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ABSTRACT

Biliary esophageal reflux at acidic pH is considered a risk factor in 
laryngopharyngeal cancer. We previously showed the key role NF-κB in mediating 
acidic bile-induced pre-neoplastic events in hypopharyngeal cells, and that co-
administration of specific NF-κB inhibitor, BAY 11-7082, together with acidic bile, 
can effectively prevent its related oncogenic molecular effects. We hypothesize that 
the addition of BAY 11-7082 (10μM) either before or after application of acidic bile 
(400μM conjugated bile acids; pH 4.0), is capable of comparably blocking acidic bile-
induced oncogenic molecular phenotypes in murine hypopharyngeal primary cells. 
We performed immunofluorescence, luciferase assay, western blot and qPCR analysis, 
demonstrating that 15-min of pre- or post-application of BAY 11-7082 effectively 
inhibits acidic bile-induced NF-κB activation, transcriptional activation of RELA(p65), 
STAT3, EGFR, IL-6, bcl-2, WNT5A, “upregulation” of “oncomirs” miR-21, miR-155, 
miR-192 and “downregulation” of “tumor suppressor” miR-34a, miR-375, miR-451a. 
Our observations support the understanding that acidic bile-induced deregulation 
of anti-apoptotic or oncogenic factors, bcl-2, STAT3, EGFR, IL-6, WNT5A, miR-21, 
miR-155, miR-375, is highly NF-κB-dependent, showing that even post-application 
of inhibitor can suppress their deregulation. In conclusion, application of specific NF-
κB inhibitor, has the capability of adequately blocking the early oncogenic molecular 
events produced by acidic bile whether it is applied pre or post exposure. In addition 
to therapeutic implications these findings provide a window of observation into the 
complex kinetics characterizing the mechanistic link between acidic bile and early 
neoplasia. Although BAY 11-7082 itself may not be suitable for clinical use, the 
application of other NF-κB inhibitors merits exploration.
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INTRODUCTION

Laryngopharyngeal reflux (LPR) has been linked 
to chronic inflammatory and neoplastic diseases of 
the upper aero-digestive tract [1]. Although several 
known risk factors have been associated with 
laryngopharyngeal cancer, the presence of duodenogastric 
or bile fluid in patients with LPR suggests the possible 
carcinogenic effect of mixed (acid and bile) refluxate 
on hypopharyngeal mucosa [2–4]. In this connection, 
we have previously shown that acidic bile is capable 

of upregulating NF-κB signaling and transcriptionally 
activating oncogenic factors while deregulating cancer-
related miRNA markers in exposed hypopharyngeal 
primary cells [5–7]. Furthermore, we showed that these 
alterations are early molecular events that are specifically 
linked to premalignant histopathological changes, such 
as abnormal hyperplasia and dysplasia, seen in exposed 
murine hypopharyngeal mucosa [8, 9]. Furthermore, our 
recent findings document that co-administration of NF-
κB inhibitor BAY 11-7082 with acidic bile is capable 
of inhibiting the upregulation of NF-κB signaling and 
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deregulation of oncogenic mRNA and miRNA phenotypes 
[6, 7, 10]. 

We hypothesize that treatment of hypopharyngeal 
cells with BAY 11-7082 before or after acidic bile 
exposure (pre- and post-treatment) may have effects 
comparable to its co-administration with acidic bile in 
inhibiting its oncogenic mRNA and miRNA phenotypes 
[6, 7]. In using murine hypoharyngeal primary cells we 
performed a series of assays according to a previously 
established in vitro model to highlight the effects of pre- 
or post-application of BAY 11-7082 on acidic bile-induced 
cancer-related molecular alterations [6, 7]. Although BAY 
11-7082 itself may not be suitable for clinical use, this 
pre-clinical in vitro exploration is intended to conceptually 
support and encourage the future clinical use of NF-κB 
inhibition in preventing the tumorigenic effects of biliary 
reflux disease. 

RESULTS

Pre-or post-application of BAY 11-7082 
comparably prevents acidic bile-induced NF-κB 
nuclear translocation and bcl-2 overexpression 

We observed that either pre- or post-applications 
of NF-κB inhibitor, successfully inhibited acidic bile-
induced NF-κB activation in treated MHPC. However 
pre-application was found more effective in reducing both 
the nuclear translocation and cytoplasmic accumulation 
of p-NF-κB. Specifically, immunofluorescence assay (IF) 
revealed that MHPC treated with NF-κB inhibitor 15 
min before acidic bile application (pH 4.0) demonstrated 
decreased p-p65 nuclear staining, implying that BAY  
11-7082 blocked acidic bile-induced p-p65 translocation 
to the nucleus (Figure 1). (p < 0.05; by paired t test;  

