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An immunogenic NSCLC microenvironment is associated with 
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ABSTRACT

The tumor microenvironment consists of an intricately organized system 
through which immune cells and cancer cells may communicate to regulate anti-
tumor immunogenicity. To this end, non-small cell lung cancer (NSCLC) has been 
shown to activate a variety of immunological mechanisms, thereby broadening 
our understanding of lung cancer immunobiology. However, while recent work has 
highlighted the importance of NSCLC immunology and prognosis, studies have not 
yet examined the tumor microenvironment (TME) globally in regards to the survival 
outcomes between two major NSCLC subtypes: lung adenocarcinoma (LUAD) and lung 
squamous cell carcinoma (LUSC). In the present study, we identify an immunogenic 
tumor microenvironment state in NSCLC that is enriched for the lung adenocarcinoma 
subtype. By utilizing TME cell enrichment scores and RNA-seq expression data, we 
show that the inflamed TME is associated with favorable patient survival in lung 
adenocarcinoma, but this does not hold true for lung squamous cell carcinoma. 
Moreover, differentially regulated pathways between immune-inflamed and immune-
excluded tumors within LUAD and LUSC were not subtype specific. Instead, immune-
inflamed LUSC samples possessed elevated immune checkpoint marker expression 
when compared to those of the LUAD samples, thereby offering a putative explanation 
for our prognostic observations. These results shed light on the immunological 
prognostic effects within lung cancer and may encourage further TME exploration 
between these two subtypes as the landscape of NSCLC therapy progresses.
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INTRODUCTION

Lung cancer is the leading cause of cancer-related 
deaths [1], although non-small cell lung cancer (NSCLC) 
immunotherapy has fortunately emerged as a relatively 
promising area of research. In particular, immune 
checkpoint blockade has found a efficacious niche within 
NSCLC [2]. However, much work remains to elucidate 
lung tumor immunobiology and how alternative tumor 
microenvironments (TME) can affect patient survival 
across different NSCLC subtypes.

The TME has surfaced as a fascinating area of 
study across various tumor types [3]. In fact, broad 
categorizations have been proposed to stratify variable 
levels of immunogenicity. Immune-inflamed TMEs (‘hot’ 
tumors) express high levels of cytotoxic lymphocytes 
and immune activation markers (e.g., CD8, PRF1) [3–5]. 
Tumors with this TME subtype are often associated with a 
favorable prognosis [6]. Conversely, patients with immune-
excluded TMEs (‘cold’ tumors) exhibit the opposite trend 
in survival [3, 6–8]. More specifically, interesting spatial 
organizations, such as compartmentalized or mixed TMEs, 
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and their unique associations with survival have also been 
shown [9]. Together, recent work has encouraged further 
prognostic analysis of the TME to better understand the 
immune, stromal, and cancer signals that are integral to 
the clinical aftermath of this highly complex environment. 

In NSCLC, several studies have advanced our 
understanding of TME [10–12]. However, despite being 
the two major subtypes, analysis of the TME within and 
between LUAD and LUSC remain scarce. Accordingly, 
the differential survival associations of immunogenicity 
within LUAD and LUSC have not yet been explored 
despite observations of differential immune activity 
between these subtypes [13–15]. In the present study, 
we sought to determine whether an immune-inflamed 
TME would be enriched for a certain NSCLC subtype 
and whether this would be reflected in patient overall 
survival. We find that immune-inflamed LUADs are 
associated with improved overall survival compared to 
their immune-excluded LUAD counterparts. However, 
this is not observed to be true for immune-inflamed 
LUSCs. Accordingly, we find that this profile of immune-
inflamed profile of LUSC displays elevated immune 
checkpoint expression compared to immune-inflamed 
LUADs, thereby offering a putative explanation for our 
prognostic observations.

