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ABSTRACT

Grade IV astrocytoma, also known as glioblastoma multiforme (GBM), is the most 
common and aggressive intracranial glial tumor. GBM is associated with very poor 
survival and effective treatments have remained elusive so far. Mounting evidence 
indicates that CD164 contributes to stemness and tumorigenesis in normal cells and is 
overexpressed in various tumor types, including glioblastoma. Using tissue microarray 
immunohistochemistry, we show that there is a significant correlation between CD164 
expression and glioma type and grade. Depletion of CD164 expression in human 
glioblastoma cells with siRNA reduced proliferation, migration, and invasiveness. In 
parallel, immunoblotting showed that downregulation of CD164 expression decreased 
Akt activation and modified the expression of autophagy markers by upregulating 
Beclin-1 and LC3B and downregulating p62. These effects were mimicked by 
inhibition of Akt with MK2206, which suggests that CD164 induces autophagy via 
Akt/Beclin-1 signaling. We propose that CD164 may serve as a GBM molecular marker 
and a potential target in therapeutic strategies aimed to improve outcomes for this 
devastating brain tumor.
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INTRODUCTION

Intracranial tumors are one of the most feared types 
of cancer. Glioblastoma multiforme (GBM), the most 
common and most aggressive brain tumor, comprises 
15% of all intracranial neoplasms and 60–75% of all 
astrocytomas [1]. Standard treatment of GBM comprises 
surgical resection followed by concurrent temozolomide 

and radiotherapy [2, 3]. However, the overall survival 
of GBM patients is only 15–18 months [4, 5]. The 2016 
World Health Organization (WHO) Classification of 
Tumors of the Central Nervous System (CNS) was the 
first publication to list molecular and histology parameters 
to describe brain tumor entities [6]. Its aim was to simplify 
clinical and experimental studies to improve survival rates 
among brain tumor patients. Aided by this information, 
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discovery of new therapeutic molecular targets and 
individualized treatment approaches to brain tumors are 
intense areas of research. 

Molecular cancer expression signatures are used to 
predict pathogenicity and survival. PRECOG (PREdiction 
of Clinical Outcomes from Genomic profiles, available at 
http://precog.stanford.edu) is a recently stated genomic 
database that links molecular disease information with 
survival outcomes [7]. Analysis of PRECOG glioma 
datasets revealed that the expression of cluster of 
differentiation 164 (CD164; endolyn), a transmembrane 
isoform of the mucin-like glycoprotein MGC-24, correlated 
negatively with survival outcomes in different glioma 
subsets. This finding triggered our interest in studying the 
potential contribution of CD164 to GBM biology.

The expression of CD164 characterizes 
hematopoietic stem cells but is low or negligible in 
mature peripheral blood neutrophils and erythrocytes [8]. 
CD164 was shown to regulate the proliferation, adhesion, 
and differentiation of hematopoietic stem cells [9], and 
accumulating evidence indicates its potential value as 
an investigative marker of tumorigenesis and stemness 
in different cancer types [10–16]. For example, CD164 
is highly expressed in colon cancer, where it promotes 
proliferation and metastasis by regulating signaling 
through the CXCL12 (SDF-1) receptor CXCR4 [12]. In 
prostate cancer, CXCL12/CXCR4 signaling induces the 
expression of CD164 and promotes homing of cancer 
cells to the bone marrow [13]. In gliomas, knockdown 
of CD164 inhibited cell proliferation and promoted 
apoptosis through the PTEN/PI3K/AKT pathway [14]. 
In non-small cell lung cancer, the tumor suppressor miR-
124 targeted CD164 and suppressed tumor proliferation 
and aggressiveness [15]. Meanwhile, overexpression of 
CD164 was shown to promote tumorigenesis in normal 
human lung and ovary epithelial cells [11, 16]. These 
studies indicated that CD164 may function as a crucial 
modulator of tumor progression and may be a promising 
target for cancer treatment. The present study was designed 
to determine the potential association between CD164 and 
glioma type and grade, and to investigate the effects and 
underlying molecular mechanisms of CD164 depletion on 
the proliferation, migration, and invasion of GBM cells. 