Figure 1: Pre- or post-application of BAY 11-7082 inhibits the acidic bile-induced nuclear translocation of phospho-
NF-κB in MHPC. Immunofluorescence staining for phospho-NF-κB (p-p65 S536) reveals that 5, 10, or 15 min either of pre- or post-
application of BAY 11-7082 inhibits acidic bile-induced p-NF-κB nuclear translocation, demonstrating decreased p-NF-κB nuclear 
staining and significantly reduced p-NF-κB nuclear expression (p-p65/DAPI ratios of intensity; mean±SD; bin count), compared to MHPC 
exposed to acidic bile alone. Pre-application of NF-κB inhibitor induces a more intense effect than post-application. Fifteen minutes of 
pre-application is found to be significantly more effective than its post-application, demonstrating significantly lower nuclear p-NF-κB  
(p-p65/DAPI) intensity, while no significant differences of the nuclear p-NF-κB (p-p65/DAPI) intensity are observed between 5 or 10 min 
of pre- and post-application. Control treated-group present a weak p-NF-κB staining [green: p-p65 (S536); blue: DAPI for nuclear staining; 
p values by t test; multiple comparisons by Holm-Sidak; GraphPad Prism 7.0; p-p65/DAPI ratios of intensity evaluated by Zen imaging 
software; Zeiss Microscopy]. 
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GraphPad Prism 7.0). Fifteen minutes of post-application 
of BAY 11-7082 was also effective but was found less 
effective than its pre-application. No significant differences 
were observed between 5 or 10 min of pre- and post-
application. Therefore, our protein, mRNA and miRNA 
analyses were focused on the 15 min pre- and post-treated 
groups, since 15 min seemed to be the minimum interval 
for visually detectable differences between the two groups. 

Western blot analysis confirmed this observation, 
demonstrating that pre-application of BAY 11-7082 
resulted in reduced nuclear and cytoplasmic p-p65 levels, 
compared to cells treated with acidic bile alone (Figure  
2A-a,b). Post-application of BAY 11-7082 was also found 
effective in inhibiting acidic bile-induced p-p65 nuclear 
translocation. This observation was characterized by 
significantly reduced nuclear p-p65 levels in MHPC post-
treated with BAY 11-7082 compared to acidic bile alone. 
However, post-application of BAY 11-7082 resulted in an 
accumulation of cytoplasmic p-p65 (Figure 2A-b).

We also found by Western blot analysis that pre- or 
post-application with BAY 11-7082 suppressed acidic bile-
induced cytoplasmic bcl-2 accumulation. This observation 
was characterized by a significant reduction of cytoplasmic 
bcl-2 levels in MHPC pre- or post-treated with BAY 11-
7082 compared to acidic bile alone (Figure 2B). Pre-
application was found slightly more effective in inhibiting 
acidic bile-induced bcl-2 overexpression compared to 
post-application.

Taken together, either pre- or post-application of 
BAY 11-7082 effectively prevented the acidic bile-induced 
NF-κB activation and bcl-2 overexpression, similar to that 
shown by the simultaneous application of BAY 11-7082 
and acidic bile [6]. Pre-application with NF-κB inhibitor 
resulted in more intense inhibition of acidic bile-induced 
changes than post-application. 

Pre- or post-application of BAY 11-7082 
effectively reduced acidic bile-induced 
NF-κB transcriptional activity in murine 
hypopharyngeal primary cells

We used an NF-κB luciferase assay to investigate 
the effect of pre- and post-application of BAY 11-7082 in 
preventing the NF-κB acidic bile-induced transcriptional 
activity in treated MHPC (Figure 3A). MHPC exposed 
to acidic bile alone induced higher levels of NF-κB 
transcriptional activity compared to neutral control. Pre- 
or post-treated MHPC with NF-κB inhibitor also resulted 
in a reduced transcriptional activity of NF-κB, compared 
to those treated with acidic bile alone (Figure 3B).

Pre- or post-application of BAY 11-7082 Prevents 
the Acidic Bile-Induced mRNA Phenotype 

We performed qPCR to analyze the effect of pre- 
and post-application of BAY 11-7082 in preventing 

overexpression of NF-κB and related oncogenic genes 
in acidic bile-treated MHPC (Figure 4). RELA(p65), 
TNF-α, STAT3, EGFR, bcl-2, IL-6 and WNT5A were 
selected because they had been previously found to be 
overexpressed in the acidic bile-treated MHPC, and 
because their transcriptional activation was effectively 
prevented by simultaneous application of acidic bile with 
BAY 11-7082 [10].