RESULTS

Identification of an immunogenic tumor 
microenvironment enriched for lung 
adenocarcinoma 

The overview of the study design is shown in 
Figure 1. In order to determine whether an immunogenic 

TME was enriched for LUAD vs LUSC tumor samples, 
unsupervised clusters were produced using immune and 
stromal cell type enrichment scores [16]. One cluster 
(cluster2) was significantly enriched for LUAD tumor 
samples (P < 0.0001, x2 = 113.9; Figure 2A). In order 
to determine whether the clusters produced were indeed 
indicative of immunogenic TMEs, we examined gene 
expression levels of several immunogenic activation 
markers between cluster1 and cluster2, namely CD8A, 
PRF1, HLA-A, and GZMA, which are shown to be 
favorably expressed in immunogenic tumors [4, 5, 17–21].  
Expressions of these 4 genes were significantly elevated 
in cluster2 (P = 4.15e-7, P = 2.0e-6, 3.93e-12, 4.90e-5;  
Figure 2B–2E), which was enriched for LUAD. 
Neoantigen count was also compared between cluster1 
and cluster2 since it is a molecular feature that is often 
associated with favorable immune phenotype [5, 22]. 
However, neither cluster was differentially associated with 
neoantigen count (P > 0.05; Figure 2F). 

We next sought to explore whether there was a 
difference in survival between the two clusters produced. 
To do this, we first conducted overall survival (OS) analysis 
across LUAD and LUSC, to show that in the TCGA 
data used, neither lung cancer subtype was differentially 
associated with OS (P = 0.440, HR = 1.26 [0.84–1.52], 
Supplementary Figure 1A), thereby excluding subtype as 
a confounding variable. Overall survival between the two 
clusters did not differ, although the survival difference 
appeared to be trending towards significance (P = 0.082, 
HR = 0.76 [0.55–1.04]; Figure 2G). Considering that the 
immunogenic TME observed was enriched for LUAD 
samples, and that previous work has shown subtype 
dependent differences in LUAD and LUSC [13–15, 23, 24], 
we next sought to explore each subtype individually.

Figure 1: Experimental workflow of TME analysis in LUAD and LUSC patient tumor samples.
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An immunogenic TME is associated with 
favorable survival in LUAD but not in LUSC 

Unsupervised clusters were produced for both LUAD 
and LUSC independently. In LUAD, cluster1 possessed 
higher levels of immune cells known to help drive a 
favorable anti-tumor phenotype across various cancer types 
(e.g., CD8+ T-cells, M1-macrophages), indicative of a 
clinically favorable TME (Figure 3A) [20, 21, 25, 26]. This 
TME profile was also confirmed to possess higher levels of 
the cytolytic activation biomarkers CD8A, PRF1, HLA-A, 
and GZMA (P = 1.76e-10, P = 2.89e-10, P = 1.13e-5, and  
P = 1.01e-9; Supplementary Figure 1B–1E, respectively). 
Upon conducting OS analysis, we found that cluster1 
patients (which possessed the relatively immunogenic TME) 
survived significantly longer than their less immunogenic 
counterparts (P = 0.0015, HR = 0.48 [0.30–0.76]; Figure 
3B). These clusters were also shown to be unrelated to 
neoantigen count (P > 0.05, Supplementary Figure 1F).

When identical methods were applied within LUSC, 
cluster2 patients possessed higher levels of immune cells 
known to help drive a favorable anti-tumor effect (e.g., 
CD8+ T-cells, M1-macrophages; Figure 3C). This TME 
profile was also confirmed to possess higher levels of the 
cytolytic activation biomarkers CD8A, PRF1, HLA-A, 
and GZMA (P = 1.76e-10, P = 2.89e-10, P = 1.13e-5, and 
P = 1.01e-9; Supplementary Figure 2A–2D, respectively), 

and similarly, was not associated with neoantigen count (P 
> 0.05; Supplementary Figure 2E). However, interestingly, 
LUSC patients who possessed a relatively immunogenic 
TME did not survive significantly longer than their less 
immunogenic counterparts (P = 0.44, HR = 0.83 [0.51–
1.35]; Figure 3D). These prognostic observations of 
LUAD and LUSC were also validated in a held-out LUAD 
data set (P = 0.02, HR = 0.60 [0.38–0.93]; Supplementary 
Figure 3A–3B), a held-out LUSC data set (P = 0.21, HR = 
1.28 [0.87–1.87]; Supplementary Figure 3C–3D), and the 
TCGA melanoma data set (used as a positive control [27, 
28]) (P = 0.0018, HR = 0.55 [0.38–0.80]; Supplementary 
Figure 3E–3F). 

