transcript 56 42 22283 4103 1866 2237
23988 transcript 29 32 22283 5959 2427 3532
20437 transcript 9 9 22283 1191 653 538
6577 transcript 10 78 11171 4646 2275 2371
88770 transcript 11 106 54675 8043 3409 4634
22597 transcript 45 37 22283 4984 2528 2456
26639 transcript 88 138 54675 19659 7404 12255
74667 transcript 26 69 41093 7456 3442 4014
75678 transcript 25 29 45220 5958 3100 2858

Detailed results are provided in Supplementary Table 6. *indicates the MetaCancer study
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Figure 2: Differential expression of metabolic genes, metabolic enzymes and metabolites in breast cancer, using 
MetaCancer and GEO studies. Blue: lower in ERneg tumors, Red: higher in ERneg tumors, Grey: no significant change. Left panel: 
MetaCancer multi-omics expression study. (A) transcriptomics data. (B) metabolic enzymes. (C) metabolites. Right panel: (D) Overview 
of MetaCancer transcriptomics, proteomics and metabolomics data. (E) Percentage of significant transcripts across ten GEO studies with 
the total number of transcripts detected on each bar; *indicates the MetaCancer study. (F) Differential expression of metabolic genes (raw 
p-value <0.05) found in at least 7 GEO studies. KS p-values calculated from raw p-values across ten GEO studies.
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pentose sugars for nucleotide biosynthesis (Supplementary 
Table 4). Higher levels of GLYM, P5CS, P5CR1, P4HA1 
and PRDX4 indicated increased collagen remodeling, 
a pathway that was missed by Reactome analysis. To 
sequester xenobiotics (Figure 4), ERneg tumors preferred 
conjugation of amino acids by cytochrome P450 genes 
instead of using glutathione transferases. Not all metabolic 
dysregulations are represented in Figure 4. For example, 
DHCR7, involved in cholesterol biosynthesis, was higher 
in the ERneg tumors (Supplementary Table 6).

Identification of metabolic genes and proteins 
that were under-studied in breast cancer

Many of the differentially regulated proteins or 
genes in the network maps (Figure 4) have been studied 

before. Next, we asked which of these genes and proteins 
could serve as novel therapeutic targets? To this end, we 
searched 30 million PubMed abstracts using key-word 
text-mining to rank all differentially regulated metabolic 
genes by their publication frequencies in breast tumor 
biology (see Methods, Supplementary Table 7). The 
resulting Table 2 gives the differential expression for 
the top-50 most significant genes from the MetaCancer 
and the GEO meta-analysis study in relation to the 
publication record. This comparison yielded a range of 
metabolic genes that are currently under-studied with 
less than five papers. Interestingly, over 2/3 of the 50-
most significant metabolic genes are shown here to be 
severely understudied. Several of the understudied genes 
are directly involved in critical metabolic pathways of 
tumor etiology, including glucose metabolism (SORD), 

Figure 3: Metabolic pathways significantly enriched in ERneg breast tumors. Key pathway branches are labeled by numbers. 
Larger node sizes indicate increased significance metabolite pathway dysregulation using the Reactome database tools. Red colors represent 
pathways supported by gene, protein and metabolite data, green colors are pathways supported by only proteins and genes, blue pathways 
are based on gene data only. 
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lipid biosynthesis (FAR1), cAMP signaling pathway 
(PDE7A, ADCY6), and glutamate anaplerosis (ABAT, 
GLUD1). We propose that these understudied genes 
should be further investigated in their role in breast tumor 
aggressiveness. To check the clinical significance of these 
genes, we have used KMPlot [23] tool that estimates the 
relapse free survival (RFS) using a standardized cohort of 
breast cancer gene expression studies. We have found that 
29 genes were positive associated with RFS and 11 genes 
negatively associated with RFS in a meta-cohort of 1,809 
patients (Supplementary Table 15). 

In the context of finding novel, drugable targets for 
ERneg breast tumors, we then analyzed specifically the 
proteomics dataset with respect to finding the upregulated 
proteins that are supported by the GEO meta-analysis, 
irrespective of the protein function or involvement in 
metabolism. From a total of 1231 proteins, 295 proteins 
(24%) were differentially regulated in MetaCancer with 
a raw p-value < 0.05. 39 of these proteins were also 
found to be significantly different in the GEO meta-
analysis, of which 21 were up-regulated in ERneg tumors 
(Figure 5A). Importantly, 10 of these proteins were 
found to be severely understudied using our PubMed 
text mining approach (Figure 5B, Supplementary Table 
14), including CALML5, ACTR3, PADI2 and PFKP. 
Among these 10 understudied proteins, four proteins were 

encoded by metabolic genes, including PFKP, GART, 
PLOD1 and ASS1. Although PFKP is a key regulatory 
enzyme in glycolysis and gluconeogeneis pathways, only 
four PubMed abstracts were found targeting this gene in 
breast cancer research. We propose to remove bias in study 
designs to not only study heavily published genes such as 
CD44 and GSTP1 but also relevant new targets such as 
PFKP, GART, PLOD1 and ASS1. 

DISCUSSION 

Cancer metabolism is radically different from 
non-malignant cells. Breast cancers can be grouped into 
different subtypes by presence of receptor genes, stages 
or grades. We here focused on comparing ERneg and 
ERpos classes of breast cancer but did not extend this 
analysis to further subtypes such as triple negative tumors 
using HER2 and PR status. When designing the study, 
we queried the GEO database for finding a larger number 
of studies that had ER-status reported to ensure to have 
a good base for meta-analysis of significantly expressed 
metabolic genes. From the nine studies (plus MetaCancer) 
we downloaded from GEO, only 5 had also information 
on HER2 status, reducing the power of gene expression 
meta-analysis. Secondly, several of those studies had 
already small sample sizes, and if HER2 status was added, 

Figure 4: Integrated visualization of genes (∆), protein (  ) and metabolites () by mapping their biochemical and 
chemical relationships. Edges: Green – gene to enzyme, yellow – protein to enzyme, pink – compound to enzyme, red – compound to 
compound (biochemical KEGG Rpair), aqua – compound to compound (Tanimoto chemical similarity >0.7). Node colors: blue – lower 
and red – higher in ERneg breast tumors. Node size reflect the fold changes. Clusters detected by Glay community detection algorithm.
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Table 2: Prioritization of metabolic candidate genes using omics and text mining

Gene 
Symbol Gene Description #papers

Meta-
Analysis MetaCancer

 p-value
Gene Protein
p-value p-value

SOD2 superoxide dismutase 2 84 2.00E-15 2.30E-05 2.93E-02
NUDT12 nudix hydrolase 12 0 5.00E-15 7.90E-05 -
FAR1 fatty acyl-CoA reductase 1 0 4.50E-13 1.80E-03 -
IDS iduronate 2-sulfatase 27 4.80E-12 5.60E-03 -
PDE7A phosphodiesterase 7A 0 8.20E-12 9.20E-10 -