We found that pre-application of NF-κB inhibitor 
appeared to induce a more profound effect on the acidic 
bile-induced mRNA oncogenic phenotype, preventing its 
transcriptional activation (Figure 4A). This observation 
was characterized by significantly lower mRNA levels 
of RELA(p65), TNF-α, STAT3, EGFR, bcl-2, IL-6 
and WNT5A in MHPC pre-treated with NF-κB inhibitor 
compared to those exposed to acidic bile alone (Figure 
4B). Although post-application of NF-κB inhibitor induced 
a similar effect, its application resulted in a less significant 
reduction of the RELA(p65), STAT3, and WNT5A 
compared to its pre-application (Figure 4B). We also 
observed that transcriptional levels of TNF-α were only 
affected by pre-application of BAY 11-7082, however, 
anti-apoptotic bcl-2 and cancer-related cytokine IL-6 were 
similarly affected by pre- and post-application of BAY 11-
7082, inducing significantly lower mRNA levels compared 
to acidic bile alone (p < 0.05; t-test, means ± SD; multiple 
comparisons by Holm-Sidak) (Figure 4B).  

We used a Pearson analysis to identify correlations 
between NF-κB inhibition-induced transcriptional levels 
of the analyzed genes. We found a significant linear 
correlation between mRNA ratios of EGFR and STAT3 
(r = 0.994385732, p = 0.0057), EGFR and IL-6  
(r = 0.999416367, p = 0.0006), as well as STAT3 and 
IL-6 (r = 0.997638, p = 0.0024) in MHPC-treated groups 
(Figure 4C).

All the above support the observation that either 
pre- or post-application of NF-κB inhibitor significantly 
prevented the acidic bile-induced transcriptional activation 
of NF-κB and key oncogenic factors, as previously shown 
by the simultaneous application of BAY 11-7082 with 
acidic bile [6, 10]. However, pre-application resulted 
in a more profound inhibition of acidic bile-induced 
transcriptional changes compared to its post-application.

Pre- or post-application of BAY 11-7082 Prevents 
the Acidic Bile-Induced miRNA Phenotype 

We performed a miRNA analysis to characterize 
the effect of pre- and post-application of BAY 11-7082 
in preventing the alterations, of specific miRNA markers, 
under the stimulation by acidic bile (Figure 5). We 
analyzed the expression of “oncomirs” miR-21, miR-
192, and miR-155 and “tumor suppressors” miR-451a, 
miR-34a, and miR-375, that were previously found to be 
deregulated in acidic bile-exposed premalignant murine 
laryngopharyngeal mucosa [9]. We found that either pre- 
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or post-application of BAY 11-7082 comparably inhibited 
the acidic bile-induced upregulation of “oncomirs” (Figure 
5A) and downregulation of “tumor suppressor” miRNAs 
(Figure 5B) in treated MHPC.

Specifically, we observed significantly lower levels 
of the analyzed “oncomirs” miR-21, miR-155 and miR-
192 in pre- or post-treated with NF-κB inhibitor cells 
compared to those exposed to acidic bile alone (p<0.05, 
t test; means±SD; multiple comparisons by Holm-Sidak) 
(Figure 5A-a). Pre-application of BAY 11-7082 was found 
to be more effective than post-application in preventing 
miR-21 overexpression, by inducing lower relative 
expression ratios (inhibitor/acidic bile) (Figure 5A-b)

In addition, either pre- or post-application of 
NF-κB inhibitor successfully inhibited the acidic bile-
induced downregulation of “tumor suppressor” miR-34a 
and miR-375 and miR-451a (Figure 5B-a). However, 
pre-application of BAY 11-7082 was found to be more 
effective than post-application in preventing miR-34a 
and miR-375 downregulation, by inducing higher relative 
expression ratios (inhibitor/acidic bile) (Figure 5B-b), 
whereas post-application was found to result in a more 
intense inhibition of acidic bile-induced downregulation 
of “tumor suppressor” miR-451a in treated MHPC than 
post-treatment (Figure 5B-b). Finally, we found that the 
calculated miR-21/miR-375 ratio was significantly lower 

Figure 2: Pre- or post-application of ΒΑΥ 11-7082 inhibits acidic bile-induced NF-κB activation and bcl-2 
overexpression in MHPC. Western blot analysis is performed in nuclear and cytoplasmic protein extracts of MHPC for p-NF-κB (p65 
S529), and cytoplasmic bcl-2. MHPC exposed to acidic bile demonstrate a significant overexpression of nuclear p-p65 and cytoplasmic 
bcl-2, compared to controls. Pre- or post-application of BAY 11-7082 results in significantly (A-a) reduced nuclear p-p65 levels compared 
to acidic bile alone. Pre-application also results in significantly reduced (A-b) cytoplasmic p-p65 levels compared to acidic bile alone. 
However, post-application of BAY 11-7082 results in elevated cytoplasmic p-p65 levels compared to acidic bile alone. (B) Pre- or post-
application of BAY 11-7082 results in significant reduction of cytoplasmic bcl-2 levels compared to acidic bile alone (Paired t-test,  
*p < 0.05; **p < 0.005; ***p < 0.0005; GraphPad Prism 7.0). (Mean ± SD of three independent experiments). (β-actin and Histone 1 are used 
for the normalization of cytoplasmic and nuclear protein extracts, respectively).
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in either pre- or post-treated MHPC compared to acidic 
bile alone (p<0.05; ANOVA) (Figure 5C).