Differentially expressed genes between hot and 
cold tumors are enriched for similar pathways in 
LUAD and LUSC

We then sought to determine whether the observed 
difference in survival could be attributed to activation of 
different pathways within each lung cancer subtype. In 
LUAD, 402 genes were significantly upregulated in the 
cold versus hot TMEs (Figure 4A). These genes were 
enriched for ribosomal and metabolic pathways, RNA 
transport, as well as nucleotide metabolism, which is in 
line with previous studies (Figure 4B; Supplementary 
Table 1) [21, 29–32]. In LUAD, 2022 genes were 

Figure 2: Combined LUAD and LUSC clustering yields an immunogenic cluster enriched for LUAD samples. (A) 
Heatmap visualization of k-means clusters (P < 0.0001) (LUAD = red patient ID labels, LUSC= blue patient ID labels). K-means cluster 
vs immune-inflamed marker expression for (B) CD8A (P = 4.15e-7), (C) PRF1 (P = 2.0e-6), (D) HLA-A (3.93e-12), (E) GZMA (4.90e-5), 
and (F) neoantigen count (P = 0.45). (G) KM survival plot of cluster1 vs cluster2 (P = 0.08).

www.oncotarget.com
www.oncotarget.com


Oncotarget1843www.oncotarget.com

upregulated in hot versus cold tumors. As expected, these 
genes were enriched for immune-related pathways such 
as cytokine-cytokine receptor interaction and chemokine 
signaling (Figure 4C; Supplementary Table 2).

When these methods were applied to cold versus 
hot LUSC tumor samples, 102 genes were differentially 
upregulated in cold tumors (Figure 4D). These genes 
were also enriched for RNA transport, ribosomal, 
metabolic, and nucleotide metabolism pathways (Figure 
4E; Supplementary Table 3). Furthermore, the 1705 
upregulated genes in the hot LUSC tumors were enriched 
for similar pathways as observed in LUAD (Figure 4F; 
Supplementary Table 4). This suggested that the differential 
prognostic association observed was not due to upregulated 
pathways unique to LUAD or LUSC.

Immunosuppressive checkpoint biomarker 
expression is elevated in hot LUSC tumors

In light of the pathway analysis results, we reasoned 
that perhaps the overall survival differences observed 

could be explained by differences in immunosuppression, 
so we examined expression differences of several well-
characterized immune checkpoint genes [33–39]. To 
explore this in an unsupervised manner, we first combined 
hot LUSC with hot LUAD samples and produced k-means 
clusters using nine immune checkpoint gene expressions: 
PD1, PDL1, CTLA4, PDL2, LAG3, IDO1, TIGIT, TIM3, 
FOXP3. This yielded two distinct clusters, one of which 
(cluster1) was enriched for LUSC samples (P = 0.0019, 
x2 = 9.69; Figure 5A). Moreover, a direct comparison of 
these genes between hot LUSC and hot LUAD tumors 
revealed that 7 of 9 of these immune checkpoint genes 
(LAG3, PDL2, PD1, PDL1, TIGIT, CTLA4, FOXP3) 
were significantly elevated in LUSC tumor samples (P = 
3.30e-5, P = 9.87e-4, P = 4.08e-3, P = 7.22e-3, P = 8.20e-
3, P = 0.038, P = 2.57e-3; Figure 5B–5H, respectively).

