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ABSTRACT
Cell–cell interactions are of crucial importance for tissue formation, homeostasis, 

regeneration processes, and immune response. Recent studies underlined contribution 
of cell–cell interaction in tumor microenvironment (TME) for tumor progression and 
metastasis. Cancer cells modify the host cells to tumor-supportive traits, and the 
modified host cells contribute to tumor progression by interacting with cancer cells 
and further modifying other normal cells. However, the complex interaction networks 
of cancer cells and host cells remained largely unknown. Recent advances in high 
throughput microscopy and single cells-based molecular analyses have unlocked a 
new era for studying cell–cell interactions in the complex tissue microenvironment at 
the resolution of a single cell. Here, we review various model systems and emerging 
experimental approaches that are used to study cell–cell interactions focusing on the 
studies of TME. We discuss strengths and weaknesses of each model system and each 
experimental approach, and how upcoming approaches can solve current fundamental 
questions of cell–cell interactions in TME.

CELL COMMUNICATION IN NORMAL 
PHYSIOLOGY AND IN CANCER

The human body is estimated to be composed of 
more than 200 different types of cells, with approximately 
3.72 × 1013 cells in total [1]. Cells with specialized 
functions form functional units such as organs (brain, 
heart, liver, etc.), skin, bone, blood, and muscle, by 
coordinating their behavior through communication with 
other cells. Cell interactions also play essential roles 
during embryonic development and in basic physiological 
processes, such as neurotransmission, wound healing, and 
inflammation. Therefore, the study of cellular interactions 
is crucial to understand the development and function of 
multicellular organisms.

Cell–cell interaction is a complex phenomenon; 
a single cell can interact with many other cells through 
physical contact, surface receptor-ligand interaction, 
cellular junctions, and secreted stimulus from neighboring 
cells or those of distant organs. Interactions via secreted 
factors such as protein or peptide-based growth factors 
and cytokines [2], small molecules and metabolites [3] 
has been extensively studied. More recently, interactions 

involving extracellular vesicles have emerged as another 
way of interaction [4]. In addition, cell–cell interactions 
are affected by their physiological environments, including 
physical properties of the surrounding extracellular 
matrix and its biochemical properties, like levels of 
oxygen (hypoxia) or nutrients (energy deprivation) [5]. 
Together, these mechanisms of cell interaction contribute 
to coordinated cellular behavior and complex biological 
functions in tissues.

Cancer is a major healthcare challenge worldwide. 
Cell communication in the tumor microenvironment 
(TME) presents one of the biggest barriers to our 
understanding of this disease. Tumor tissue is not 
solely composed of cancer cells; as much as 50% of 
its composition can derive from non-cancerous cells, 
along with non-cellular components [6]. Cancer cells 
interact with themselves and non-cancerous host cells 
including immune cells (T cells, B cells, macrophages, 
dendritic cells, NK cells), endothelial cells, and 
fibroblasts (reviewed in [7, 8] and elsewhere). Cancer 
cells also respond to growth factors, cytokines, and 
extracellular matrix proteins present in the TME [9]. 
The interactions between normal and cancer cells can be 
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tumor-suppressive, i.e. immunoreaction against cancer, 
but often eventually become tumor-promoting. Immune 
cells including T cell, B cells, macrophages, dendritic 
cells, neutrophils, become immune-suppressive and even 
cancer-supporting, which has been reviewed [10–13]. 
Cancer-associated fibroblasts are also exploited to secrete 
extracellular matrix and promote growth and invasion of 
the cancer cells [14]. Cancer cells interact with endothelial 
cells to elongate blood vessels in TME [15]. Interactions 
with extracellular matrix stiffening promotes cancer 
progression [16]. Overall, interactions within the TME 
are diverse and promote cancer progression. Therefore, 
understanding cell–cell interaction within TME will not 
only provide insight into cancer biology but also the 
potential for identifying new therapeutics.

In this review, we will discuss the current approaches 
to the study of cell–cell interactions, challenges associated 
with these approaches, and the need for better technologies 
to understand cellular interactions focusing on cell–cell 
interactions in cancer.

MODEL SYSTEMS TO STUDY CELL–CELL 
INTERACTIONS IN CANCER

To systematically understand cell–cell interactions 
in complex tissue microenvironments, we must be able to: 
(1) identify specific cell types, (2) observe spatial relation 
among different cell types, (3) determine the mode of 
interaction (direct or indirect), (4) measure molecular 
information in single cells, and (5) measure responses 
to stimuli. Here, we will discuss model systems and 
approaches to the study of cell–cell interactions in TME.