RESULTS

CD164 is overexpressed in human glioma and 
correlates with pathological characteristics

To determine potential association of CD164 
expression patterns with clinicopathological GBM grade, 
immunohistochemical staining was performed in a 
tissue microarray that included normal brain and glioma 
samples of various histological grades. As shown in 
Figure 1A, CD164 was highly expressed in the cytoplasm 
and membrane of glioma cells, although heterogeneous 

staining patterns were observed across glioma samples. 
Grade III and IV gliomas presented with significantly 
higher mean CD164 H-scores than both grade II gliomas 
and normal brain tissue (Table 1). There was a positive 
correlation between CD164 H-scores and both tumor 
type and grade (p < 0.001; p for trend < 0.001 for both 
comparisons). CD164 expression showed no association 
with either age or sex. 

In addition, we analyzed CD164 mRNA expression 
in human glioma specimens by accessing a Gene 
Expression Omnibus (GEO) dataset (GDS1962). CD164 
mRNA expression was significantly higher in grade 
IV glioma (p < 0.001) than in lower glioma grades 
(Figure 1B). In conclusion, both tissue microarray 
immunochemistry and gene expression analyses confirmed 
a positive relationship between CD164 expression and 
glioma histological grade. 

In addition, we used PRECOG, a public online 
database, to integrate CD164 gene expression and clinical 
outcome data [7]. CD164 mRNA expression correlated 
with worse overall survival in two PRECOG glioma 
(HR = 2.02, 95% CI 1.56–2.63 [17]; HR = 2.13, 95% CI 
1.03–4.42 [18]) (Supplementary Figures 1 and 2) and one 
astrocytoma (HR = 1.70, 95% CI 1.02–2.81 [19]) datasets 
(Supplementary Figure 3). The corresponding Kaplan–
Meier survival curves are shown as Supplementary Data.

Depletion of CD164 expression decreases 
glioblastoma cell proliferation, migration, and 
invasion

To evaluate the potential contribution of CD164 
to glioblastoma aggressiveness, human U87MG and 
U118MG GBM cells were transfected with small 
interfering (si) RNA targeting the CD164 gene transcript 
(siCD164). Immunoblotting analyses confirmed 
that siCD164 transfection resulted in significant 
downregulation of CD164 expression compared with 
mock-transfected and non-targeted siRNA transfected 
cells (siControl) (Figure 2A). 

Next, we examined the effects of depleting CD164 
expression on the proliferation of U87MG and U118MG 
cells through cell counting and BrdU assays. CD164 
knockdown significantly decreased U87MG cell numbers 
after 48 h and 72 h, compared to U87MG/siControl cells 
(Figure 2B). The number of U118MG/siCD164 cells 
was also lower, compared to U118MG/siControl, after 
48 h and 72 h of culture, but this decrease did not show 
statistical significance (Figure 2B). BrdU incorporation 
assays showed that silencing of CD164 expression 
reduced DNA synthesis and cell division, but differences 
were significant only for U87MG cells (Figure 2C). We 
also examined cell cycle stages after CD164 silencing. 
Consistent with the above results, an obvious decrease 
in the number of cells in S phase was seen in U87MG/
siCD164, but not in U118MG/siCD164, cells (Figure 3A). 
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To evaluate whether silencing of CD164 expression 
could influence cell migration and invasion, we performed 
scratch wound and Transwell assays. Results showed that 
CD164-silenced U87MG and U118MG cells migrated 
into the cell-free area more slowly than their respective 
siControl counterparts. Data quantification revealed 100% 
vs 76.3% area coverage at 16 h for siControl and siCD164 
U87MG cells, respectively, and 93.1% vs 76.3% coverage 
at 24 hr for siControl and siCD164 U118MG cells 
(Figure 3B). Results from the Transwell invasion assay 
also indicated impaired invasion capacity after siCD164 
silencing in both cell lines (Figure 3C). 