DISCUSSION 

In the current study, we explored the prognostic 
associations of an immune-inflamed TME state across 

Figure 3: An immune-inflamed TME is associated with survival in LUAD but not in LUSC. (A) LUAD clusters derived 
from cell type enrichment scores. (B) KM survival plot of LUAD cluster1 (red) vs LUAD cluster2 (blue) (P = 0.0018). (C) LUSC clusters 
derived from cell type enrichment scores. (D) KM survival plot of LUSC cluster1 (blue) vs LUSC cluster2 (red) (P = 0.44).
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two main subtypes of NSCLC. As a result, we found 
that an immunogenic TME is uniquely associated with 
patient overall survival in LUAD as opposed to LUSC. 
An important aspect of our study is that we considered 
the holistic state of the TME rather than any one cell type 
and its prognostic association alone. This unsupervised 
approach used was able to cluster patients with high co-
enrichment scores of the following cell types that have also 
been individually reported in association with favorable 
survival, such as M1 macrophages, activated dendritic 
cells, B cells, CD4+ T-cells, and CD8+ T-cells [12, 40–42].  
This co-enrichment methodology also showed that 
markers of immune activation were consistently associated 

with the immune-inflamed cluster regardless of k-means 
features used or the subtype examined. Moreover, these 
methods may encourage further efforts to capture the TME 
state in regards to its overall co-enrichment landscape 
with immune and stromal cells as opposed to individual 
immune cells, which may be differentially associated with 
prognosis in alternative contexts [21, 43]. 

In regards to the differential pathway analysis, 
it is interesting to note the consistent association 
between the immune-excluded tumors, purine/
pyrimidine metabolism, and metabolic activity. This 
is in line with recent work that highlights intratumoral 
metabolic crosstalk and how this communication 

Figure 4: Differentially expressed genes (DEGs) and enriched pathways in hot vs cold tumor samples. (A) heatmap 
of upregulated genes in cold vs hot LUADs. (B) enriched pathways of the 402 upregulated genes in cold vs hot LUADs. (C) enriched 
pathways of the 2022 upregulated genes in hot vs cold LUADs. (D) heatmap of upregulated genes in cold vs hot LUSCs. (E) enriched 
pathways of the 193 upregulated genes in cold vs hot LUSCs. (F) enriched pathways of the 1705 upregulated genes in hot vs cold LUSCs.
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may impair antitumor immunity [29, 44, 45].  
Furthermore, we previously reported an association 
between less immunogenic tumors and nucleotide 
metabolism across five different tumor types [21], which 
is also consistent with our pathway analysis findings in 
the present study. Future work may include whether there 
exist targetable metabolic vulnerabilities that may result 
in enhanced immune infiltration into otherwise immune-
excluded NSCLCs.

While examining the possible pro- or anti-tumor 
roles of each TME cell type is beyond the scope of our 
holistic TME study, we found it interesting that the 32-cell 
feature sets consistently included both Th1 and Th2 cells. 
These two helper T cell subtypes were co-enriched in the 
same patient clusters, despite being thought to be associated 
with different processes; that is, Th1 cells induce IFNG 

expression and anti-tumor effects while Th2 release IL-4 
and IL-10, which help allow for tumor-escape [46, 47]. 
Whilst the less immunogenic and less favorably surviving 
LUAD patients showed elevated enrichment of both Th1 
and Th2 cells, this result is in line with a previous study 
using different methods (e.g., flow cytometry) to show that 
high levels of Th1 in the TME is associated with worse 
prognosis in NSCLC [47]. Lastly, considering the relative 
scarcity of studies investigating the clinical differences 
between Th1 and Th2 cells in different TME contexts [48, 
49], it is possible that this Th1-Th2 balance could mark an 
avenue worthy of further prognostic investigation, either 
alone or while considering potential tumor promoting 
metabolic pathways previously mentioned.

