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ABSTRACT
Hepatocellular carcinoma is one of the most lethal cancers in the United States. 

Early detection of the disease is crucial for reducing the mortality of this malignancy. 
Recently, we identified a panel of fusion genes present in several types of human 
cancers, including hepatocellular carcinoma. Among 8 fusion genes, MAN2A1-FER, 
TRMT11-GRIK2 and CCNH-C5orf30 appear most frequently in hepatocellular carcinoma 
samples. In this study, we showed that the fusion transcripts of MAN2A1-FER, CCNH-
C5orf30 and SLC45A2-AMACR were detected in the serum samples of liver cancer 
patients as circulating cell-free RNA. The distributions of these gene fusion RNA 
fragments largely matched those of the primary HCC samples. In contrast, the sera 
of all healthy individuals free of human malignancies were shown to be negative for 
these fusion genes. These results suggest that gene fusion RNA is frequently shed 
from liver cancer cells. The detection of serum cell-free fusion transcripts may provide 
a new approach to aid in the diagnosis, follow-up or therapy of liver cancers.

INTRODUCTION

Human cancer is one of the most frequent causes 
of death in the United States. In 2018, the mortality rate 
of cancer reached 606,880 in the US [1], making cancer 
the second most lethal cause of death after cardiovascular 
diseases [2]. Hepatocellular carcinoma (HCC) is one of 
the most lethal malignancies, accounting for more than 
31,000 deaths in the US alone [1]. The five-year survival 
rate for HCC is approximately 18%. Only pancreatic 
adenocarcinoma and glioblastoma multiforme have lower 
survival rates [3]. The development of early detection 
methods and effective treatment for HCC is urgently 
needed to reduce the mortality of this disease.

Treating liver cancer in the early clinical stages offers 
a significant advantage for therapeutic options and a better 
prognosis [4]. Currently, surgical resection, ablation and liver 
transplant are the most effective approaches to treating early-

stage HCC [5, 6]. HCC patients treated with these approaches 
typically survive long-term and can even be considered cured 
of the disease. However, patients with late clinical stage 
HCC without similar options of surgical intervention usually 
survive less than a year. Thus, early detection of HCC is 
crucial for reducing the mortality of liver cancer. Recently, 
we identified a panel of 8 fusion genes in human cancers 
[7–9]. Some of these fusion genes were shown to be present 
in a large proportion of HCC cancer samples [7, 10]. The 
mechanisms underlying these gene fusions are chromosomal 
translocation and rearrangement [8–10]. The presence of 
these fusion transcripts in liver cancer samples indicates that 
translocation and chromosomal rearrangement are common 
in liver cancer cells. To investigate the utility of these fusion 
transcripts in detecting liver cancer, we performed TaqMan 
qRT-PCR on the RNA extracted from cell-free serum. The 
results suggest that many of these fusion genes are detectable 
as cell-free circulating RNA.

www.oncotarget.com                                             Oncotarget, 2019, Vol. 10, (No. 36), pp: 3352-3360

           Research Paper

http://www.oncotarget.com
http://www.oncotarget.com


Oncotarget3353www.oncotarget.com

RESULTS

One of the hallmarks of genomes of human cancer 
is chromosomal rearrangement and translocation [11, 
12]. Previously, we identified a panel of fusion genes in 
prostate cancer samples from patients who experienced 
poor clinical outcomes. Subsequent analyses showed 
that many of these fusion genes are present in a variety 
of human cancers, including liver cancer [7, 10]. To 
investigate whether these fusion transcripts are detectable 
in the sera of HCC patients, we analyzed the presence 
or absence of 8 fusion genes in 118 serum samples from 
HCC patients and individuals free of malignant tumors. 
As shown in Table 1, all serum samples from individuals 
free of malignancies were negative (0/14) for the fusion 
transcripts of all the fusion genes. In contrast, 83.7% 
(87/104) of the serum samples from HCC patients were 
positive for at least one fusion transcript. Interestingly, 
all serum samples obtained from HCC patients with non-
alcoholic steatohepatitis etiology (n=20) were positive 
for at least one fusion gene (p=0.019): 100% (20/20) 

versus 77.6% (59/76). The fusion gene is also more likely 
present in the serum samples from HCC patients with 
steatohepatitis background (p=0.02): 100% (20/20) versus 
78.5% (62/79). Interestingly, multiple fusion transcripts (at 
least 2) detected in the serum are associated with moderate 
differentiation of HCC (42.4% [14/33] versus 9.5% [2/21] 
for all other category, p=0.014).