FAHD1 fumarylacetoacetate hydrolase domain 
containing 1 0 1.60E-11 2.10E-04 -

BLVRA biliverdin reductase A 0 1.70E-11 4.30E-02 1.10E-01
ITPK1 inositol-tetrakisphosphate 1-kinase 0 1.80E-10 2.50E-06 -
SORD sorbitol dehydrogenase 0 2.10E-10 5.90E-06 8.14E-02
HACD3 3-hydroxyacyl-CoA dehydratase 3 0 2.20E-10 2.40E-02 -
B4GALT5 beta-1,4-galactosyltransferase 5 0 5.90E-10 4.20E-05 -
CDS2 CDP-diacylglycerol synthase 2 0 6.90E-10 1.40E-03 -
ENO1 enolase 1 16 6.90E-10 3.10E-04 3.72E-05
NME5 NME/NM23 family member 5 2 7.10E-10 3.30E-12 -

PPIP5K2 diphosphoinositol pentakisphosphate kinase 
2 0 7.30E-10 9.70E-03 -

PDSS1 decaprenyl diphosphate synthase subunit 1 0 7.90E-10 4.30E-07 -
AGO2 argonaute 2, RISC catalytic component 24 8.10E-10 9.80E-05 -

ENPP1 ectonucleotide pyrophosphatase/
phosphodiesterase 1 9 1.90E-09 1.90E-04 -

UGP2 UDP-glucose pyrophosphorylase 2 0 2.10E-09 1.90E-04 1.01E-04
COX6C cytochrome c oxidase subunit 6C 3 2.30E-09 1.60E-05 -
GSTA1 glutathione S-transferase alpha 1 24 2.60E-09 1.10E-07 4.71E-01
CSAD cysteine sulfinic acid decarboxylase 1 2.80E-09 3.80E-07 -
GAMT guanidinoacetate N-methyltransferase 0 3.00E-09 2.90E-22 -
CA12 carbonic anhydrase 12 18 4.00E-09 3.30E-26 -
GLUD1 glutamate dehydrogenase 1 1 4.90E-09 1.10E-04 1.16E-01
LIPG lipase G, endothelial type 3 5.40E-09 6.70E-06 -
SPR sepiapterin reductase 88 6.50E-09 3.90E-06 1.20E-01
ME1 malic enzyme 1 6 7.00E-09 1.60E-04 5.24E-02
FBP1 fructose-bisphosphatase 1 13 7.50E-09 1.60E-17 3.51E-03
ABAT 4-aminobutyrate aminotransferase 4 8.90E-09 3.50E-18 1.24E-01
PLCH1 phospholipase C eta 1 0 1.10E-08 1.70E-07 -

PIGH phosphatidylinositol glycan anchor 
biosynthesis class H 2 1.20E-08 4.90E-05 -

PDXK pyridoxal kinase 1 2.20E-08 2.80E-02 1.39E-01
ASAH1 N-acylsphingosine amidohydrolase 1 8 2.40E-08 7.40E-05 2.70E-02
MAN2B2 mannosidase alpha class 2B member 2 0 2.40E-08 2.30E-03 -
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the meta-analysis would further lose statistical power. 
Similarly, our proteomics data set consisted of only 14 
triple-negative tumors, again compromising statistical 
power for finding differences in metabolic genes. 

Therefore, we focused on comparing ERneg and 
ERpos tumors for which we previously showed stark 
differences between in central metabolism, altered ratios 
of glutamine/glutamate (glutaminolysis) and beta-alanine 
accumulation [17]; yet, an integrated analysis with 
prioritization and a focus on candidate pathways and 
druggable targets was missing. Despite the established 
importance of metabolism as hallmark of cancer, few 
other studies focused on the interplay of genetic mutations 
and gene expression and actual metabolic phenotypes. 
Overall, we have found that ERneg tumors show highly 
active biosynthesis of amino acids, lipids and nucleotides 
and utilize substrate recycling as well as xenobiotic 
metabolism to support tumor growth (Figure 3, 6). We 
consciously constrained our approach to metabolic genes 
and gene products and here provided the first integrated 
multi-omic analysis of ERneg versus ERpos tumors. We 
used solid statistical footing to focus on interpretations of 
metabolic differences to find novel targets and give the 
first example how in-depth text mining can be used to 
prioritize gene targets that have been largely ignored in 
the literature. Yet, despite clear evidence from the data, 
not all metabolic enzymes may be suitable as drug targets 
because they support critical metabolic pathways in cells 
throughout the body. Hence, strong inhibition of such 
enzymes might lead to severe therapeutic side-effects. 
Instead, knowledge about specific pathways might also be 
useful for targeting regulatory and signaling pathways in 
metabolism that may have less toxicity in normal cells. Our 
study results presented here support the idea that specific 
metabolic genes have gained less attention than others, 
even if they act in the same pathway. For example, our 
analysis showed that glutaminase is frequently reported 
in PubMed abstract in reference to breast cancer, whereas 
the classic mitochondrial glutamate oxidation enzyme, 
GLUD1, has only been once reported in this context. 
Specifically, new research on targeted drug delivery may 
render high-flux metabolic enzymes equally important for 
new therapy options as immunotherapy or classic oncology 
chemotherapies.

Nucleotide salvage pathway 

Reactome pathway analysis of our data highlighted 
the nucleotide salvage pathway as specifically important in 

ERneg tumors (Figure 3, branch 3, Supplementary Table 
9). 5NTC (Cytosolic purine 5’-nucleotidase), a key enzyme 
involved in nucleotide salvage, was up-regulated in ER-
negative tumors. Five purine metabolites were elevated 
in ER-negative tumors, including adenine, guanosine, 
guanine, xanthine and hypoxanthine (Supplementary 
Table 4). Meanwhile, elevated levels of beta-alanine were 
observed in ER-negative tumors, an intermediate of the 
pyrimidine salvage pathway, along with the concurrent 
increases of uracil, pseudo-uridine, UMP and CMP. 
Concurrently, 5-deoxy-methylthioadenosine (MTA), a 
further purine salvage metabolite, was also observed at 
higher levels in ER-negative tumors (Supplementary Table 
4). Aggressive tumors bypass autophagy and apoptosis and 
hence, require more re-use of nucleotides for cell survival 
and cell division. This process may therefore contribute to 
the cancer phenotype of cell survival. In addition, cancer 
cells also activate de novo nucleotide biosynthesis. There 
are a range of drugs targeting these metabolic pathways in 
chronic lymphocytic leukaemia, lung cancer and pancreatic 
cancer [24], but these drugs have not yet been repurposed 
to be tested against ERneg tumors. Our analysis motivates 
and supports the initiation of such clinical trials of these 
drugs for the management of ERneg breast tumors. 