Pearson analysis revealed a significant positive 
correlation between BAY 11-7082-induced expression 
changes of “oncomirs” miR-21 and miR-155 (r = 0.933375, 
p = 0.0204), miR-155 and miR-192 (r = 0.956463,  
p = 0.0462), as well as of “tumor suppressor” miR-34a 
and miR-375 (r = 0.967551, p = 0.0325) (Figure 5D). We 
also observed a significant linear correlation between BAY 
11-7082-induced expression changes of mRNA levels of 
NF-κB transcription factor RELA(p65) and “oncomirs” 
miR-155 (r = 0.9181627, p = 0.0278) and miR-192  
(r = 0.95775676, p = 0.0104) and a reverse correlation 
between mRNAs of RELA(p65) and ‘tumor suppressor” 
miR-34a (r = -0.8369361) in treated MHPC.

Taken together, miRNA analysis revealed that either 
pre- or post-application of NF-κB inhibitor comparably 
and significantly prevented the acidic bile-induced 
deregulations of cancer-related miRNAs, as previously 
shown by the simultaneous application of BAY 11-7082 
with acidic bile [7, 10]. 

DISCUSSION

In patients with LPR, it is known that multiple reflux 
episodes may occur throughout the day. Since variable risk 
factors promote reflux events, the frequency and duration 
of events vary significantly within and across patients [11]. 
Because reflux events seem to be random in distribution, 
a treatment that requires a precise-temporal application 
synchronized to each reflux episode would be clinically 
impractical unless it could be demonstrated that effects 
of pre- or post-application of a treatment were largely 
equivalent and therefore could plausibly support a clinical 
regimen of topical pharmacologic management.

In previous publications we documented the 
effectiveness of BAY 11-7082 as a strong NF-κB inhibitor 
of acidic bile-induced early oncogenic mRNA and miRNA 
phenotypes in treated human and murine hypopharyngeal 
primary cells when applied concurrently with acidic 
bile [6, 7, 10]. Our current novel findings provide clear 
evidence that the application of BAY 11-7082 either 
before or after acidic bile exposure can also successfully 
inhibit the acidic-bile induced activation of NF-κB and 
its related oncogenic mRNA and miRNA phenotypes. 
Our findings lead to the conclusion that targeted NF-κB 
inhibition can either prevent or suppress the acidic bile 
oncogenic effect, whether it is administered before or 
after exposure to acidic bile. Although, NF-κB inhibitor is 
applied for a short duration (15 min) within a 15 min time 
window before or after the 7-min application of acidic 
bile (Figure 6), it appears that both application models 
adequately suppress the acidic bile-induced oncogenic 
effect, demonstrating effectiveness of intermittent short 
duration therapy.

Οur findings also reveal that pre-application of 
NF-κB inhibitor is significantly more effective than post-
application in preventing the transcriptional activation of 
RELA(p65), STAT-3, EGFR, TNF-α and WNT5A, further 
supporting the view that acidic bile-induced NF-κB 
activation directly promotes the transcriptional activation 
of these genes, in agreement with our prior in vitro and 
vivo results [5, 6, 8, 10, 12]. It has been previously shown 
that BAY 11-7082 inhibits NF-κB, by inhibiting IκB-α 
phosphorylation and blocking proteosomal degradation 
of IκB-α, allowing NF-κB to sequester in the cytoplasm 
in an inactivated state [13–15]. As such it prevents 
subsequent nuclear translocation of phospho-NF-κB to 
transactivate target genes. Therefore, the pre-application 
of BAY 11-7082 is expected to be highly effective in 

Figure 3: Luciferase assay demonstrates that either pre- or post-application of BAY 11-7082 prevents the acidic 
bile-induced NF-κB transcriptional activity in MHPC. (A) Columns represent luciferase activity (mean ± standard error of 
two independent experiments) in MHPC transfected with control luciferase reporter (luc2P) and NF-κB luciferase responsive element  
(NF-κB-Luc2P). (B) Columns represent NF-κB relative transcriptional activity in MHPC (NF-κB-Luc2P/Luc2P: NF-κB luciferase 
responsive element/ control luciferase reporter). Pre-Inh: 15 min of pre-application of BAY 11-7-082; Post-Inh: 15 min of post-application 
of BAY 11-7082.
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preventing acidic bile-induced NF-κB activation and 
subsequent transcriptional activation of NF-κB target 
genes. Interactions of NF-κB with oncogenic factors, 
such as EGFR and STAT3 are particularly noteworthy 
because they have been previously cited to be active in 
HNSCC [16–18]. The upregulation of WNT5A, which is 
linked to the epithelial mesenchymal transition (EMT) 
process and cancer progression [19], has also been shown 
to be induced by NF-κB signaling [20], as is the rapid 
transcriptional activation of TNF-α [21].

