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ABSTRACT

The mutagenic effects of tobacco smoking increase the risk of the development 
of cancers of the lung, head and neck, and other anatomic sites. In a comparison 
of squamous cell carcinomas of the lung and the head and neck, we find that the 
immunomodulatory effects of smoking differ based on anatomic site. In both sites, 
the mutational signature of smoking is strongly associated with somatic mutational 
load. In head and neck squamous cell carcinoma, the mutational signature of tobacco 
exposure is associated with a strongly immunosuppressive tumor microenvironment. 
In contrast, in lung squamous cell carcinoma, the opposite effect is seen, with the 
tumor immune microenvironment significantly more inflamed. These effects are 
mirrored in rates of response to immune checkpoint inhibitor immunotherapy, which 
tend to be higher in smokers with lung cancer, but lower in smokers with head 
and neck cancer. We find a similarly strong immunosuppressive effect of smoking 
in non-cancerous lung epithelium. Taken together, our findings show that the 
effects of mutational signatures on the immune microenvironment and response to 
immunotherapy can be affected by context such as cancer type, anatomic site, and 
histology.
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INTRODUCTION

Traditionally, cancers have been categorized by 
features such as anatomic site and tissue histology. Our 
understanding of cancer biology has subsequently evolved 
to recognize that tumors arising from diverse anatomic 
sites may share oncogenic molecular drivers or biomarkers. 
In recent years, targeted and immunotherapeutic drugs 
have demonstrated activity across multiple cancer types 
that are defined by a shared oncogenic alteration, such 
as a driver gene or fusion, or a shared biological process, 
such as DNA mismatch repair deficiency. This has led 
some to speculate that oncology drug treatments may be 

effective, and can receive regulatory approval, based only 
on molecular markers, in a “tissue-agnostic” fashion. It 
remains unknown how broadly tissue-agnostic approaches 
are applicable, and whether context such as anatomic site 
or tissue histology may alter the implications of these 
molecular markers [1–3]. 

Tobacco smoking contributes to the development 
of multiple cancers, including head and neck and lung 
cancer [4, 5]. Tobacco smoke contains many carcinogenic 
chemicals that disrupt DNA such as polycyclic aromatic 
hydrocarbons and nitrosamines, which can cause G→T 
transversions and distinct mutational signatures [6, 7]. 
Apart from increasing the somatic mutational burden 
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associated with unrepaired DNA damage, tobacco 
carcinogens also appear to alter both the innate and 
the adaptive immune system, which may contribute 
to tumorigenesis [8–10]. The likelihood of a tumor 
responding to immunotherapy treatments such as immune 
checkpoint blockade (ICB) is known to be affected by 
these same factors, namely tumor mutational burden 
(TMB) and the degree of immune infiltration in the tumor 
microenvironment [11–15].  

Immune checkpoint inhibitors are a class of 
cancer immunotherapy drugs that seek to inhibit T-cell 
checkpoints [16]. Pivotal trials have shown that a subset 
of patients with advanced melanoma, non-small cell lung 
cancer (NSCLC), renal cell carcinoma (RCC), bladder 
cancer, head and neck squamous cell carcinoma (HNSC), 
and many other tumor types, experience clinical responses 
following ICB therapy [17–23]. However, there are still 
a large majority of patients who do not experience tumor 
response to ICB, with response rates of 10–20% in HNSC 
and NSCLC. Interestingly, early clinical observations 
demonstrated that lung cancer patients with a smoking 

history tended to have a higher likelihood of ICB response; 
however, for HNSC patients, the likelihood of response 
appeared to be lower in smokers [4, 5, 11, 18, 19].   

In order to understand how tobacco smoking affects 
the tumor immune microenvironment and potentially 
identify the biomarkers to guide treatment options, we 
analyzed RNA and DNA sequencing data from cases 
studied as part of The Cancer Genome Atlas (TCGA), 
as well as two independent gene expression datasets of 
lung squamous cell carcinoma (LUSC) and HNSC tumors 
[4]. We found that the mutational signature of tobacco 
smoking was evident in both lung and head and neck 
tumors. In both LUSC and HNSC, we found that a higher 
mutational smoking signature was associated with a higher 
TMB, as would be expected. 

We then examined the association between the 
mutational signature of smoking and RNA sequencing-
derived measures of tumor immune infiltration and T 
cell activation. In LUSC, a higher mutational smoking 
signature was positively associated with levels of immune 
infiltration, cytolytic activity and interferon-γ pathway 

Figure 1: The association of smoking history with immune infiltration and T cell activation in non-cancerous bronchial 
epithelium demonstrates stepwise immunosuppression with increasing smoking history. Human bronchial mucosa samples 
(total n = 75, current smoker n = 34, former smoker n = 18, never smoker n = 23; clinical and expression data from [24]); (A) CYT score, 
(B) IIS, (C) ESTIMATE IS, and (D) CIBERSORT AS illustrated as scatter blots for current, former and never smokers. For all statistical 
analyses, a Mann-Whitney-U test was used (α = 0.05) and p-values ≤ 0.05 were considered statistically significant. CYT score – cytolytic 
activity score; IIS – immune infiltration score; ESTIMATE IS – ESTIMATE signature score; CIBERSORT AS – CIBERSORT absolute 
score; current – current smoker (red dots); former – former smoker (green squares); never – never smoker (blue triangles).   
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signaling, indicating that smoking was associated with 
a more inflamed tumor immune microenvironment. In 
HNSC, these associations were all strongly in the opposite 
direction. 