Microenvironment remodeling

Metabolites involved in collagen biosynthesis as 
well as collagen remodeling enzymes were enriched in 
ER-negative tumors. Breast tumor cells increasingly 
rely on de novo biosynthesis of proline for collagen 
metabolism [25]. Accordingly, we found increased levels 
of proline and trans-4-hydroxyproline as well as two 
enzymes involved in de novo biosynthesis of proline in 
ERneg tumors, pyrroline-5-carboxylate reductase (PYCR) 
and P5C-synthase (ALDH18A1) (Supplementary Table 5). 
PYCR converts pyrroline-5-carboxylate (P5C) to proline 
and ALDH18A1 produces P5C from glutamate. 

Extracellular matrix (ECM) is the most abundant 
component in the tumor microenvironment and it has been 
associated with breast cancer progression and metastatic 
spread [26]. As a scaffold of tumor microenvironment, 
collagen changes in the microenvironment regulate ECM 
remodeling, release signals and trigger a cascade of 
biological events, promote tumor invasion and migration 
[27]. ECM proteins and ECM mediated signaling 
pathways may be promising drug targets for breast 
cancer [28]. Along with the change of collagen genes, 
the expression levels some chaperone and co-chaperone 

AHCYL1 adenosylhomocysteinase like 1 0 3.00E-08 3.70E-02 -
COX4I1 cytochrome c oxidase subunit 4I1 2 3.10E-08 1.30E-01 -
SEPHS1 selenophosphate synthetase 1 0 3.40E-08 2.00E-03 8.86E-01
Top 50 most significant genes in the GEO meta-analysis for ten studies and their significance in the MetaCancer 
proteomics and transcriptomics datasets (raw p-values). Note: - indicates proteins not found in the proteomics dataset
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proteins, such as HSP90AA1, HSP90AB1, HSP90B1 
and CDC37, were higher in ERneg tumors, as well as 
YWHAQ, YWHAE (Supplementary Table 5), which 
involved in PI3K-AKT signaling pathway [29].

Carbohydrate metabolism

The strongest effect supported by three omics 
levels (metabolites, proteins and genes) was found for 
an increased PPP activity. PPP intermediates, ribose-5-
phosphate and ribulose-5-phosphate, were increased in 
ERneg tumors, caused by an increase in the abundance 
of the key oxidation enzymes, glucose-6-phosphate 
dehydrogenase (G6PD) and 6-phosphogluconate 
dehydrogenase (PGD) and their encoding genes. Levels 
of transketolase, a key enzyme in the non-oxidative 
branch of the pentose phosphate pathway, and its encoding 
gene TKT, were also found increased in ERneg tumors. 
Further, gene expressions of phosphoglucomutase 1 
(PGM1), ribose-5-phosphate isomerase (RPIA) and 
deoxyribose-phosphate aldolase (DERA) were also 
upregulated in ERneg tumors (Supplementary Table 5, 7). 
The pentose phosphate pathway delivers both NADPH 
and pentose phosphates required for cell division and 
tumor proliferation [30]. The activation of this pathway 
supports tumor growth known for ERneg tumors. In 
comparison to the clear differential regulation of the PPP, 

glycolytic enzymes showed less consistent regulation of 
genes, proteins and metabolites when comparing ERneg 
to ERpos tumors. 

Apart from metabolic changes in PPP, higher 
levels of three uncommon carbohydrates were observed, 
including a two-fold increase in trehalose, maltose and 
maltotriose levels in ERneg tumors (Supplementary 
Table 4 and Figure 6). These oligosaccharides might 
be co-imported from blood along with the well-known 
glucose uptake in tumors. This is the first report on 
these compounds in relation to breast tumor metabolism; 
the maltose-degrading enzyme (GAA, LYAG) in 
the MetaCancer study was found down-regulated 
(Supplementary Table 5) while the corresponding gene 
was found significantly down-regulated, consistent with 
other studies in the GEO meta-analysis (Supplementary 
Table 7). This significance in differential regulation 
of oligosaccharide metabolism in ERneg tumors on 
all three omics levels suggests that further potentially 
this pathway could also be important for future drug 
therapies. 

Mitochondrial oxidation

We have observed increased levels of the 
metabolites nicotinamide and citric acid cycle (TCA) 
intermediates citrate, alpha-ketoglutarate, malate, fumarate 

Figure 5: Key upregulated protein encoding genes most often found in ten GEO omnibus studies. 21 key upregulated 
protein encoding genes were found when linking proteomics dataset with ten GEO omnibus studies (A); PubMed literature counts for most 
often found genes in ten GEO omnibus studies (B). *indicates proteins encoded by metabolic genes. Abbreviation: CALML5: Calmodulin-
like protein 5; ACTR3: Actin-related protein 3; PADI2: Protein-arginine deiminase type-2; PFKP: Phosphofructokinase, platelet; GART: 
Trifunctional purine biosynthetic protein adenosine-3; COTL1: Coactosin-like protein; PLOD1: Procollagen-lysine,2-oxoglutarate 
5-dioxygenase 1; ASS1: Argininosuccinate synthase; RCC1: Regulator of chromosome condensation; MFGE8: Lactadherin; FSCN1: 
Fascin; LDHB: L-lactate dehydrogenase B chain; CRYAB: Alpha-crystallin B chain; YBX1: Nuclease-sensitive element-binding protein 
1; PRKDC: DNA-dependent protein kinase catalytic subunit; IDH2: Isocitrate dehydrogenase [NADP], mitochondrial; MSN: Moesin; 
NDRG1: Protein NDRG1; ANXA1: Annexin A1; GSTP1: Glutathione S-transferase P; CD44: CD44 antigen.
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and succinate (Supplementary Table 4) along with over-
expression of citrate synthase (CISY) and nicotinamide
phosphoribosyltransferase (NAMPT) in ERneg breast 
cancer patients (Supplementary Table 5). Under hypoxic 
condition, attenuation of electron transport chain in 
tumors is expected and NADH production in TCA can 
imbalance the NAD+/NADH ratio. Targeting the NAD+ 
salvage pathway is a promising therapeutic option for 
cancer patients [31]. Aggressive breast tumor shows an 
overexpression of hypoxia inducible factor 1 alpha (HIF-

1) [32]. NAMPT also known as visfatin, the rate-limiting 
enzyme in the NAD salvage pathway has been targeted 
by inhibitors such as FK866 [33] and CHS-828 [34]. This 
protein has also been reported to be overexpressed in 
prostate cancer to promote tumor cell survival [35] and is 
required for de novo lipogenesis in the tumor cells [36]. 
Over-expression of NAMPT in breast cancer tissue is 
associated with poor survival [37]. Inhibiting NAMPT can 
also make the ERneg breast cancer sensitive to additional 
chemotherapies as observed in vitro [38]. 