Although post-application of BAY 11-7082, 15 min 
after acidic bile exposure, produces a minimal effect on 
acidic bile-induced TNF-α mRNA levels, it adequately 
suppresses the acidic bile-induced transcriptional 
activation of RELA(p65), bcl-2, EGFR, STAT3, IL-6 and 

WNT5A. Immunofluorescence and western blot analysis 
shows cytoplasmic accumulation of p-NF-κB in post-
treated MHPC in contrast to reduced nuclear p-NF-
κB levels (Figures 1 and 2), implying that acidic bile 
constitutively activated NF-κB and that such activation 
persists after a short-term acidic bile exposure, allowing 
post-application of BAY 11-7082 to suppress its activity 
and subsequent oncogenic events. In contrast, the minimal 
effect of post-application on TNF-α suggests that its 
transcriptional activation occurs much more directly 
escaping late NF-κB inhibition. 

The suppression of bcl-2 and IL-6 by either pre- 
and post-application of inhibitor is especially important 
because of bcl-2 role in anti-apoptosis [22] and IL-6 role 
as a cancer-related cytokine [23]. bcl-2 is a transcriptional 

Figure 4: Pre- or post-application of BAY 11-7082 blocks the acidic bile-induced transcriptional activation of genes 
with oncogenic function in MHPC. (A) Transcriptional levels of the analyzed NF-κB related genes with oncogenic function, are 
depicted in MHPC exposed to acidic bile alone and to (10 μM) BAY 11-7082 15 min before (Pre-BAY 15’) or after (Post-BAY 15’) acidic 
bile exposure, and controls. Graphs, created by GraphPad Prism 7 software (transcriptional levels of the analyzed genes are normalized to 
GAPDH by real time qPCR analysis). (ONE-WAY ANOVA, Freidman test). (B) Graphs represent transcriptional levels of each analyzed 
gene, RELA(p65), TNF-α, STAT3, IL-6, bcl-2, WNT5A, and EGFR (relative to GAPDH reference gene), in experimental and control-treated 
MHPC. The data are derived from real-time qPCR analysis. (Data are derived from three independent experiments. Graphs, created by 
GraphPad Prism 7 software; by t test; multiple comparisons by Holm-Sidak). (C) Diagrams show significant linear correlations by Pearson 
analysis, between EGFR and STAT3, EGFR and IL-6, and STAT3 and IL-6 mRNAs (by Pearson analysis, p value < 0.05).
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target of NF-κB, and its activity is significantly related 
to the anti-apoptotic role of NF-κB [24, 25]. In addition, 
IL-6 previously found to be directly or indirectly induced 
by NF-κB, in HNSCC [26, 27]. The observation that the 
application of BAY 11-7082 either before or after acidic 
bile exposure is capable of inhibiting by a similar way the 
transcriptional levels of bcl-2 and IL-6, support again the 
effectiveness of either early or late NF-κB inhibition in 
suppressing acidic bile-induced downstream anti-apoptotic 
and inflammatory pathways linked to carcinogenesis.

Our novel data from miRNA analysis show that 
either pre- or post-application of BAY 11-7082 can 

effectively prevent the acidic bile-induced deregulation of 
specific cancer-related miRNA markers, further supporting 
the observation that acidic bile-induced NF-κB activation 
may directly or indirectly regulate the expression of small 
regulatory molecules, miR-21, miR-155, miR-192, miR-
375 and miR-451a [7, 9, 10]. 

Application of BAY 11-7082 either before or after 
acidic bile exposure induced a profound inhibition of 
miR-21 upregulation, was found to play an important role 
in head and neck cancer [28]. We are aware of previous 
observations demonstrating an independent association 
between NF-κB activation and up-regulation of oncogenic 