Downregulation of CD164 decreases signaling 
through the Akt pathway

Studies have found that CD164 overexpression 
promotes cancer cell migration by activating the CXCR4/
PI3K/AKT/mTOR axis [12, 20–23]. Therefore, we used 
western blotting to assess the potential modulation of 
this signaling pathway after downregulation of CD164 in 
GBM cells. Data showed that CXCR4 and p-PI3K/PI3K 
expression levels were unchanged in siCD164-transfected 
U87MG and U118MG cells (Figure 4). In contrast, CD164 
silencing reduced the p-Akt/Akt ratio in both cell types. 
Meanwhile, the ratio of p-mTOR/mTOR was increased in 
siControl and siCD164 compared with mock in U87MG 
cells, but decreased in U118MG/siCD164 cells. We 
next evaluated the expression of mTORC1, one of the 
two protein complexes that contain mTOR. The ratio of 
mTORC1/mTOR was decreased in siControl compared 

with mock and siCD164 in U87MG and U118MG cell 
lines. Meanwhile, the expression of OCT4, a stem cell 
marker upregulated by CD164 overexpression in ovarian 
epithelial cells [16], was unaffected by CD164 silencing 
in either cell line. Taken together, our data suggests 
that downregulation of CD164 expression attenuates 
signaling through the Akt pathway, which correlates with 
the suppression of proliferation, migration, and invasion 
observed in GBM cells. 

CD164 downregulation increases autophagy 
marker expression

Several processes, among them senescence, 
oxidative stress, apoptosis, and autophagy can affect 
cell proliferation and viability. To examine whether 
downregulation of CD164 in GBM cells had an impact 
on these events, we examined senescence-associated 
β-galactosidase (SA-β gal) staining to assess cellular 
senescence, DCFH-DA fluorescence as a surrogate for 
reactive oxygen species (ROS) generation associated to 
oxidative stress, and caspase 3/9 and LC3B expression to 
assess apoptosis and autophagy respectively. Regardless 
of CD164 expression status, we observed undetectable 
SA-β-gal activity (Figure 5A), comparable DCFH-DA 
fluorescence intensity (Figure 5B), and similar total and 
active (cleaved) caspase 3/9 levels among GBM cells 
(Figure 5C). In contrast, the expression of LC3B was 
higher in siCD164-transfected cells compared to controls 
(Figure 5C). To further evaluate possible changes in 
autophagy-related proteins induced by CD164 silencing, 

Figure 1: Association of CD164 expression in glioma with clinicopathological parameters. (A) Representative images of 
CD164 immunostaining in normal brain and low- and high- grade gliomas. Lung cancer tissue was used as positive control. (B) CD164 
gene expression analysis in a human glioma microarray dataset (GSD1962) containing 23 non-tumor samples, 76 cases of WHO grade II 
and III astrocytoma, and 81 cases of GBM (WHO grade IV). mRNA expression was analyzed using ANOVA. *p < 0.05, **p < 0.01, and 
***p < 0.001 versus non-tumor brain tissues.
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the expression of the autophagosome markers Beclin-1 and 
p62 was examined. Compared with mock and siControl 
cells, the expression of Beclin-1 was increased, while 
that of p62 was decreased, in siCD164-transfected cells 
(Figure 5C). These data suggest that CD164 expression 
in glioblastoma inhibits autophagy through modulation of 
LC3B, Beclin-1, and p62 levels. 

Role of Akt in CD164-mediated autophagy 
inhibition 

We further explored the potential effects of Akt 
inhibition on autophagy protein levels using the Akt 
inhibitor MK2206 (Figure 6). Treatment of U87MG cells 
with MK2206 (0.1 µM) for 24 h reduced pAkt/Akt ratio 
and LC3B in all transfection conditions. Compared with 
mock and siControl, p62 was decreased in siCD164 cells 
treated with MK2206. In addition, decreased expression 
of Beclin-1 and CXCR4 was observed in siControl and 
siCD164 cells, but not in mock cells, after MK2206 
treatment. Collectively, these data suggest that CD164 
expression inhibits autophagy through CXCR4/Akt 
pathway activation and or Beclin-1 regulation.

DISCUSSION

The expression of the cell-surface sialomucin 
CD164 is characteristic of human CD34+ hematopoietic 
progenitor cells [9, 24]. However, over the years evidence 
has shown that CD164 can promote tumorigenesis, 
invasion, and metastasis in lymphoma [25, 26], prostate 
cancer [13], colon cancer [12], ovary cancer [16], lung 
cancer [11, 15] and brain cancer [14, 21]. The present 
study systematically evaluated CD164 expression in 
clinical glioma specimens and the effects of CD164 

silencing on cultured glioblastoma cells. Tissue 
microarray analyses showed that CD164 expression 
positively correlated with glioma type and grade. Further 
evidence for the adverse impact of CD164 expression 
on GBM progression was found upon analysis of 
astrocytoma/glioma PRECOG datasets, which showed 
a significant, inverse correlation between CD164 levels 
and survival rates. Further, we showed that knockdown 
of CD164 expression significantly suppressed the 
proliferation, migration, and invasion of human U87MG 
and U118MG GBM cells, and these effects correlated 
with reduced AKT/mTOR pathway activity and increased 
autophagy. 