Figure 6: Integrated biochemical pathway visualization for metabolite and proteins datasets. Top-ranked drug targets 
are highlighted with blue-border. Spheres are metabolites, and hexagons are enzymes. Yellow lines reflect KEGG RPAIR links whereas 
pink lines reflect reactant-enzyme links. Blue and red color represent significant (p < 0.05, ANOVA) decrease and increase in the levels in 
ERneg in comparison to ERpos tumors. Orange color reflects not significant changes in the levels. Size of the nodes reflects fold changes. 
ERneg tumors rely more on TCA anaplerosis, anabolic glycolysis, de-novo biosynthesis of amino acids and nucleotide salvage. 
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Poorly studied metabolic genes

Transcriptomics analysis often reveals a long list 
of significant regulated genes, some of which could be 
drivers for poor outcomes in subjects with ERneg tumors, 
while other genes might be regulated downstream as 
bystanders. A focus on metabolic genes, combined with 
meta-analysis and multi-omics integration, is proposed 
here to remove bias in candidate gene selections in the 
breast cancer research community. Gene expression 
meta-analysis yielded 34 significant metabolic genes 
that are underreported with fewer than five PubMed 
abstracts as targets in breast cancer research, including 
NUDT12, FAR1, PDE7A, FAHD1, BLVRA, ITPK1, 
SORD, HACD3, B4GALT5, CDS2, PPIP5K2, PDSS1, 
UGP2, GAMT, PLCH1, MAN2B2, AHCYL1, SEPHS1, 
ATP5S, LCMT2, NT5DC2, AK4, CSAD, GLUD1, 
PDXK, ADCY6, COX6A1, NME5, PIGH, COX4I1, 
COX6C, LIPG, LPIN1 and ABAT (Table 2). In addition, 
the combination of proteomics and gene meta-analysis 
results revealed that 4 upregulated proteins encoded by 
metabolic genes, PFKP, GART, PLOD1 and ASS1, were 
understudied (Figure 5B). 

For example, higher expression levels of gene 
encoding ATP-dependent 6-phosphofructokinase, platelet 
type (PFKP) were found to be statistically up-regulated 
in ERneg tumors in eight out of ten GEO studies and 
specifically, were also found up-regulated in both the 
proteomics and transcriptomics dataset of the MetaCancer 
cohort (Figure 5B). However, PubMed text mining 
showed there were only four publications focused on 
PFKP in reference to breast cancer. PFKP is a critical rate 
limiting enzyme in glycolysis, phosphorylating fructose-6-
phosphate to fructose-1,6-bisphosphate and determining the 
rate of glycolytic flux versus flux into the pentose phosphate 
pathway. Two further 6-phosphofructokinase isomers are 
existing in humans, PFKM (muscle type) and PFKL (liver 
type) [39]. PFKM was not detected in our proteomics 
dataset and not significantly different in transcriptomics 
dataset (raw p = 0.08), while the gene expression of PFKL 
was upregulated in the MetaCancer ERneg breast tumor 
transcriptomics dataset (raw p < 0.05). Therefore, targeting 
specific isoforms of phosphofructokinase may be useful 
as potential target to deprive cancer cells from essential 
substrates and energy for proliferation while allowing the 
survival of normal cells [40]. 

Similarly, other underreported metabolic genes 
might serve as new therapeutic targets. Three isoforms 
of procollagen-lysine, 2-oxoglutarate 5-dioxygenase 
(PLOD) have been identified. PLOD1 hydroxylates a 
lysine residue in the alpha-helical or central domain 
of procollagens; PLOD2 is responsible for lysine 
hydroxylation in the telopeptide of procollagens whereas 
the substrate specificity of PLOD3 is unknown [41]. 
PLOD1 and PLOD2 expression was induced by hypoxia 
in breast cancer cells [41]. The expression of PLOD1 was 

upregulated in lysyl oxidase-like 4 (LOXL4) knockout 
xenograft tumor tissues and LOX4 knockdown could 
enhance tumor growth and metastasis through collagen-
dependent extracellular matrix changes in TNBC [42]. We 
therefore propose that PLOD isoforms may be interesting 
targets to study the relevance of metabolism in the tumor 
microenvironment.

A third example is argininosuccinate synthetase 
1 (ASS1). ASS1 converts citrulline to arginine and is 
a key enzyme in arginine biosynthesis that is critical 
for many functions, including nitric oxide signaling or 
polyamine biosynthesis, as well as the liver urea cycle. In 
the MetaCancer cohort, we found both ASS1 transcripts 
and the enzyme were up-regulated in ERneg tumors 
(Supplementary Tables 5, 7), and the ASS1 substrate 
citrulline was decreased in the metabolomic results 
(Supplementary Table 4). An inhibition should restrict 
arginine availability. Arginine starvation has been shown 
to impair mitochondrial respiratory function in ASS1-
deficient breast cancer cells [43], suggesting that arginine 
starvation therapy such as pegylated recombinant arginine 
deiminase (ADI-PEG20) could be an option for patients 
with low ASS1 expression [44]. Dietary arginine restriction 
has also been shown to reduce tumor growth in a xenograft 
model of ASS1-deficient breast cancer [45]. We propose 
that such drugs with undergoing clinical trials could be 
repurposed for ERneg tumor therapy. 

One limitation of this study is that only one 
metabolomics platform (GC-TOF MS) was used. The 
combination of multi-platforms including CSH-QTOF 
MS/MS and HILIC-QTOF MS/MS will significantly 
increase the number of detected and annotated metabolites 
and the pathway coverage. Future studies can also use 
advanced mass spectrometry instruments for proteomics 
and the next generation sequencing methods for 
transcriptomics to increase the pathway coverage. 

MATERIALS AND METHODS

MetaCancer cohort details

The study included 276 fresh frozen breast tumor 
biopsies and 126 FFPE tissues. They were collected 
for the tissue bank of the European FP7 MetaCancer 
consortium at the Charité Hospital. The project was 
approved by the institutional review board of the Charité 
Hospital (EA1/139/05). Further details about the cohort 
can be found in our previous report [17]. Biopsies were 
used for transcriptomics and metabolomics analysis and 
FFPE tissues were used for proteomics analysis. 

MetaCancer metabolomics and proteomics data 

GC-TOF MS data acquisition of the fresh frozen 
tumor biopsies tissues was performed as previously 
published [46]. FFPE tissues were analyzed using an LTQ 
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mass spectrometer for measuring proteins. Details are 
given in the Supplementary Text 1. 

Public breast tumor transcriptomics datasets

The MetaCancer transcriptomics dataset was 
downloaded from the GEO omnibus database using the 
accession number GSE59198. Nine other gene expression 
datasets were selected for which estrogen receptor status 
was available in the GEO omnibus database. Details about 
these datasets are provided in the Supplementary Table 1.