When examining immune checkpoint marker 
expression, the immune-inflamed LUSC tumors expressed 

Figure 5: LUSC is enriched for immune checkpoint expression. (A) Heatmap visualization of k-means clusters (P = 0.0013) 
(LUAD = red patient ID labels, LUSC= blue patient ID labels). NSCLC subtype vs immune-checkpoint marker expression for (B) LAG3 
(P = 3.30e-5), (C) PDL2 (P = 9.87e-4), (D) PD1 (P = 4.08e-3), (E) PDL1 (P = 7.22e-3), (F) TIGIT (P = 8.20e-3), (G) CTLA4 (P = 0.038), 
and (H) FOXP3 (P = 2.57e-3).
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significantly higher levels of seven genes known to inhibit 
the anti-tumor immune response. Of these seven, LAG3 
was most significant, in line with previous work showing 
its increased expression in non-adenocarcinomas of 
NSCLC [50]. Moreover, LAG3 is known to be expressed 
on the surface of CD4+ and CD8+ cells, implicating 
the possibility that the tumor-infiltrating lymphocytes 
(TILs) within immune-inflamed LUSCs of our study 
were in a more exhausted state than immune-inflamed 
LUADs [38, 51]. This may thereby offer an explanation 
as to why immune-inflamed LUSCs were not associated 
with favorable prognosis. Furthermore, considering the 
growing body of evidence that patients with pre-existing 
immunity respond better to immunotherapy [52], our 
findings may encourage prospective validation in which 
LUSC patients with pre-existing immune-inflammation 
are selected for treatment with immunotherapy given their 
higher expression of ICB target genes.

There are several limitations to our study. First, the 
TME states used to cluster patient tumor samples were 
largely dependent on xCell output accuracy. While this 
tool has been shown to outperform other immune cell 
scoring methods, it is unable to infer the spatial TME 
architecture of a sample, which may differ between LUAD 
and LUSC. Second, our immune checkpoint marker 
analysis was limited to several genes that are currently 
well-characterized in regards to immunosuppression. 
However, this list of candidate genes may evolve as our 
understanding of cancer immunology progresses. Third, 
the data analyzed does not have matched treatment labels 
recorded for each patient. While data analyzed was pre-
treatment transcriptomic/genomic data, it is possible 
that differential treatment-related effects on the TME, 
combined with treatment use for LUAD vs LUSC, could 
possibly influence our results. However, an important 
feature of our study to note is that our prognostic results 
are not confounded by immunotherapy use–the data 
analyzed was generated prior to the invention and standard 
clinical use of checkpoint inhibitor drugs, making ICB 
drug use an unlikely confounding factor. To this end, based 
on previous work [52], we speculate that OS significance 
levels would become more dramatic for LUAD patients if 
they with treated immune checkpoint inhibitor drugs since 
immune-inflamed tumors are suggested to present better 
candidates for immunotherapy.

In conclusion, our study highlights the prognostic 
impact of an immune-inflamed TME within LUAD as 
opposed to LUSC. We show that despite similar pathway 
expression, immune checkpoint marker expression seems 
to distinguish a LUSC subtype devoid of prognostic 
benefit in the context of immune-inflammation. This 
may encourage further exploration of potential treatable 
differences that may benefit one NSCLC subtype over the 
other. Furthermore, our unsupervised analysis of the TME 
in relation to survival may inspire functional validation 
of the pertinent immune cells that could be driving the 
prognostic trends observed.

MATERIALS AND METHODS

TME clustering

The cell-type deconvolution tool xCell has become 
an increasingly popular tool to infer cell-type enrichment 
scores from RNA expression data. In short, xCell is a 
computational tool that outputs enrichment scores for 
64 immune and stromal cell types. It is a gene signature-
based method that takes RNA-seq data as input and 
employs a curve fitting approach to linearly compare 64 
immune and stromal cell types within a tumor sample. 
xCell introduces a novel spillover compensation method 
for separating these cell types and outperforms other 
methods in part by integrating the advantages of gene set 
enrichment and deconvolution approaches [16]. We chose 
to include both immune and stromal cells in the analysis 
as both types have been shown to influence the context of 
the tumor microenvironment [53]. However, as opposed to 
using all 64 cell types as input features, we only used the 
highly variable 32 cell types as our feature cell set (median 
standard deviation cutoff for the 64 immune enrichment 
scores within the dataset for the clusters produced). 
We only used the 32 highly variable cells because we 
hypothesized that the clinical variability (e.g., overall 
survival) would be strongly reflected by the enrichment 
variability of the TME cells themselves; we believed 
the cells with higher variability could better capture 
alternatively immunogenic tumor microenvironments. 