Figure 5: Pre- or post-application of BAY 11-7082 inhibits the acidic bile-induced deregulation of cancer-related 
miRNA markers, in MHPC. (A) Pre- or post-application of MHPC with BAY 11-7082 inhibits the acidic bile-induced (a) upregulation 
of the analyzed “oncomirs” miR-21, miR-155 and miR-192, demonstrated by significantly lower miRNA levels, compared to acidic bile-
treated alone (p values by t-test; mean ±SD; multiple comparisons by Holm-Sidak; GraphPad Prism 7.0). (b) Graphs depict the BAY 
11-7082-induced expression changes of each “oncomir” miR-21, miR-155 and miR-192 in MHPC (pre- or post-application relative to 
acidic bile alone) (normalization control: small RNA RNU6B). (B) Pre- or post-application of MHPC with BAY 11-7082 suppresses 
the acidic bile-induced (a) downregulation of the analyzed “tumor suppressor” miRNAs, miR-34a, miR-375, miR-451a, demonstrated 
by significantly higher acidic bile-alone (p values by t-test; mean±SD; multiple comparisons by Holm-Sidak; GraphPad Prism 7.0). (b) 
Graphs depict the BAY 11-7082-induced expression changes of each “tumor suppressor” miR-34a, miR-375 and miR-451a, in MHPC 
(Pre- or post-application relative to acidic bile alone) (Normalization control: small RNA RNU6B). (C) Pre- or post-application of BAY 
11-7082 induces significantly lower miR-21/375 ratios in MHPC, compared to acdic bile alone (p values by t-test; mean ±SD; multiple 
comparisons by Holm-Sidak; GraphPad Prism 7.0). (D) Diagrams show significant linear correlations by Pearson analysis, between miR-
21 and miR-155, miR-155 and miR-192, and miR-34a and miR-375 (by Pearson analysis, p value < 0.05).
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miR-21 [29, 30], and that STAT3 may also be implicated in 
up-regulation of miR-21, in a manner of NF-κB-dependent 
IL-6 up-regulation [31], supporting the view that inhibition 
of NF-κB, contributing to STAT3 suppression, both lead to 
profound inhibition of miR-21.

Although pre-application of inhibitor suppresses 
the acidic bile-induced “downregulation” of miR-34a, 
the post-application does not, suggesting a mechanism 
of acidic bile-induced “downregulation” of this “tumor 
suppressor” miRNA marker that is complex [32, 33]. 
Similarly, although miR-375 is affected either by pre- 
or post-application of BAY 11-7082, post-application 
is found significantly less intense. Furthermore, pre-
application of NF-κB inhibitor on miR-375 is also found 
clearly less intense compared to its effect on “oncomirs” 
miR-21 or miR-155. These observations again support a 
more complex mechanism of interaction in the acidic bile-
induced deregulation of the “tumor suppressor” miR-375 
[34–36]. In contrast, the observation that either pre- or 
post-application of NF-κB inhibitor results in profound 
inhibition of acidic bile-induced “downregulation” of 
“tumor suppressor” miR-451a, emphasizes that even late 
inhibition of NF-κB is capable of suppressing acidic bile-
deregulation of a “tumor suppressor’ miRNA marker, 
we previously identified as related to laryngopharyngeal 
carcinogenesis [37].

Overall, the kinetic relationships between miRNA 
deregulation and NF-κB are highly complex. Although a 
full characterization of this network is beyond the scope of 
this report, interesting relationships are noted supporting 
future exploration.

Since systemic application of BAY 11-7082 causing 
certain toxicities, topical application of NF-κB inhibitors 
is a proposed approach. We have previously shown that 
topical co-administration of BAY 11-7082 on murine 
hypopharyngeal mucosa can prevent acidic bile induced 
molecular changes [6]. Based on the findings described 
in our current in vitro study, we are planning to pursue 
evaluation of pre and post topical application of BAY 
11-7082 in vivo, using a similar protocol to the current 
in vitro study to provide temporal characteristics of 
NF-κB inhibition in blocking bile-induced oncogenic 
molecular events in our mouse model [10]. In vitro and 
in vivo applications of highly specific NF-κB inhibitors, 
such as BAY 11-7082 are necessary for the exploration 
of the central mechanistic role of NF-κB in acidic bile 
induced oncogenesis, suggesting that targeted intervention 
of this kind may have a preventive or therapeutic effect. 
Several pharmacologic and dietary inhibitors of NF-
κB are considered promising therapeutic options with 
chemo-preventing or chemo-sensitizing properties in 
head and neck cancer [14, 26]. Curcumin, for example, 
is a natural turmeric supplement with known anti-
oxidant, anti-inflammatory and anti-cancer properties, is 
considered pharmacologically safe [38]. Furthermore, it 
has previously shown to have potential chemo-preventive  

effects in head and neck malignancies [39], blocking 
NF-κB activation and halting the proliferation of cancer 
cells [40]. Thus, we have recently shown that in vitro co-
administration of curcumin, a dietary NF-κB inhibitor is 
capable of preventing the acidic bile induced oncogenic 
changes, with results similar to BAY 11-7082 co-
administration [12]. Determining the effectiveness of short 
term application of pharmacologic inhibition of NF-κB 
before and after acidic bile exposure, using highly specific 
inhibitors such as BAY 11-7082 will support future pre-
clinical and clinical trials using other NF-κB inhibitors 
such as curcumin. 