Bioinformatics and statistical analysis

Metabolite enrichment analysis was performed 
using the ChemRICH tool [47]. Input file for the 
ChemRICH analysis is provided in the Supplementary 
Table 2. Metabolic network mapping was performed using 
the MetaMapp software [22] and the input file is provided 
in the Supplementary Table 3. MetaMapp network was 
visualized using the Cytoscape software. Metabolites were 
linked to proteins using the KEGG and Expasy databases. 
Links were visualized as an integrated network using the 
Cytoscape network visualization software. Metabolites 
were linked to enzyme commission (EC) number first 
using the KEGG database and EC number to protein 
mapping was obtained from the Expasy database. Pathway 
over-representation analysis was conducted using the 
Reactome pathway analysis tool [21] because it provides 
the most comprehensive coverage of metabolic pathway 
maps. Gene symbols and “breast cancer” were searched 
in the PubMed database to get the count of abstracts 
for a gene and breast cancer. NCBI eutils web services 
were used for running the searches for all the metabolic 
genes. All statistical analyses were conducted using R. 
Mann-Whitney-Wilcoxon test was performed on both 
metabolomics and proteomics datasets. GEO2R utility was 
used to analyze transcriptomics datasets.

CONCLUSIONS

We here show how multi-omics data can be utilized 
along with text mining to identify metabolic genes and 
metabolic pathways that are understudied in breast tumor 
research, specifically for ERneg tumors that are known 
to have poor clinical outcomes. We see this approach as a 
hypothesis-generating method, prioritizing the multitude 
of genes that are to be significant in classic transcriptomics 
studies. We also showed that a meta-analysis of multiple 
studies refines and strengthens candidate gene selections 
to study metabolic reprogramming. We propose that 
such understudied, significant metabolic genes could be 
used as additional potential therapy targets, especially if 
genes and proteins were found up-regulated in different 
breast cancer studies, and if metabolite abundance support 
protein activities.

Ethics approval

The project was approved by the institutional 
review board of the Charité Hospital (EA1/139/05). All 
participants provided informed consent. 

Author contributions

OF, DKB, BG, JB and CD designed the study. CD 
provided the tumor biopsies. OF, DKB, BSP, BP and 
BG acquired metabolomics and proteomics datasets and 
performed the statistical analyses. DKB, BG and OF created 
the integrated graphs and interpret the statistical results. 
DKB, BG, OF and CD wrote the manuscript. All authors 
edited and approved the final manuscript. Dinesh Kumar 
Barupal and Bei Gao contributed equally to this work. 

CONFLICTS OF INTEREST

Authors declare none conflicts of interest. 

FUNDING 

The study was supported by EU-FP7 project 
MetaCancer HEALTH-F2-2008-200327 http://www.
metacancer-fp7.eu/ and U.S. National Institutes of 
Health, NIH ES030158, NIH U19 AG023122 and 
NIH U54 AI138370, as well as the a grant from the 
German Cancer Aid Translational Oncology Program 
(TransLUMINAL-B).

REFERENCES

1.  Mishra P, Ambs S. Metabolic Signatures of Human Breast 
Cancer. Mol Cell Oncol. 2015; 2:e992217. https://doi.org/1
0.4161/23723556.2014.992217. [PubMed]

2. Schramm G, Surmann EM, Wiesberg S, Oswald M, Reinelt 
G, Eils R, König R. Analyzing the regulation of metabolic 
pathways in human breast cancer. BMC Med Genomics. 
2010; 3:39. https://doi.org/10.1186/1755-8794-3-39. 
[PubMed]

3. Auslander N, Yizhak K, Weinstock A, Budhu A, Tang 
W, Wang XW, Ambs S, Ruppin E. A joint analysis of 
transcriptomic and metabolomic data uncovers enhanced 
enzyme-metabolite coupling in breast cancer. Sci Rep. 
2016; 6:29662. https://doi.org/10.1038/srep29662. 
[PubMed]

4. Lawrence RT, Perez EM, Hernández D, Miller CP, Haas 
KM, Irie HY, Lee SI, Blau CA, Villén J. The proteomic 
landscape of triple-negative breast cancer. Cell Rep. 2015; 
11:630–44. https://doi.org/10.1016/j.celrep.2015.03.050. 
[PubMed]

5. Jin MS, Lee H, Woo J, Choi S, Do MS, Kim K, Song MJ, 
Kim Y, Park IA, Han D, Ryu HS. Integrated Multi-Omic 
Analyses Support Distinguishing Secretory Carcinoma of 

www.oncotarget.com
http://www.metacancer-fp7.eu/
http://www.metacancer-fp7.eu/
https://doi.org/10.4161/23723556.2014.992217
https://doi.org/10.4161/23723556.2014.992217
https://www.ncbi.nlm.nih.gov/pubmed/26005711
https://doi.org/10.1186/1755-8794-3-39
https://www.ncbi.nlm.nih.gov/pubmed/20831783
https://www.ncbi.nlm.nih.gov/pubmed/20831783
https://doi.org/10.1038/srep29662
https://www.ncbi.nlm.nih.gov/pubmed/27406679
https://doi.org/10.1016/j.celrep.2015.03.050
https://www.ncbi.nlm.nih.gov/pubmed/25892236
https://www.ncbi.nlm.nih.gov/pubmed/25892236


Oncotarget3907www.oncotarget.com

the Breast from Basal-Like Triple-Negative Breast Cancer. 
Proteomics Clin Appl. 2018; 12:e1700125. https://doi.
org/10.1002/prca.201700125. [PubMed]

6. Horvath A, Pakala SB, Mudvari P, Reddy SD, Ohshiro K, 
Casimiro S, Pires R, Fuqua SA, Toi M, Costa L, Nair SS, 
Sukumar S, Kumar R. Novel insights into breast cancer 
genetic variance through RNA sequencing. Sci Rep. 2013; 
3:2256. https://doi.org/10.1038/srep02256. [PubMed]

 7. Iwamoto T, Bianchini G, Booser D, Qi Y, Coutant C, 
Shiang CY, Santarpia L, Matsuoka J, Hortobagyi GN, 
Symmans WF, Holmes FA, O’Shaughnessy J, Hellerstedt 
B, et al. Gene pathways associated with prognosis and 
chemotherapy sensitivity in molecular subtypes of breast 
cancer. J Natl Cancer Inst. 2011; 103:264–72. https://doi.
org/10.1093/jnci/djq524. [PubMed]

 8. Graham K, de las Morenas A, Tripathi A, King C, Kavanah 
M, Mendez J, Stone M, Slama J, Miller M, Antoine G, 
Willers H, Sebastiani P, Rosenberg CL. Gene expression in 
histologically normal epithelium from breast cancer patients 
and from cancer-free prophylactic mastectomy patients 
shares a similar profile. Br J Cancer. 2010; 102:1284–93. 
https://doi.org/10.1038/sj.bjc.6605576. [PubMed]

 9. Gruvberger-Saal SK, Bendahl PO, Saal LH, Laakso M, 
Hegardt C, Edén P, Peterson C, Malmström P, Isola J, Borg 
A, Fernö M. Estrogen receptor β expression is associated 
with tamoxifen response in ERalpha-negative breast 
carcinoma. Clin Cancer Res. 2007; 13:1987–94. https://doi.
org/10.1158/1078-0432.CCR-06-1823. [PubMed]