A study involving human ovarian surface epithelial 
cells suggested that CD164 acts as a transcriptional factor 
that translocates from the cell membrane to the nucleus to 
induce SDF-1/CXCR4 expression [16]. The same study 
reported that several stem cell-specific transcriptional 
factors, such as Nanog, Oct4 and Sox-2, were also 
activated by CD164 overexpression and this activation 
increased tumor cell stemness and tumorigenesis. On the 
other hand, in normal lung epithelial cells overexpression 
of CD164 also correlated with tumoral transformation 
by promoting CXCR4 expression and activation of Akt/
mTOR signaling [11]. Overproduction of phospholipid 
and phosphatidylinositol (3, 4, 5) trisphosphate (PIP3) 
by PI3K and downstream protein kinase Akt has also 
been noted in a wide range of tumors [27]. Differential 
activation of SDF-1/CXCR4 signaling, stem cell specific 
transcriptional factors, PI3K, Akt, and mTOR have been 
related to glioblastoma progression and aggressiveness. 
In pediatric gliomas, for instance, activation of the PI3K/
Akt/mTOR pathway has been associated with PTEN 
promoter methylation, which is also found in >80% of 
secondary adult GBM cases [28]. Therefore, based on the 
present study as well as current evidence, downregulation 

Table 1: Correlation between clinical characteristics and CD164 expression in human glioma

Clinical characteristics Patients (%)
CD164 expression

H-score
(Mean ± SD)

p

Age >40 54 (54%) 16.11 ± 14.94
≤40 46 (46%) 15.46 ± 13.85 0.821

Sex Male 56 (56%) 17.63 ± 16.81
Female 44 (44%) 13.34 ± 9.80 0.135

Tumor cell type Normal brain tissue 20 (20%) 4.72 ± 3.50
Astrocytoma 78 (78%) 18.32 ± 14.89 <0.001
Oligodendroglioma 2 (2%) 22.18 ± 0.48 p for trend = 0.081

Grade* 0 (Normal brain tissue) 20 (20%) 4.72 ± 3.50
II 32 (32%) 17.30 ± 16.85 <0.001
Above II 42 (42%) 20.95 ± 12.96 p for trend <0.001

*Grades II~III: 15 samples; Grade III: 15 samples; Grades III~IV: 6 samples; Grade IV: 6 samples. Six unknown-grade 
samples were excluded. Tumor grading according to WHO histological grading system.
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Figure 2: Depletion of CD164 expression decreases proliferation in GBM cells. (A) Western blot verification of CD164 
downregulation after transfection of U87MG and U118MG cells with siCD164. α-actinin was used as loading control. (B) Cell proliferation 
results. Cell numbers were counted at the indicated time points. (C) BrdU incorporation assay results. M1, BrdU-negative cells; M2, BrdU-
positive cells. Cells not exposed to BrdU were used as blank controls. Results are presented as the mean ± SD of triplicate samples from 
three independent experiments (*p < 0.05, **p < 0.01, ***p < 0.001).
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of CD164 is predicted to suppress CXCR4-mediated 
signaling and reduce expression/activation of downstream 
effectors such as OCT4, Akt, and mTOR. 

The reduction in the p-Akt/Akt ratio observed in 
U87MG and U118MG cells after CD164 knockdown is 
consistent with the concomitant reduction observed in cell 
proliferation, migration, and invasion. TP53, PTEN, IDH1, 
PIK3CA, and EGFR, i.e. the most frequently mutated 
genes in GBM, are also closely related to the PI3K/Akt 
pathway [29] and are known to be important regulators 
of autophagy [30, 31]. Our study suggests that CD164 
connects Akt and autophagy and contributes to promotion 
of GBM growth. However, the function of autophagy in 
brain cancer and other tumors is still controversial. Studies 
have reported that inhibition of autophagy by blockade 
of PI3K and mTOR induced apoptosis, and this effect 

could be reversed by activation of Akt [32, 33]. Research 
has also shown that combined suppression of Akt and 
EGFR with gefitinib and MK2206 induced a switch from 
autophagy to apoptosis in a mouse glioblastoma model 
[34]. Altogether, these data imply a central and complex 
role of Akt in GBM progression, mediated by its impact 
on autophagy and apoptosis. 