Upon analyzing individual fusion transcripts, we 
determined that MAN2A1-FER was frequently detected 
in the sera of HCC patients, reaching 78.8% (82/104, 
Table 2). SLC45A2-AMAMCR occurred at a frequency 
of 31.7% (33/104), while CCNH-C5orf30 occurred at 
a frequency of 10.6% (11/104). All HCC patients with 
NASH were positive for MAN2A1-FER in their serum 
samples (20/20), indicating a strong association between 
MAN2A1-FER and the etiology of NASH (p=0.005).

To determine whether the HCC samples from the 
same patients were positive for these fusion genes, six liver 
cancer samples from these HCC patients were analyzed. 
As shown in Table 3 and Figure 1, MAN2A1-FER and 
CCNH-C5orf30 were positive in all six HCC samples, 

Figure 1: Detection of MAN2A1-FER, CCNH-C5orf30 and SLC45A2-AMACR in HCC samples and the corresponding 
serum samples. Six cases of HCC and matched serum samples were analyzed for the presence of transcripts of MAN2A1-FER, CCNH-
C5orf30 and SLC45A2-AMACR using TaqMan qRT-PCR. The results of β-actin were used as normalization controls. Assays were 
performed twice independently. Sanger sequencing was performed on 20% of all positive samples.
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while 4 of 6 HCC samples were positive for SLC45A2-
AMACR. All positive serum samples corresponded to the 
matched positive HCC samples, indicating that the source 
of the seral fusion transcripts was the liver cancer. Two 
serum samples were negative for MAN2A1-FER, while 
the matched HCC samples were positive for the fusion 
gene. Similarly, two HCC samples positive for SLC45A2-
AMACR had matched serum samples that were negative 
for the same fusion gene. Even though TRMT11-GRIK2 
and CCNH-C5orf30 were present in all six HCC samples, 

the transcripts of these fusion genes were undetectable in 
the sera of the same patients. Half of the HCC samples 
were also positive for LRRC59-FLJ60017, but the fusion 
transcript was not detected in the matched serum samples. 
Based on these results, MAN2A1-FER appears to be 
the most sensitive marker for serum detection of HCC 
(4/6 or 67%). SLC45A2-AMACR ranks second (2/4 or 
50%), while TRMT11-GRIK2 and CCNH-C5orf30 are 
the most insensitive markers (0/6 or 0%). These results 
suggest that these fusion transcripts have different levels 

Table 1: Fusion transcripts detection in the sera of HCC patients

Clinical characteristics Fusion gene positive Fusion gene negative

HCC patients

Age:

40s 5 0

50s 22 2

60s 33 11

70s 20 1

80s 4 3

Etiology:

HCV 44 8

HBV 6 2

Ethanol 34 9

NASH 20 0

Other 4 4

Background liver:

Cirrhosis/fibrosis 81 17

Steatosis 12 4

Steatohepatitis 20 0

Recurrent status:

Recurrent 20 2

Non-recurrent 50 11

Response to therapy:

Responsive 31 8

Progressive 42 6

Pathology grade:

Poorly differentiated 5 0

Moderately differentiated 28 5

Well differentiated 18 6

Death 40 7

Alive 42 9

Healthy individuals 0 14
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of detectability in the blood, probably due to differences 
in the sensitivity of these RNA sequences to circulating 
RNAses.

DISCUSSION

Cancer-specific gene fusions are the result of 
chromosomal rearrangement and translocation [8]. 

Many gene fusion events are not specific to one type of 
cancer. Indeed, most of the fusion genes we discovered in 
prostate cancer were later detected in a variety of human 
malignancies, including HCC [7, 10]. MAN2A1-FER 
and SLC45A2-AMACR belong to a class of fusion genes 
with gain of function. The MAN2A1-FER gene fusion 
generates a new chimera protein in which the C-terminal 
glycoside hydrolase of mannosidase alpha, class 2A, 

Table 2: Frequency of individual fusion transcript detected in the sera of HCC patients

Clinical features MAN2A1-
FER

TRMT11-
GRIK2

MTOR-
TP53BP1

CCNH-
C5orf30

KDM4B-
AC011523.2

SLC45A2-
AMACR

TMEM135-
CCDC67

LRRC59-
FLJ60017

All HCC patients 83/104 0/104 0/104 11/104 0/104 33/104 0/104 0/104

Ages:

>80s 11/15 0/15 0/15 0/15 0/15 6/15 0/15 0/15

70s 21/22 0/22 0/22 2/22 0/22 7/22 0/22 0/22

60s 36/48 0/48 0/48 8/48 0/48 11/48 0/48 0/48

50s 12/14 0/14 0/14 1/14 0/14 5/14 0/14 0/14

40s 2/2 0/2 0/2 0/2 0/2 2/2 0/2 0/2

Etiology:

HCV 42/54 0/54 0/54 8/34 0/54 19/54 0/54 0/54

HBV 7/8 0/8 0/8 1/8 0/8 1/8 0/8 0/8

Ethanol 31/43 0/43 0/43 2/43 0/43 11/43 0/43 0/43

NASH 21/21 0/21 0/21 4/21 0/21 7/21 0/21 0/21

Other 2/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5

Background liver:

Cirrhosis/fibrosis 81/101 0/101 0/101 12/101 0/101 28/101 0/101 0/101

Steatosis 11/16 0/16 0/16 0/16 0/16 7/16 0/16 0/16

Steatohepatitis 20/21 0/21 0/21 3/21 0/21 7/21 0/21 0/21

Recurrent status:

Recurrent 20/22 0/22 0/22 2/22 0/22 5/22 0/22 0/22

Non-recurrent 50/63 0/63 0/63 10/63 0/63 20/63 0/63 0/63

Response to therapy:

Responsive 29/38 0/38 0/38 5/38 0/38 12/38 0/38 0/38

Progressive 42/49 0/49 0/49 7/49 0/49 16/49 0/49 0/49

Pathology differentiation grade:

Poor 4/5 0/5 0/5 0/5 0/5 3/5 0/5 0/5

Moderate 26/34 0/34 0/34 5/34 0/34 5/34 0/34 0/34

Well 18/24 0/24 0/24 2/24 0/24 3/24 0/24 0/24

Death 39/48 0/48 0/48 5/48 0/48 17/48 0/48 0/48

Alive 41/51 0/51 0/51 5/51 0/51 15/51 0/51 0/51

Healthy person 0/14 0/14 0/14 0/14 0/14 0/14 0/14 0/14
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member 1 (MAN2A1) is replaced with an intact tyrosine 
kinase domain from FER [9, 10]. The new chimera protein 
exhibits an almost 4-fold increase in tyrosine kinase 
activity compared with that of the native FER, and the 
chimera protein is translocated to the Golgi apparatus [10]. 
The resulting chimera protein transforms immortalized 
cells into cancer through the ectopic phosphorylation of 
growth factor receptor [10]. MAN2A1-FER was detected 
in 15% of human HCC samples, and this fusion protein 
was shown to be a driver of mouse liver cancer [10]. 
SLC45A2-AMACR was also detected in a lung cancer 
cell line [13] and urothelial carcinoma [14], in addition 
to prostate cancer [9, 15]. To our knowledge, this is the 
first report showing that SLC45A2-AMACR is present in 
HCC and the corresponding serum samples. AMACR is 
a racemase responsible for branch fatty acid metabolism, 
while SLC45A2 is a solute transporter. The fusion 
generates a chimera protein such that 5 transmembrane 
domains of SLC45A2 are removed from its C-terminus 
and replaced with an intact racemase domain from 
AMACR. The overexpression of AMACR was shown 
to be associated with the aggressive behavior of multiple 
human cancers [16–25]. In vitro, AMACR was shown to 
increase cell growth and proliferation [26].

CCNH-C5orf30 and TRMT11-GRIK2 belong to 
a class of fusion genes with loss of function. CCNH-

C5orf30 was detected in 37% of HCC samples [10], 
while TRMT11-GRIK2 was detected in 12.9% of HCC 
samples [7]. The gene fusion of CCNH-C5orf30 produces 
a truncation of the H5′ and HC domains of cyclin H 
(CCNH), which is an important cell cycle regulator for 
the progression to mitosis [27, 28], and an independent 
C5orf30 protein. The truncated CCNH in the fusion 
gene is defective in binding with cdk7 [29] and may be 
defective in its transcriptional activity and promotion 
of the cell cycle. A more dramatic loss of function is 
identified in the TRMT11-GRIK2 gene fusion; the 
TRMT11-GRIK2 gene fusion eliminates the open-reading 
frame of GRIK2, which is a potential tumor suppressor 
[30, 31], and produces a large truncation of TRMT11, 
which is a tRNA methyltransferase [32, 33]. Thus, the 
fusion event is equivalent to the structural deletion of both 
TRMT11 and GRIK2 genes. The deletion of TRMT11 
reduces the stability of tRNA and may therefore adversely 
impact the protein translation of cancer cells, while the 
loss of GRIK2 may promote the growth of cancer cells. 
All these gene fusion events may play important roles in 
the development of human liver cancer.