10. Metzger-Filho O, Michiels S, Bertucci F, Catteau A, 
Salgado R, Galant C, Fumagalli D, Singhal SK, Desmedt 
C, Ignatiadis M, Haussy S, Finetti P, Birnbaum D, et al. 
Genomic grade adds prognostic value in invasive lobular 
carcinoma. Ann Oncol. 2013; 24:377–84. https://doi.
org/10.1093/annonc/mds280. [PubMed]

11. Iwamoto T, Bianchini G, Qi Y, Cristofanilli M, Lucci 
A, Woodward WA, Reuben JM, Matsuoka J, Gong Y, 
Krishnamurthy S, Valero V, Hortobagyi GN, Robertson 
F, et al. Different gene expressions are associated with the 
different molecular subtypes of inflammatory breast cancer. 
Breast Cancer Res Treat. 2011; 125:785–95. https://doi.
org/10.1007/s10549-010-1280-6. [PubMed]

12. de Cremoux P, Valet F, Gentien D, Lehmann-Che J, Scott V, 
Tran-Perennou C, Barbaroux C, Servant N, Vacher S, Sigal-
Zafrani B, Mathieu MC, Bertheau P, Guinebretière JM, et 
al. Importance of pre-analytical steps for transcriptome 
and RT-qPCR analyses in the context of the phase II 
randomised multicentre trial REMAGUS02 of neoadjuvant 
chemotherapy in breast cancer patients. BMC Cancer. 
2011; 11:215. https://doi.org/10.1186/1471-2407-11-215. 
[PubMed]

13. She QB, Gruvberger-Saal SK, Maurer M, Chen Y, 
Jumppanen M, Su T, Dendy M, Lau YK, Memeo L, 
Horlings HM, van de Vijver MJ, Isola J, Hibshoosh H, 
et al. Integrated molecular pathway analysis informs a 

synergistic combination therapy targeting PTEN/PI3K and 
EGFR pathways for basal-like breast cancer. BMC Cancer. 
2016; 16:587. https://doi.org/10.1186/s12885-016-2609-2. 
[PubMed]

14. Budczies J, Denkert C. Tissue-Based Metabolomics to 
Analyze the Breast Cancer Metabolome. Recent Results 
Cancer Res. 2016; 207:157–75. https://doi.org/10.1007/978-
3-319-42118-6_7. [PubMed]

15. Yoon H, Yoon D, Yun M, Choi JS, Park VY, Kim EK, 
Jeong J, Koo JS, Yoon JH, Moon HJ, Kim S, Kim MJ. 
Metabolomics of Breast Cancer Using High-Resolution 
Magic Angle Spinning Magnetic Resonance Spectroscopy: 
Correlations with 18F-FDG Positron Emission 
Tomography-Computed Tomography, Dynamic Contrast-
Enhanced and Diffusion-Weighted Imaging MRI. PLoS 
One. 2016; 11:e0159949. https://doi.org/10.1371/journal.
pone.0159949. [PubMed]

16. Li M, Song Y, Cho N, Chang JM, Koo HR, Yi A, Kim H, 
Park S, Moon WK. An HR-MAS MR metabolomics study 
on breast tissues obtained with core needle biopsy. PLoS 
One. 2011; 6:e25563. https://doi.org/10.1371/journal.
pone.0025563. [PubMed]

17. Budczies J, Brockmöller SF, Müller BM, Barupal DK, 
Richter-Ehrenstein C, Kleine-Tebbe A, Griffin JL, 
Orešič M, Dietel M, Denkert C, Fiehn O. Comparative 
metabolomics of estrogen receptor positive and estrogen 
receptor negative breast cancer: alterations in glutamine and 
beta-alanine metabolism. J Proteomics. 2013; 94:279–88. 
https://doi.org/10.1016/j.jprot.2013.10.002. [PubMed]

18. Budczies J, Pfitzner BM, Györffy B, Winzer KJ, Radke C, 
Dietel M, Fiehn O, Denkert C. Glutamate enrichment as new 
diagnostic opportunity in breast cancer. Int J Cancer. 2015; 
136:1619–28. https://doi.org/10.1002/ijc.29152. [PubMed]

19. Fahrmann JF, Grapov DD, Wanichthanarak K, DeFelice 
BC, Salemi MR, Rom WN, Gandara DR, Phinney BS, 
Fiehn O, Pass H, Miyamoto S. Integrated Metabolomics and 
Proteomics Highlight Altered Nicotinamide- and Polyamine 
Pathways in Lung Adenocarcinoma. Carcinogenesis. 
2017; 38:271–80. https://doi.org/10.1093/carcin/bgw205. 
[PubMed]

20. Clough E, Barrett T. The Gene Expression Omnibus 
Database. Methods Mol Biol. 2016; 1418:93–110. https://
doi.org/10.1007/978-1-4939-3578-9_5. [PubMed]

21. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie 
M, Garapati P, Haw R, Jassal B, Korninger F, May B, 
Milacic M, Roca CD, Rothfels K, et al. The Reactome 
Pathway Knowledgebase. Nucleic Acids Res. 2018; 
46:D649–D55. https://doi.org/10.1093/nar/gkx1132. 
[PubMed]

22. Barupal DK, Haldiya PK, Wohlgemuth G, Kind T, Kothari 
SL, Pinkerton KE, Fiehn O. MetaMapp: mapping and 
visualizing metabolomic data by integrating information 
from biochemical pathways and chemical and mass spectral 

www.oncotarget.com
https://doi.org/10.1002/prca.201700125
https://doi.org/10.1002/prca.201700125
https://www.ncbi.nlm.nih.gov/pubmed/29476606
https://doi.org/10.1038/srep02256
https://www.ncbi.nlm.nih.gov/pubmed/23884293
https://doi.org/10.1093/jnci/djq524
https://doi.org/10.1093/jnci/djq524
https://www.ncbi.nlm.nih.gov/pubmed/21191116
https://doi.org/10.1038/sj.bjc.6605576
https://www.ncbi.nlm.nih.gov/pubmed/20197764
https://doi.org/10.1158/1078-0432.CCR-06-1823
https://doi.org/10.1158/1078-0432.CCR-06-1823
https://www.ncbi.nlm.nih.gov/pubmed/17404078
https://doi.org/10.1093/annonc/mds280
https://doi.org/10.1093/annonc/mds280
https://www.ncbi.nlm.nih.gov/pubmed/23028037
https://doi.org/10.1007/s10549-010-1280-6
https://doi.org/10.1007/s10549-010-1280-6
https://www.ncbi.nlm.nih.gov/pubmed/21153052
https://doi.org/10.1186/1471-2407-11-215
https://www.ncbi.nlm.nih.gov/pubmed/21631949
https://doi.org/10.1186/s12885-016-2609-2
https://www.ncbi.nlm.nih.gov/pubmed/27484095
https://doi.org/10.1007/978-3-319-42118-6_7
https://doi.org/10.1007/978-3-319-42118-6_7
https://www.ncbi.nlm.nih.gov/pubmed/27557538
https://doi.org/10.1371/journal.pone.0159949
https://doi.org/10.1371/journal.pone.0159949
https://www.ncbi.nlm.nih.gov/pubmed/27459480
https://doi.org/10.1371/journal.pone.0025563
https://doi.org/10.1371/journal.pone.0025563
https://www.ncbi.nlm.nih.gov/pubmed/22028780
https://doi.org/10.1016/j.jprot.2013.10.002
https://www.ncbi.nlm.nih.gov/pubmed/24125731
https://doi.org/10.1002/ijc.29152
https://www.ncbi.nlm.nih.gov/pubmed/25155347
https://doi.org/10.1093/carcin/bgw205
https://www.ncbi.nlm.nih.gov/pubmed/28049629
https://www.ncbi.nlm.nih.gov/pubmed/28049629
https://doi.org/10.1007/978-1-4939-3578-9_5
https://doi.org/10.1007/978-1-4939-3578-9_5
https://www.ncbi.nlm.nih.gov/pubmed/27008011
https://doi.org/10.1093/nar/gkx1132
https://www.ncbi.nlm.nih.gov/pubmed/29145629