Many experimental strategies have been developed 
so far, from in vitro assay of cells grown in monolayer, 
3D, and spheroid/organoid cultures, to in vivo rodent 
carcinogenesis models, xenografts of human cancer 
cell lines, and patient-derived xenografts (PDXs) 
as well as direct analysis of patient samples (Figure 
1). A basic tradeoff exists between the ability to 
manipulate the system and the physiological relevance 
of the system. Additionally, physiological relevance is 
often gained at the expense of accessibility and high 
throughput comprehensive analysis (Figure 1). For 
cell–cell interaction studies, it is important to select an 
experimental system appropriate to the purpose of the 
research. More detailed features of each model system 
are shown in Table 1.

Primary tissues from patient tumors

The most physiologically relevant samples are 
biopsies and surgical samples obtained from patient 
tumors. Although they contain all characteristics of the 
TME, including cellular and non-cellular components, 
they provide limited accessibility. Most analyses of 
patient tumors are based on histology. The tumor samples 

are either fixed or frozen for histological analysis. 
Analyses of tumor tissue sections from patients exhibit 
various cell types in native TME, and are often used to 
assess correlation between histological observations 
(abundance of various cell types such as macrophages, T 
cells, extracellular matrix, microvasculature) and clinical 
outcomes/prognosis [17–19]. Primary tumor tissues are 
also used to isolate non-cancerous cell population such 
as cancer-associated fibroblast (CAF). Molecular and 
phenotypic characteristics of CAFs can be compared 
to those cells from other region of the body to study 
how cancer cells can affect their phenotype [20, 21]. 
However, fixed/frozen tumor tissues cannot be expanded, 
which limits acquisition of dynamic phenotypic or 
molecular response. Further, genetic manipulation and 
comprehensive high-throughput analysis of individual 
cells are not feasible for frozen/fixed patient tumors. 
Moreover, patient tumor samples are confounded 
by genetic background and tissue subtypes, making 
comparisons between experimental and control groups 
difficult. Therefore, hypotheses generated from tissue-
based results are further tested in in vitro culture models.

Cultured cell line-based in vitro models

Cancer cell lines derived from tumor tissues are 
widely used as 2D monolayer cultures. For cell–cell 
interaction, co-culture experiments seeding two or more 
cell lines into the same dish, or seeding into cell culture 
insert separated by a thin membrane that only allows 
secreted factors to pass through, are commonly used in 
vitro models. For example, coculture of cancer cells 
and endothelial cells, fibroblasts and immune cells are 
often used in various types of cancer to provide insight 
into cell–cell interaction between cancer and host cells 
[22, 23]. Cell lines grown in vitro are easy to expand 
and amenable to genetic/pharmacological perturbation 
studies. However, the biophysical and biochemical 
properties of cells cultured in monolayer with artificial 
medium are very different from those of patient tumors 
where multiple types of cells are tightly packed next each 
other to form the TME. A cluster of cells limits access 
to oxygen and nutrients, and poses growth inhibition by 
contact inhibition. Moreover, cells lines cannot recreate 
the complex combination of cells and non-cellular 
components in TME.

To mimic tightly-packed 3D structures of tissues, 
spheroids can be formed from cultured cells [24]. 
Spheroids are sphere-like cell aggregates which can be 
prepared from a single cancer cell type, or mixture of 
several cell types, e.g. a combination of cancer cells, 
fibroblasts, and endothelial cells. Spheroid culture gives 
rise to tight cell junctions and gradients of oxygen and 
nutrients that more accurately mimic in vivo cell growth. 
Other 3D culture platforms reconstruct TME by mixing 
cancer cells and non-cancerous cells and providing 
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Table 1: Experimental model systems for analyzing cell–cell interactions
Cell: 2D 
culture

Cell: 3D 
culture Spheroids Organoids Tissue 

slices Xenografts PDX Syngeneic 
models

Patient 
tumors

Physiological 
relevance +++ +++ +++ +++

Tissue architecture + +++ +++ +++ +++ +++

Human-derived 
stromal cells ++ +++ + +++

Tightly packed 
cells + ++ ++ ++ +++ +++ +++ +++

Complex cell types + + ++ +++ +++ +++ +++ +++

Sample availability
(reproducibility) +++ ++ ++ + + +

Molecular 
intervention +++ ++ + + + +

+++ denotes strong relevance; ++ denotes moderate relevance; + denotes low relevance.