Beclin-1 was first identified as a Bcl-2 binding 
protein that induces autophagy [35]. In addition to Beclin-1, 
abnormal expression or mutations in Bcl2, mTOR, PI3k, 
and p53 have been shown to connect autophagy with 
cancer development [36]. Beclin-1 phosphorylation by 
Akt positively regulates autophagy and tumorigenesis  
[37, 38], and studies have found that activation of 
autophagy by upregulation of LC3B and Beclin-1 decreases 
viability in GBM cells [39–41]. It was also reported that 

Figure 3: CD164 knockdown alters cell cycle profile and inhibits migration and invasion in GBM cells. (A) Flow 
cytometry analysis of cell cycle distribution. (B, C) Results of migration and invasion assays. Data are presented as the mean ± SD of 
triplicate samples from three independent experiments (*p < 0.05, **p < 0.01, ***p < 0.001).
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loss of Beclin-1 results in failure of autophagy and cancer 
promotion mediated by accumulation of p62 [42]. These 
results indicate that Akt, Beclin-1, and p62 mediate a 
complex connection with autophagy in different cells.

We show here the Akt inhibitor MK2206 mimicked 
the pro-autophagic effects of CD164 silencing in that both 
induced a decrease in Beclin-1 and p62 and an increase in 

LC3B. The ratio of LC3B was an indicator of autophagy. 
However, LC3B itself is degraded by autophagy. An 
alternative method for detecting the autophagic flux is 
measuring p62 degradation [43]. In our study, we found 
that siCD164 or MK2206 treated GBM had mimic 
change on p62 and LC3B. In addition, the Beclin-1 is 
important for localization of autophagic protein to a pre-

Figure 4: Effects of CD164 knockdown on the CXCR4/PI3K/Akt signaling pathway. Immunoblotting analyses were utilized 
to determine the levels of CXCR4, PI3K (PI3Kp85), total Akt, p-Akt, total mTOR, p-mTOR, mTORC1, and OCT4 in siCD164- and 
siControl-transfected U87MG and U118MG cells. α-actinin served as loading control. Results are representative of two independent 
experiments. 
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Figure 5: Effects of CD164 depletion on apoptosis, autophagy, and senescence in GBM cells. (A) Representative images of 
SA-β gal staining in siCD164- and siControl-transfected U87MG and U118MG cells. (B) Intracellular ROS generation in GBM cells was 
detected by flow cytometry after incubation with DCFH-DA. Cells incubated without DCFH-DA were used as control. (C) Immunoblotting 
analyses of apoptosis markers (total and cleaved caspase 3/9) and autophagy markers (Beclin-1, p62, LC3B, Bcl2, and p-Bcl2) in GBM 
cells. α-actinin was used as loading control. Results are representative of two independent experiments. 
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autophagosomal structure and had role between apoptosis 
and autophagy [44]. The uneven results in our study 
might be implied the fate of the GBM. Autophagy has 
been variously proposed to promote or prevent cancer cell 
growth and invasion, and this may be related to activation 
or repression of metastatic programs controlled, at least in 
part and in several tumors including glioma, by the SDF-1/
CXCR4 pathway [45–47]. Along these lines, it is tempting 
to speculate that CD164 expression might regulate 
autophagy through the CXCR4/Akt/Beclin-1 pathway. 

Extensive overlap exists between the autophagic 
and apoptotic machineries, and while both autophagy and 
apoptosis can be triggered by common upstream signals in 
response to genotoxic or pharmacological stresses, details 
of the crosstalk between both processes have not yet been 
fully elucidated [48, 49]. Interestingly, a previous study 
found that downregulation of CD164 by short hairpin RNA 
inhibited cell proliferation and promoted apoptosis in human 
U87MG glioma cells both in vitro and in vivo via the PTEN/
PI3K/Akt signaling pathway [14]. We found instead that 

autophagy, rather than apoptosis, was activated by siRNA-
mediated CD164 knockdown in U87MG cells, in a process 
involving the Akt/Beclin-1 signaling pathway (Figure 7). 