In conclusion, our novel findings show that short 
duration application of pharmacologic inhibitor of NF-κB 
15 min before or after acidic bile exposure comparably 
prevents and suppresses its mRNA and miRNA oncogenic 
phenotypes in treated murine hypopharyngeal primary 
cells. In practical terms these observations strongly 
support the future clinical use of a topical NF-κB inhibitor 
in suppressing bile-induced oncogenic molecular events. 
Our data further provide a novel window of observation 
into the complex kinetics of an interesting mechanistic 
link between acidic bile and early neoplasia.

MATERIALS AND METHODS

Cell culture and treatment conditions 

We cultured murine hypopharyngeal primary cells 
(MHPC) from Celprogen Inc. (Torrance, CA, USA), as 
previously described [6, 7]. Murine cells were selected 
because our prior in vitro explorations demonstrated that 
MHPC and human hypopharyngeal primary cells (HHPC) 
responded similarly to acidic bile with or without BAY 11-
7082 [(E)-3-(4-methylphenylsulphonyl)-1-propenenitrile] 
[10]. Our proposed in vitro model would therefore 
facilitate future extension of our exploration to an already 
established in vivo murine model. 

We performed the following repetitive procedures 
in parallel twice a day for 3 days: (i) acidic bile (pH 4.0) 
exposure; (ii) pre-application of BAY 11-7082 (pH 7.0); 
and (iii) post-application of BAY 11-7082 (pH 7.0) (Figure 
6). Experiments were performed in triplicate. 

(i) Acidic bile: The procedure included 7 
minutes of exposure to a mixture of conjugated 
bile salts (400 μM) (Glycocholic acid:taurocholic 
acid:glycochenodeoxycholic acid:taurodeoxycholic 
acid:glycodeoxycholic acid:taurodeoxycholic acid at 
molar concentration 20:3:15:3:6:1) (Sigma, St. Louis, 
MO; Calbiochem, San Diego, CA, USA), in full growth 
medium (Dulbecco modified Eagle’s medium/F12 10% 
FBS, 1% pen/strep, Gibco®, NY, USA) brought to a pH 4.0 
with 1M HCl (using a pH meter), as previously described 
[5, 8, 41, 42].  

(ii) Pre-application of BAY 11-7082: The procedure 
included 15 minutes of applied BAY 11-7082 (10 μM) 
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[43] (Calbiochem 2016 EMD Millipore Corporation; 
Germany) in full growth medium (Dulbecco modified 
Eagle’s medium/F12 10% FBS, 1% pen/strep, Gibco®, 
NY, USA) at pH 7.0. This NF-kB inhibitor was aspirated, 
replaced by serum free medium (KGM-2 SF, Gibco®, NY, 
USA) for 5, 10 or 15 minutes and followed by exposure 
to acidic bile. After acidic bile exposure (7 min) the media 
were removed and replaced by serum free media until the 
next exposure.

(iii) Post-application of BAY 11-7082: The 
procedure included first the acidic bile exposure. After 
acidic bile exposure (7 min) the media were aspirated 
and replaced by serum free medium (KGM-2 SF, Gibco®, 
NY, USA) for 5, 10 or 15 minutes. Then BAY 11-7082 
(10 μM) was applied for 15 minutes in full growth 
medium (Dulbecco modified Eagle’s medium/F12 10% 
FBS, 1% pen/strep, Gibco®, NY, USA) at pH 7.0. After 
the application of BAY 11-7082 (7 min) the media were 
removed and replaced by serum free media until the next 
exposure.

Control groups for the NF-κB inhibitor vehicle 
(DMSO) included repetitive exposures for 10 minutes to 
full growth medium (Dulbecco modified Eagle’s medium/
F12 10% FBS, 1% pen/strep, Gibco®, NY, USA) at pH 

7.0. The media were removed and replaced by serum free 
media until the next exposure. 

At the end of the treatment procedure, media were 
removed and cells or cell extracts were analyzed. 

Immunofluorescence assay

We performed an immunofluorescence assay to 
explore the effect of NF-κB inhibitor application 5, 
10 and15 minutes before and after acidic bile-induced 
nuclear translocation of NF-κB transcription factor 
p65, phosphorylated at Ser536 [44], as we previously  
described [7]. 

Briefly, MHPCs were grown on slides (multiwall 
chamber slides; Lab-Tek®) and underwent treatment 
procedures, as described above. We used 1:65 of primary 
anti-NF-κB (rabbit polyclonal anti-phospho-p65 Ser536, 
AbD Serotec, BIO-RAD, CA, USA), and 1:500 dilutions 
of secondary anti-rabbit DyLight®488 (green; Vector 
Labs, USA). Prolong Gold Mountant with diamidino-
phenylindole (ProLong® Diamond Antifade Mountant 
with DAPI; Life Technologies, Thermo Scientific, MA, 
USA) was used for nuclear staining and mounting of cells 
(blue). The slides were examined using a Zeiss Confocal 

Figure 6: Schematic representation of pre- and post-application of NF-κB inhibitor (BAY 11-7082) in acidic bile-
exposed MHPC. 
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microscope and images were captured and analyzed 
using Zen imaging software from Carl Zeiss, microscopy 
(Germany). Total p-p65 (S536) expression levels in 
MHPC pre- and post-treated with NF-κB inhibitor and 
acidic bile alone were identified by fluorescence intensity 
(mean±SD bin count) from two independent images (≥10 
cells) (Zen imaging software).