Oncotarget3908www.oncotarget.com

similarity. BMC Bioinformatics. 2012; 13:99. https://doi.
org/10.1186/1471-2105-13-99. [PubMed]

23. Györffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, 
Li Q, Szallasi Z. An online survival analysis tool to rapidly 
assess the effect of 22,277 genes on breast cancer prognosis 
using microarray data of 1,809 patients. Breast Cancer Res 
Treat. 2010; 123:725–31. https://doi.org/10.1007/s10549-
009-0674-9. [PubMed]

24. Jordheim LP, Durantel D, Zoulim F, Dumontet C. Advances 
in the development of nucleoside and nucleotide analogues 
for cancer and viral diseases. Nat Rev Drug Discov. 2013; 
12:447–64. https://doi.org/10.1038/nrd4010. [PubMed]

25. Richardson AD, Yang C, Osterman A, Smith JW. Central 
carbon metabolism in the progression of mammary 
carcinoma. Breast Cancer Res Treat. 2008; 110:297–307. 
https://doi.org/10.1007/s10549-007-9732-3. [PubMed]

26. Oskarsson T. Extracellular matrix components in breast 
cancer progression and metastasis. Breast. 2013; 22:S66–
72. https://doi.org/10.1016/j.breast.2013.07.012. [PubMed]

27. Fang M, Yuan J, Peng C, Li Y. Collagen as a double-edged 
sword in tumor progression. Tumour Biol. 2014; 35:2871–
82. https://doi.org/10.1007/s13277-013-1511-7. [PubMed]

28. Insua-Rodríguez J, Oskarsson T. The extracellular matrix in 
breast cancer. Adv Drug Deliv Rev. 2016; 97:41–55. https://
doi.org/10.1016/j.addr.2015.12.017. [PubMed]

29. Slattery ML, Mullany LE, Sakoda LC, Wolff RK, Stevens 
JR, Samowitz WS, Herrick JS. The PI3K/AKT signaling 
pathway: associations of miRNAs with dysregulated gene 
expression in colorectal cancer. Mol Carcinog. 2018; 
57:243–61. https://doi.org/10.1002/mc.22752. [PubMed]

30. Jeon SM, Chandel NS, Hay N. AMPK regulates NADPH 
homeostasis to promote tumour cell survival during energy 
stress. Nature. 2012; 485:661–65. https://doi.org/10.1038/
nature11066. [PubMed]

31. Fleischer TC, Murphy BR, Flick JS, Terry-Lorenzo RT, 
Gao ZH, Davis T, McKinnon R, Ostanin K, Willardsen 
JA, Boniface JJ. Chemical proteomics identifies Nampt 
as the target of CB30865, an orphan cytotoxic compound. 
Chem Biol. 2010; 17:659–64. https://doi.org/10.1016/j.
chembiol.2010.05.008. [PubMed]

32. Bos R, Zhong H, Hanrahan CF, Mommers EC, Semenza 
GL, Pinedo HM, Abeloff MD, Simons JW, van Diest 
PJ, van der Wall E. Levels of hypoxia-inducible factor-1 
α during breast carcinogenesis. J Natl Cancer Inst. 
2001; 93:309–14. https://doi.org/10.1093/jnci/93.4.309. 
[PubMed]

33. Hasmann M, Schemainda I. FK866, a highly 
specific noncompetitive inhibitor of nicotinamide 
phosphoribosyltransferase, represents a novel mechanism 
for induction of tumor cell apoptosis. Cancer Res. 2003; 
63:7436–42. [PubMed]

34. Olesen UH, Christensen MK, Björkling F, Jäättelä M, 
Jensen PB, Sehested M, Nielsen SJ. Anticancer agent 
CHS-828 inhibits cellular synthesis of NAD. Biochem 

Biophys Res Commun. 2008; 367:799–804. https://doi.
org/10.1016/j.bbrc.2008.01.019. [PubMed]

35. Wang B, Hasan MK, Alvarado E, Yuan H, Wu H, Chen WY. 
NAMPT overexpression in prostate cancer and its contribution 
to tumor cell survival and stress response. Oncogene. 2011; 
30:907–21. https://doi.org/10.1038/onc.2010.468. [PubMed]

36. Bowlby SC, Thomas MJ, D’Agostino RB Jr, Kridel SJ. 
Nicotinamide phosphoribosyl transferase (Nampt) is 
required for de novo lipogenesis in tumor cells. PloS 
One. 2012; 7:e40195. https://doi.org/10.1371/journal.
pone.0040195. [PubMed]

37. Lee YC, Yang YH, Su JH, Chang HL, Hou MF, Yuan SS. 
High visfatin expression in breast cancer tissue is associated 
with poor survival. Cancer Epidemiol Biomarkers Prev. 
2011; 20:1892–901. https://doi.org/10.1158/1055-9965.
EPI-11-0399. [PubMed]

38. Bajrami I, Kigozi A, Van Weverwijk A, Brough R, Frankum 
J, Lord CJ, Ashworth A. Synthetic lethality of PARP and 
NAMPT inhibition in triple-negative breast cancer cells. 
EMBO Mol Med. 2012; 4:1087–96. https://doi.org/10.1002/
emmm.201201250. [PubMed]

39. Sola-Penna M, Da Silva D, Coelho WS, Marinho-Carvalho 
MM, Zancan P. Regulation of mammalian muscle type 
6-phosphofructo-1-kinase and its implication for the control 
of the metabolism. IUBMB Life. 2010; 62:791–96. https://
doi.org/10.1002/iub.393. [PubMed]

40. Hasawi N, Alkandari MF, Luqmani YA. 
Phosphofructokinase: a mediator of glycolytic flux in cancer 
progression. Crit Rev Oncol Hematol. 2014; 92:312–21. 
https://doi.org/10.1016/j.critrevonc.2014.05.007. [PubMed]