K-means is a popular vector quantization method 
within the domain of machine learning that we used 
to produce unsupervised clusters (k = 2) using xCell 
enrichment scores as input features [16]. This was 
executed via the ComplexHeatmap package in R [54]. 
When LUAD and LUSC were combined, the highly 
variable cell types across the entire dataset (LUAD 
and LUSC combined) were used as input features to 
produce clusters. Proportional LUAD/LUSC enrichment 
significance was determined using the “N-1” Chi-squared 
test (P < 0.05 was considered significant, DF =1) [55, 56]. 
When each subtype was explored independently, the 
input features (highly variable cells) were obtained from 
within their respective subtype. However, to ensure that 
the results were not subtype-feature dependent, LUSC 
input features were validated in LUAD (Supplementary 
Figure 4A, 4B), and LUAD features were validated in 
LUAD (Supplementary Figure 4C–4D), showing that the 
observed prognostic results were independent of potential 
tissue-specific input features.

Survival analysis

Data used for overall survival analysis (OS) was 
downloaded from OncoLnc (oncolnc.org) [57]. This data 
was parsed in Python and Kaplan-Meir plots were then 
produced in R. The coxph survival function in R (survival/
survminer package in R) was used for significance 
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analysis, hazard ratios, and 95% confidence intervals (P 
< 0.05 was considered significant).

NSCLC genomic data (discovery and validation)

The RNA-seq data used to analyze gene expression 
differences between k-means clusters produced was 
log2(x+1) transformed RSEM normalized count data 
downloaded from xenabrowser (https://xenabrowser.net/
datapages/, datasets: TCGA.LUAD.sampleMap/HiSeqV2 
and TCGA.LUSC.sampleMap/HiSeqV2). For LUAD, 
there were 517 tumor samples with available RNA-seq 
data, and for LUSC, there were 501 tumor samples with 
available RNA-seq data (clinical data available at http://
www.cbioportal.org/datasets). However, in the discovery 
datasets, only samples that also had available mutation data 
(and thus inferred neoantigen counts [58]) were included. 
This provided 230 LUAD samples and 176 LUSC samples 
with matched RNA-seq and neoantigen data (1 outlier 
LUSC sample was removed for visualization; results were 
not affected). Patient neoantigen data was downloaded from 
TCIA (neoantigen methods previously described [58]).

The held out LUAD and LUSC data sets consisted 
of patient tumor samples that did not have available 
mutation/neoantigen data which used earlier on. This 
left 287 LUAD samples and 324 LUSC samples that 
had available RNA-seq (and thus xCell scores) as 
validation sets. We performed this validation to show that 
the results we observed were not specific to the initial 
datasets examined and increase our overall sample size. 
Furthermore, to help ensure robustness of the clustering 
method we used, we applied these methods to the TCGA 
SKCM dataset as a positive control. We used SKCM 
because it is shown to also harbor prognostic associations 
between immunogenicity and patient survival [27, 28].

Gene expression and pathway analysis

Patient RNA-seq expression values were accessed 
using the fbget API (https://confluence.broadinstitute.
org/display/GDAC/fbget) and parsed using custom 
Python scripts. Two-tailed t-tested were used to assess 
differentially expressed genes between tumor samples of 
the different clusters (P < 0.05 was considered significant). 
The Seaborn and Matplotlib libraries were used to produce 
and visualize expression swarm-boxplots.

To identify upregulated genes in immune-inflamed 
and immune-excluded tumors, whole transcriptomic 
analysis was performed to surface the differentially 
expressed genes (acceptable P < 2.4e-6). These genes 
were then used as inputs in the Enrichr pathway analysis 
tool to identify enriched Kegg pathways in a given cluster 
(adjusted P < 0.05 was considered significant). Heatmaps 
were produced using the ComplexHeatmap package in R, 
and pathway bar plots were obtained using the Enrichr 
tool [59].
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