In conclusion, our study suggests that 
overexpression of CD164 in glioma cells may contribute 
to tumor growth through enhanced autophagy. Further 
experiments are warranted to elucidate the conflicting role 
of CD164 in SDF-1/CXCR4-dependent signaling in GBM, 
its impact on autophagy and apoptosis, and the ensuing 
effects on tumor growth and survival.

MATERIALS AND METHODS

Cell culture 

Human glioblastoma cell lines U87MG and 
U118MG were obtained from the American Type 
Culture Collection (ATCC, Manassas, VA, USA). 
Cells were maintained in Dulbecco’s modified Eagle’s 
medium (DMEM) supplemented with 4.5 g/L glucose, 

Figure 6: Effect of Akt inhibition on autophagy marker expression in GBM cells. Immunoblotting analyses of CD164, 
CXCR4, total Akt, p-Akt, Beclin-1, p62, and LC3B in GBM cells treated with the Akt inhibitor MK2206. α-actinin served as loading 
control. Results are representative of two independent experiments.
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2 mM glutamine, 1% penicillin/streptomycin, and 10% 
inactivated fetal bovine serum in a humidified atmosphere 
containing 5% CO2 at 37° C. Culture medium changes 
were performed twice weekly. 

Gene expression Omnibus analysis 

The GEO GDS1962 dataset was analyzed in our 
study. It contained a total of 180 human samples, including 
23 non-tumor, 45 grade II astrocytoma, 31 grade III or 
anaplastic astrocytoma, and 81 grade IV astrocytoma 
or GBM specimens. CD164 mRNA expression values 
retrieved from [GDS1962/208653_s_at/CD164] were 
included in the statistical analysis. 

Tissue microarray immunohistochemistry

One brain tissue microarray was analyzed in 
our study (GL1002, US Biomax Inc., MD, USA). It 
included 20 normal brain tissues, 78 astrocytomas, and 
2 oligodendrogliomas. For histopathological analysis, 
microarray sections were deparaffinized by xylene, 
ethanol, and distilled water. After 15 min incubation 
in an antigen retrieval solution (Target Retrieval, 
Dakocytomation, Carpinteria, CA, USA), sections were 
treated with a monoclonal rabbit antibody against CD164 
(Sigma Aldrich Corp., St. Louis, MO, USA) diluted 1:100. 
This was followed by successive incubation with an HRP-
conjugated secondary antibody, 3,3ʹ-diaminobenzidine 
(DAB), and hematoxylin. CD164 immunoreactivity was 
quantified using the H-score method, which reflects both 
staining intensity and percentage of stained cells [50]. 

Cell proliferation analyses

Cell proliferation rate was examined in U87MG and 
U118MG cells seeded in 12-well plates (0.15 × 105 and 
0.3 × 105 cells/well, respectively), after 24, 48, 72 hours, 
the cells were trypsinized and counted using a Coulter 
counter. In addition, cell proliferation was measured by 
fluorescence activated cell sorting (FACS) by assessing 
bromodeoxyuridine (BrdU) incorporation using a FITC-
BrdU Flow Kit (BD Biosciences, San Jose, CA, USA) 
based on manufacturer’s instructions. A FACSCalibur 
flow cytometer (BD Biosciences, San Jose, CA) was used. 
Data are expressed by a proliferation ratio, estimated as 
(NsiCD164/NsiControl), where NsiCD164/NsiControl denotes number of 
activated siCD164/siControl cells at indicated time points.

Cell cycle assay

Cell cycle distribution was investigated by flow 
cytometry. After fixation with 70% ice-cold ethanol at 
4° C overnight, cells were washed with cold PBS and 
RNA digested with RNase A (0.5 mg/ml). Cells were then 
stained with propidium iodide (PI; 5 mg/ml) in PBS/0.5% 
Triton x-100 for 30 min at 37° C in the dark before 
analysis.

Cell migration and invasion assays

For wound migration assays, U87MG (0.5 × 105) 
and U118MG (1 × 105) cells were incubated in 12-well 
plates at confluency, and a cell-free linear zone was 
created using a pipette tip. Cell migration into the clear 

Figure 7: Schematic model of signaling pathways affected by CD164 in GBM. We propose that depletion of CD164 leads 
to suppression of proliferation, migration, and invasion in glioblastoma cells through activation of the CXCR4/Akt/Beclin-1 pathway, 
resulting in the induction of autophagy. (↑increase, ↓decrease, ⊥inhibition).
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area was estimated from microscope images taken at 
different times. We defined 100% migration as total 
occupation of the cleared zone by migrating cells.