The abnormal chromosomal recombination that 
generates these fusion genes is cancer-specific and is 
absent in normal tissues [8]. The frequent presence of 
these fusion transcripts in the serum samples of HCC 

Table 3: Fusion gene detection in serum versus matched HCC tissue

Case No. MAN2A1-
FER

TRMT11-
GRIK2

MTOR-
TP53BP1

CCNH-
C5orf30

KDM4B-
AC011523.2

SLC45A2-
AMACR

TMEM135-
CCDC67

LRRC59-
FLJ60017

2274

HCC tissue + + - + - + - -

Serum + - - - - + - -

2298

HCC tissue + + - + - + - -

Serum + - - - - + - -

2209

HCC tissue + + - + - - - +

Serum - - - - - - - -

2128

HCC tissue + + + + - + - +

Serum - - - - - - - -

2218

HCC tissue + + - + - - - -

Serum + - - - - - - -

2172

HCC tissue + + - + + + - +

Serum + - - - - - - -
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patients suggests that these RNAs are derived from 
liver cancer cells. Three lines of evidence support the 
hypothesis that the fusion RNA fragments detected in the 
serum are shed from liver cancer cells. First, the pattern 
of fusion transcript distribution in the serum completely 
overlaps that of the corresponding liver cancer samples, 
i.e., there is no fusion transcript that is positive in the 
serum but negative in the matched liver cancer sample. 
Second, all serum samples from healthy individuals are 
negative for these fusion transcripts. Normal individuals 
do not produce these fusion genes. Third, the normalized 
quantities of the detected fusion transcripts in the serum 
are generally 4- to 16-fold lower than those detected in the 
corresponding HCC samples, suggesting the shedding of 
RNAs from a fraction of cancer cells.

Early detection of HCC is probably the most 
effective way to reduce the mortality of the disease, due 
to the availability of many effective surgical treatments. 
Unfortunately, at the time of diagnosis, the HCCs of 
many patients are at the advanced stages, eliminating 
many options for curing the disease [4]. Currently, the 
primary means of diagnosing HCC relies on radiology 
imaging of liver cancers. The screening of HCC for 
patients with cirrhosis and chronic liver diseases involves 
biannual ultrasonography [4]. This screening method may 
be combined with a seral test for α-fetoprotein or other 
imaging analyses, such as MRI, CT and contrast-enhanced 
ultrasound, if a suspicious nodule appears. The presence 
of fusion transcripts from HCC cancer cells in the serum 
may represent a new approach for detecting liver cancer. 
Since the test is minimally invasive, it can be employed 
regularly in conjunction with ultrasound screening for 
patients with chronic liver disease or cirrhosis. When a 
suspicious nodule is detected, the presence of a fusion 
transcript may help to confirm the diagnosis. All 14 
healthy individuals negative for the fusion transcript had 
no known liver disease and were cancer-free. The high 
frequency of fusion genes in liver cancer implies that 
gene fusion in the cancer genome is an early event for 
liver cancer development. It is of interest to investigate 
whether these fusion genes are also present in some of the 
HCC precursor lesions such as NASH. So far, the fusion 
transcripts appear cancer-specific. The serum detection 
of these fusion genes may provide a sensitive follow-up 
test for patients undergoing surgical resection or liver 
transplant to monitor the recurrence of liver cancer. A new 
therapeutic approach was recently developed to target the 
chromosomal breakpoints of these fusion genes using the 
CRISPR-cas9 gene editing system [34]. This approach 
led to the partial remission of xenografted human liver 
cancers when the animals were treated with reagents 
targeting the breakpoint of the MAN2A1-FER fusion gene 
[34]. As a result, the detection of these fusion genes in 
HCC may have significant therapeutic implications. The 
utilization of cell-free fusion RNA in the circulation as 
tumor markers may provide an important means for early 

detection, follow-up and therapeutic guidance for the 
management of HCC patients.