These findings have been apparent from clinical 
data. It was first observed by the Chan group that the 
genetic smoking signature was associated with a higher 
TMB and a higher response to anti-PD-1 immunotherapy 
[11]. It is possible that this higher response rate was also, in 
part, driven by a more T cell inflamed microenvironment 
in patients with a heavy smoking history. In HNSC, the 
reverse trend appears to emerge – we found that HNSC 
patients with a clinical smoking history tended to have a 
lower likelihood benefit from anti-PD-1 immunotherapy. 
These results underscore that contextual factors such 
as cancer type and anatomic site may play a role in 
modulating the interaction between the tumor genome and 
anti-tumor immunity.

Tobacco smoking has both immunosuppressive 
effects, such as a pro-apoptotic effect on T cells, as well as 
inflammatory effects. The balance of these sequelae may 
differ in the epithelium of the lung and bronchus versus 
upper aerodigestive tract mucosa. Furthermore, they may 
differ in time – one effect may predominate in normal 
epithelium, prior to cancer initiation, and the other effect 
may be more relevant during the development of an early-
stage cancer. To better understand the effects of tobacco 
smoke in sculpting the immune microenvironment of non-
cancerous normal cells, we analyzed gene expression data 
from normal human airway epithelial cells in volunteers 
undergoing bronchoscopy [24]. In this study, Spira and 
colleagues obtained bronchoscopic biopsies of normal 
lower airway epithelium from a group of 34 current 
smokers, 18 former smokers and 23 never smokers. We 
analyzed these data and deconvolved gene expression 
data to measure immune infiltration and T cell activation 
[25, 26]. We determined levels of immune activation 
and infiltration by calculating the cytolytic (CYT) score 
(incorporating cytolytic effectors of CD8+ T cells: 
GZMA, and PRF1) [27], immune infiltration score (IIS) 
[28], ESTIMATE signature score [29] and CIBERSORT 
absolute score [30] for each sample (Figure 1). In these 
samples, we observed that smoking was associated with 
a significantly immunosuppressive microenvironment in 
normal human airway epithelium, most notably in current 
smokers, and less so in former smokers.

These findings will require further mechanistic 
investigation, perhaps with in vivo immunocompetent 
models of smoking carcinogenesis [31, 32]. We believe 
that these findings are consistent with profoundly 
immunosuppressive effects of tobacco smoke on the 
local immune microenvironment, which together with the 
mutagenic effects of tobacco, can lead to the initiation of 
cancer. In certain sites or anatomic locations such as the 
lung, the higher tumor mutational load associated with 
smoking may lead to an enhancement of T cell infiltration 

that becomes evident after tumor initiation. This effect is 
not seen in the head and neck mucosa, possibly because 
the immunosuppressive effects of smoking are more 
profound, or the degree of T cell infiltration responding 
to elevated mutational load is less marked. These effects 
would then potentially affect the probability of response 
to immunotherapies [33]. It is important to note that this 
latter point at present speculative and that the mechanistic 
aspects of carcinogenesis are likely to be far more 
complex.  Indeed,  there are several different carcinogenic 
compounds in cigarette smoke which are likely to exert 
differing immunosuppressive and inflammatory effects 
in different parts of the upper (HNSC) or lower (LUSC) 
airways. 

The effect of smoking on cancer immunity and 
immunotherapy response needs to be explored across cancer 
types more broadly. A recent study of melanoma patients 
found that smoking had a strong negative prognostic effect 
in highly immune infiltrated tumors [34]. The systemic 
effects of tobacco smoke on smoking-associated cancers 
that are not directly exposed to smoke, such as bladder 
cancer, will also be important to dissect further. Future 
mechanistic and clinical studies will be needed to elucidate 
the importance of this risk factor, and its associated 
mutational signature, to the shaping of the tumor immune 
microenvironment, and the development of response and 
resistance to immunotherapies. These data indicate that it 
is very likely that cancer-causing processes, and mutational 
signatures, exert different effects on anti-tumor immunity 
in different contexts, and that further research will need to 
consider the interaction between molecular carcinogenesis 
and cancer type/location. Together with TMB, PD-L1 
staining, measures of immune infiltration, HLA status, and 
other factors, it is likely that smoking history and/or the 
smoking mutational signature will add predictive value to 
our efforts to define biomarkers of response to ICB. 
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