For invasion assays, serum-starved cells were seeded 
at a density of 2,000 cells/well in the upper chambers of 
Transwell inserts coated with Matrigel (BD Bioscience, 
San Jose, CA). The lower chambers were filled with 
culture medium containing 10% FBS. After 24-hour 
incubation, cells that traversed into the lower surface of the 
inserts were stained with crystal violet and counted using 
a light microscope.

Western blot analyses

After homogenizing the samples with RIPA 
lysis buffer containing protease inhibitors, protein 
concentrations were detected with the Bradford assay. 
Before electrophoresis on an SDS-agarose gel, an equal 
amount of cell lysates was added to protein loading dye 
and boiled for 5–10 min. The separated proteins were 
blotted electrophoretically onto a polyvinylidene difluoride 
membrane (Millipore Corp., Bedford, MA, USA). 
Nonspecific binding was blocked with 5% nonfat milk in 
Tris-buffered saline for 1 hour at room temperature. The 
following primary antibodies were then applied overnight 
at 4° C: alpha-actinin (Santa Cruz Biotechnology, 
Santa Cruz, CA, USA), CD164 (R&D Systems, Inc. 
Minneapolis, USA), CXCR4, Akt/p-Akt, mTOR/p-
mTOR, OCT4, caspase-3/cleaved caspase-3, caspase-9/
cleaved caspase-9, Beclin-1, p62, LC3B (Cell Signaling, 
Massachusetts, USA), mTORC1 (Proteintech Group, 
Inc, Rosemont, USA). After washing, HRP-conjugated 
secondary antibodies diluted in blocking buffer were 
applied for 1h at room temperature. Immune complexes 
were detected by enhanced chemiluminescence, and 
images captured on X-ray film.

Reactive oxygen species measurement

Intracellular ROS generation was assessed by 
staining cells with 2′,7′-dichlorofluorescein-diacetate 
(DCFH-DA; Sigma-Aldrich, St Louis, MO, USA) based 
on the manufacturer’s protocol. Briefly, cells were 
incubated with 10 mM DCFH-DA for 30 min at 37° C, 
harvested, washed twice with PBS, and analyzed by flow 
cytometry.

Senescence-associated β-galactosidase staining

Detection of SA-β-gal activity was performed as 
previously reported [51]. Briefly, glioblastoma cells were 
fixed in 2% paraformaldehyde and 0.2% glutaraldehyde in 
PBS for 10–15 min at room temperature, washed in PBS, 
and stained with X-gal (5-bromo-4-chloro-3-indolyl-β-D-
galactopyranoside; Cell Signaling Technology, Inc.) for 
8 h. Cell images were captured from randomly selected 
fields and positive (green) cells were counted.

Akt inhibition assay

The AKT inhibitor MK-2206 (8-[4-(1- 
Aminocyclobutyl)phenyl)-9-phenyl-[1,2,4]triazolo[3,4-f]
[1,6]naphthyridin-3(2H)-one hydrochloride [1:1] was 
obtained from Cayman chemical (CAS 1032350-13-2).  
For experiments, cells were seeded at a density of  
1.5 × 105 in 6 cm dishes. The next day, MK2206 (diluted 
from a stock solution formulated in DMSO) was 
added to cultures at a concentration of 0.1 µM. After  
24-hour exposure, the cells were collected and lysis for 
immunoblotting assays.

CD164 knockdown 

Small interfering RNA (siRNAs) targeting CD164 
(siCD164) and non-targeted siRNA (siGENOME 
SMARTpool, Dharmacon, Lafayette, CO, USA) were 
used for CD164 knockdown and control, respectively. 
Briefly, cells were grown in 6 cm dishes and transiently 
transfected with siRNA at a final concentration of 25 nM 
using DharmaFECT™ transfection reagent based on the 
manufacturer’s instructions. Mock-transfected cells were 
exposed to transfection reagent in the absence of siRNAs, 
and experiments were performed two days after transfection.

Statistical analysis

Data are presented as mean ± standard deviation or 
percentage from three separate experiments. Differences 
between groups were examined using t-test and analysis 
of variance. Two-sided p values ≤ 0.05 were considered 
significant. 
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