41. Gilkes DM, Bajpai S, Wong CC, Chaturvedi P, Hubbi ME, 
Wirtz D, Semenza GL. Procollagen lysyl hydroxylase 2 is 
essential for hypoxia-induced breast cancer metastasis. Mol 
Cancer Res. 2013; 11:456–66. https://doi.org/10.1158/1541-
7786.MCR-12-0629. [PubMed]

42. Choi SK, Kim HS, Jin T, Moon WK. LOXL4 knockdown 
enhances tumor growth and lung metastasis through 
collagen-dependent extracellular matrix changes in triple-
negative breast cancer. Oncotarget. 2017; 8:11977–89. 
https://doi.org/10.18632/oncotarget.14450. [PubMed]

43. Qiu F, Chen YR, Liu X, Chu CY, Shen LJ, Xu J, Gaur S, 
Forman HJ, Zhang H, Zheng S, Yen Y, Huang J, Kung HJ, 
et al. Arginine starvation impairs mitochondrial respiratory 
function in ASS1-deficient breast cancer cells. Sci Signal. 
2014; 7:ra31.  https://doi.org/10.1126/scisignal.2004761. 
[PubMed]

44. Yeh TH, Chen YR, Chen SY, Shen WC, Ann DK, Zaro JL, 
Shen LJ. Selective Intracellular Delivery of Recombinant 
Arginine Deiminase (ADI) Using pH-Sensitive Cell 
Penetrating Peptides To Overcome ADI Resistance in 
Hypoxic Breast Cancer Cells. Mol Pharm. 2016; 13:262–
71. https://doi.org/10.1021/acs.molpharmaceut.5b00706. 
[PubMed]

www.oncotarget.com
https://doi.org/10.1186/1471-2105-13-99
https://doi.org/10.1186/1471-2105-13-99
https://www.ncbi.nlm.nih.gov/pubmed/22591066
https://doi.org/10.1007/s10549-009-0674-9
https://doi.org/10.1007/s10549-009-0674-9
https://www.ncbi.nlm.nih.gov/pubmed/20020197
https://doi.org/10.1038/nrd4010
https://www.ncbi.nlm.nih.gov/pubmed/23722347
https://doi.org/10.1007/s10549-007-9732-3
https://www.ncbi.nlm.nih.gov/pubmed/17879159
https://doi.org/10.1016/j.breast.2013.07.012
https://www.ncbi.nlm.nih.gov/pubmed/24074795
https://doi.org/10.1007/s13277-013-1511-7
https://www.ncbi.nlm.nih.gov/pubmed/24338768
https://doi.org/10.1016/j.addr.2015.12.017
https://doi.org/10.1016/j.addr.2015.12.017
https://www.ncbi.nlm.nih.gov/pubmed/26743193
https://doi.org/10.1002/mc.22752
https://www.ncbi.nlm.nih.gov/pubmed/29068474
https://doi.org/10.1038/nature11066
https://doi.org/10.1038/nature11066
https://www.ncbi.nlm.nih.gov/pubmed/22660331
https://doi.org/10.1016/j.chembiol.2010.05.008
https://doi.org/10.1016/j.chembiol.2010.05.008
https://www.ncbi.nlm.nih.gov/pubmed/20609415
https://doi.org/10.1093/jnci/93.4.309
https://www.ncbi.nlm.nih.gov/pubmed/11181778
https://www.ncbi.nlm.nih.gov/pubmed/11181778
https://www.ncbi.nlm.nih.gov/pubmed/14612543
https://doi.org/10.1016/j.bbrc.2008.01.019
https://doi.org/10.1016/j.bbrc.2008.01.019
https://www.ncbi.nlm.nih.gov/pubmed/18201551
https://doi.org/10.1038/onc.2010.468
https://www.ncbi.nlm.nih.gov/pubmed/20956937
https://doi.org/10.1371/journal.pone.0040195
https://doi.org/10.1371/journal.pone.0040195
https://www.ncbi.nlm.nih.gov/pubmed/22768255
https://doi.org/10.1158/1055-9965.EPI-11-0399
https://doi.org/10.1158/1055-9965.EPI-11-0399
https://www.ncbi.nlm.nih.gov/pubmed/21784959
https://doi.org/10.1002/emmm.201201250
https://doi.org/10.1002/emmm.201201250
https://www.ncbi.nlm.nih.gov/pubmed/22933245
https://doi.org/10.1002/iub.393
https://doi.org/10.1002/iub.393
https://www.ncbi.nlm.nih.gov/pubmed/21117169
https://doi.org/10.1016/j.critrevonc.2014.05.007
https://www.ncbi.nlm.nih.gov/pubmed/24910089
https://doi.org/10.1158/1541-7786.MCR-12-0629
https://doi.org/10.1158/1541-7786.MCR-12-0629
https://www.ncbi.nlm.nih.gov/pubmed/23378577
https://doi.org/10.18632/oncotarget.14450
https://www.ncbi.nlm.nih.gov/pubmed/28060764
https://doi.org/10.1126/scisignal.2004761
https://www.ncbi.nlm.nih.gov/pubmed/24692592
https://doi.org/10.1021/acs.molpharmaceut.5b00706
https://www.ncbi.nlm.nih.gov/pubmed/26642391
https://www.ncbi.nlm.nih.gov/pubmed/26642391


Oncotarget3909www.oncotarget.com

45. Cheng CT, Qi Y, Wang YC, Chi KK, Chung Y, Ouyang 
C, Chen YR, Oh ME, Sheng X, Tang Y, Liu YR, Lin HH, 
Kuo CY, et al. Arginine starvation kills tumor cells through 
aspartate exhaustion and mitochondrial dysfunction. 
Commun Biol. 2018; 1:178. https://doi.org/10.1038/s42003-
018-0178-4. [PubMed]

46. Budczies J, Denkert C, Müller BM, Brockmöller SF, 
Klauschen F, Györffy B, Dietel M, Richter-Ehrenstein C, 
Marten U, Salek RM, Griffin JL, Hilvo M, Orešič M, et 

al. Remodeling of central metabolism in invasive breast 
cancer compared to normal breast tissue - a GC-TOFMS 
based metabolomics study. BMC Genomics. 2012; 13:334. 
https://doi.org/10.1186/1471-2164-13-334. [PubMed]

47. Barupal DK, Fiehn O. Chemical Similarity Enrichment 
Analysis (ChemRICH) as alternative to biochemical 
pathway mapping for metabolomic datasets. Sci Rep. 2017; 
7:14567. https://doi.org/10.1038/s41598-017-15231-w. 
[PubMed]

www.oncotarget.com
https://doi.org/10.1038/s42003-018-0178-4
https://doi.org/10.1038/s42003-018-0178-4
https://www.ncbi.nlm.nih.gov/pubmed/30393775
https://doi.org/10.1186/1471-2164-13-334
https://www.ncbi.nlm.nih.gov/pubmed/22823888
https://doi.org/10.1038/s41598-017-15231-w
https://www.ncbi.nlm.nih.gov/pubmed/29109515
https://www.ncbi.nlm.nih.gov/pubmed/29109515