MATERIALS AND METHODS

Tissue samples

The 124 tissue specimens and serum samples used 
in this study consisted of 6 hepatocellular carcinoma 
samples from HCC patients, 104 serum samples 
from HCC patients and 14 serum samples from non-
cancerous patients. These samples were obtained from 
the University of Pittsburgh Tissue Bank in compliance 
with institutional regulatory guidelines. The informed 
consent exemptions and protocol were approved by the 
Institution Review Board of the University of Pittsburgh. 
All serum samples and hepatocellular carcinoma 
samples were fresh-frozen and stored at -80°C. Some 
cases have multiple etiologies, pathological features, 
and backgrounds. They were classified multiple times. 
When statistical analyses were performed, however, the 
duplication was excluded from the analyses. HCC cases 
that do not contain the specific clinical information were 
also excluded from the analyses.

RNA extraction, cDNA synthesis and detection of 
fusion genes

The procedures for RNA extraction, cDNA 
synthesis and the detection of fusion genes were described 
previously [35–49]. Briefly, total RNA was extracted using 
Trizol to lyse the cells in the cancer tissues (Invitrogen, 
CA, USA). First strand cDNA was synthesized using 
~2 µg of RNA from each sample, random hexamers and 
Superscript II™ (Invitrogen, Inc, CA, USA) at 42°C for 2 
hours. One microliter of each cDNA sample was used for 
the TaqMan PCR reactions with 50 heat cycles, as follows: 
94°C for 30 seconds, 61°C for 30 seconds, and 72°C for 
30 seconds. The following primers and probes were used: 
MAN2A1-FER (AGCGCAGTTTGGGATACAGCA/
CTTTAATGTGCCCTTATATACTTCACC; TaqMan  
probe, 5’/56-FAM/TCAGAAAC A/ZEN/GCCTATGAGG 
GAAATT/3IABkFQ/3’), SLC45A2-AMACR (TTGAT 
GTCTGCTCCCATCAGG/CAGCTGGAGTTTCTCCAT 
GAC; TaqMan probe, 5'-/56-FAM/AAGAGGGCA/ZEN/
TGGTAGTGGAGGC/3IABkFQ/-3'), CCNH-C5orf30 
(AAAGTTATTTATCAGAGAGTCTGATGCTG/CTGTT 
CTACTCCAGGTATTTTCATTATATC; TaqMan probe, 
5'-/56-FAM/ACAGGCAAG/ZEN/TTCTGTTCTCTTTC 
AGCA/3IABkFQ/-3'), mTOR-TP53BP1 (TGATAGA 
CCAGTCCCGGGATG / CCACTGACATTCCCAGA 
ACAAG; TaqMan probe, 5'-/56-FAM/ TGTCAGCCT/
ZEN/GTCAGAATCCAAGTCAAG/3IABkFQ/-3'), TRM 
T11-GRIK2 (GCGCTGTCGTGTACCCTTAAC / GAAT 
GCAAGTTCCTCAGCTCC; TaqMan probe, 5'-/56-FAM/ 
CGGAACTCC/ZEN/AGATGCTCCTGCG/3IABkFQ/ 
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-3'), LRRC59-FLJ60017 (GTGACTGCTTGGATG 
AGAAGC / CCCTCCTCTGGTTTGTTGTTG; TaqMan  
probe, 5'-/56-FAM/CAGTGTGCA/ZEN/AACAAGGT 
GACTGGAAG/3IABkFQ/-3'), TMEM135-CCDC67  
(CAGCTGTCATGGAAGTTCAGAC / CCTCATTCT 
TTCCTGCTCAGAG; TaqMan probe, 5'-/56-FAM/
AGTTCCTTT/ZEN/TAAGACTCACCAAGGGCAA/3IA 
BkFQ/-3'), KDM4- AC011523.2 (AGACC 
ACCTTCGCCTGGCAC / TCTCTCTCAGATCCAG 
GCTTG; TaqMan probe, 5'-/56-FAM/ACAGCATCA/ZEN/
ACTACCTGCACTTTGGG/3IABkFQ/-3'), and β-actin  
(ACCCCACTTCTCTCTAAGGAG / GCAATGCTATC 
ACCTCCCCTG; TaqMan probe, 5'-/56-FAM/CCA 
GTCCTC/ZEN/TCCCAAGTCCACAC/3IABkFQ/-3’). 
The PCR reactions were performed in a thermocycler 
(Eppendorf Realplex™ thermocycler). A negative control 
and synthetic positive control were included in each batch 
of reactions. The PCR products were gel-purified and 
Sanger-sequenced for 20% of the positive samples.
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