Western Blotting

We performed Western blot analysis, as described 
previously [6, 7], to determine the nuclear and cytoplasmic 
protein expression levels of p-NF-κB (p65 S536) and bcl-
2, respectively, on pre- and post-treated MHPC with NF-
κB inhibitor BAY 11-7082 relative to acidic bile alone.

Luciferase assay 

We performed a luciferase assay in order to monitor 
the transcriptional activity of NF-κB in MHPC pre- and 
post-treated with pharmacologic inhibitor of NF-κB, BAY 
11-7082 relative to acidic bile alone. We used Firefly 
Luciferase Assay system (Promega Corporation, Madison, 
WI, USA), Lipofectamine® 2000 (Invitrogen™), and 
pGL4.32[luc2P/NF-κB-RE/Hygro] Vector, encoded with 
the firefly luciferase reporter gene (luc2P) driven by five 
copies of an NF-κB enhancer element, and control vector 
(pGL4.27[luc2P/minP/Hygro]), and in accordance with 
the manufacturer’s procedure. Equal number of cells 
were transfected with NF-κB or control luciferase vector. 
The treatment was performed 24 hours after transfection. 
We performed triplicate assays for each treatment 
condition. The cells were treated once with acidic 
bile alone (7 min), pre-application with BAY 11-7082  
(15 min), post-application with BAY 11-7082 (15 min), 
and corresponding controls, as described above in “cell 
culture and treatment conditions”. Luminescence was 
measured using a luminometer (Infinite® M1000 PRO, 
TECAN) and i-control™ software. We expressed NF-
κB activity as ratios of mean values [values for NF-κB 
reporter (NF-κB-luc2P), against the mean value for control 
(luc2P)] calculated in treated MHPC for each condition. 

Quantitative real time PCR

We isolated total RNA (RNeasy mini kit; Qiagen 
Inc., CA, USA) from MHPC exposed to acidic bile 
alone, pre-treated and post-treated with BAY 11-7082 
groups, and controls, to evaluate the transcriptional levels 
of RELA (p65), bcl-2, TNF-α, EGFR, STAT3, WNT5A 
and IL-6, using quantitative real time polymerase chain 
reaction (qPCR) analysis and specific primers for mouse 
genome, as previously described [8, 10]. Glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) was used as a 
reference housekeeping gene (QuantiTect Primers Assays; 
Qiagen) [10]. We performed assays in 96-well plates, in 

triplicate for each sample, and data were analyzed by 
CFX96™ software. Relative mRNA expression levels 
were estimated for each target gene relative to reference 
gene (ΔΔCt). (Data were obtained from three independent 
experiments).

miRNA analysis

We performed miRNA analysis to determine the 
expression levels of “oncomirs” and ‘tumor suppressor” 
miRNA specific markers in MHPC exposed to acidic 
bile alone, pre-treated or post-treated with BAY 11-7082, 
and controls. Specifically, we analyzed the expression 
of “oncomirs” miR-21, miR-155, and miR-192, and 
“tumor suppressors” miR-34a, miR-375, and miR-451a, 
previously linked to laryngopharyngeal cancer [35–37, 45–
47], using specific primers for target-miRNAs of mouse 
genome (miScript Primer Assays, Qiagen®, KY, USA) 
and normalization control small RNA [snRNA RNU6B 
(RNU6-2), as previously described [7, 10]. We estimated 
relative expression levels (target miRNA/RNU6B) for 
each specific miRNA marker, in each experimental and 
control group (CFX96™  software; Bio-Rad, CA, USA) 
(Data were obtained from three independent experiments). 

Statistical analysis

Statistical analysis was performed using GraphPad 
Prism 7.0 software and ONE-WAY ANOVA (Friedman or 
Kruskal-Wallis; Dunn’s multiple analysis test; p values 
< 0.05) as well as t-test analysis (multiple comparisons 
by Holm-Sidak) in order to reveal any evidence of 
statistically significant reductions of protein, mRNA or 
miRNA expression levels in groups pre- or post-treated 
with NF-κB inhibitor, compared to acidic bile alone and 
control treated groups. We performed Pearson correlation 
to estimate the correlation coefficient between expression 
levels of the analyzed genes and miRNA markers in the 
studied groups (p values<0.05).
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