Figure 1: Major experimental model systems for studying cell–cell interaction. Model systems ranges from in vitro assay 
of cells grown in monolayer, 3D, and spheroid/organoid cultures, to in vivo rodent carcinogenesis models, xenografts of human cancer 
cell lines, and patient-derived xenografts (PDXs) as well as direct analysis. The strength and weakness of each experimental model are 
described with red and green bars. A tradeoff exists between sample manipulation and its physiological relevance. Detailed description of 
each model is also summarized in Table 1.

scaffolds for cells based on natural and synthetic 
matrices as extracellular matrices [25]. By testing 
combinations of stromal cells and cancer cells, Wang 
and colleagues demonstrated the importance of stromal 
cells to hepatocellular cell malignancy [26]. Although 
spheroids require more preparation time than monolayer 
cells, gene modification remains easier than in vivo, 

and high-throughput analysis is becoming increasingly 
accessible. However, a non-physiological distribution of 
various cell types and matrix proteins remains a major 
drawback of this model system. Overall, although in vitro 
culture models are useful for molecular analysis of cell–
cell interaction, careful evaluation of these findings in 
physiological models are often needed [27].
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Ex vivo tissue-derived models

To overcome the problems of limited availability 
of patient tumors, tumors are expanded either in vitro, or 
in vivo in mice and other model organisms. Organoids, 
which are small pieces (~70 µm) of tissues cultured and 
expanded in medium, can be prepared from organs such 
as brains and small intestines, and from tumors as well 
[28, 29]. Organoids provide the advantage of expansion 
while preserving the basic histological characteristics of 
the original source organs [30]. This technology enables 
testing of multiple experimental conditions on tissues from 
the same origin. Histological observation and co-culture, 

chemical or antibody-based perturbation of interaction 
reveal relationships of cells of interest in tissue-context 
[31, 32]. In addition, while they are still more difficult 
than in cell culture, gene introduction and other molecular 
manipulations are possible [33]. However, passaging of 
organoids introduces in vitro cultivation-driven cell-type 
specific bias and limits their physiological relevance 
[34, 35]. Still, organoids are a model that merges TME 
complexity and in vitro convenience.

Another tissue-based model that preserves the TME 
is precision-cut tumor slices. Tissue slices are thin-cut 
(200 µm or more) slices of tumor tissues maintained in 
culture. Live immune cell migration into tumor tissues 

Figure 2: Analytical approaches to study cell–cell interaction. Current microscopy-based analyses are focused on obtaining spatial 
information of targeted cells/molecules, and cell sorting-based techniques require cell dissociation, which precludes spatial information. 
Emerging approaches integrate both advantages to obtain molecular and spatial information simultaneously, providing meaningful insights 
for cell–cell interactions.
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from pancreatic ductal adenocarcinoma slice cultures 
was observed using fluorescently conjugated antibodies 
[36]. Another method of applying tissue slices to TME 
studies is to co-culture cancer cells into organotypic tissue 
slices. Mouse brain tissue slice cultured with glioblastoma 
cells was used as a model to study cellular response of 
glioblastoma cells to niche signals and drug treatment 
[37]. Tissue slices have similar benefits to organoids; 
however, they are not intended to expand, but rather to 
maintain their viability. While they do not provide the 
advantage of expansion, tissue slices generate less concern 
over changing phenotypes during culture.

In vivo tissue-based models

PDX model involves subcutaneous implantation 
of patient tumor in immune-compromised mice. PDX 
models allow expansion of human tumors under 
mouse physiological conditions. As they maintain the 
original structures of the tumor partially, PDX provides 
physiologically-relevant models. PDX models have been 
used for many TME studies, especially to test responses 
to perturbations of TME in tumor growth and metastasis. 
Contribution of stromal cell population to aggregate tumor 
progression has also been studied using PDX models [38, 
39]. However, it usually takes more than 1 year to establish 
them, and strong selection bias including replacement of 
stroma occurs during establishment and passage [40]. 
Cancer cell line-derived xenografts (CDX) typically take 
much less time (1–2 months) to form tumors, but all 
nonmalignant and non-cellular components are of mouse-
origin. A major limitation of both PDX and CDX is the lack 
of functional immune cells, which play significant roles in 
the TME. Alternatively, chemical or genetically-induced 
mouse carcinogenesis models and mouse allograft models 

can provide tumor tissues under mouse physiological 
conditions with fully functional immune cells [41, 42]. 
While studying cell–cell interaction in the TME of mouse 
tumors can provide critical information on human TME, 
some key differences between mouse and human immune 
systems limit enthusiasm for these models.

Overall, using an appropriate experimental system 
that balances sample accessibility and manipulability with 
physiological relevance can enable researchers to elucidate 
cell–cell interactions in complex tissues.

ANALYTICAL APPROACHES TO STUDY 
CELL–CELL INTERACTIONS

Using the model systems described above, many 
analytical approaches have been developed to elucidate 
cell–cell interactions in complex TME. Here, we describe 
the current and emerging tools as well as discuss their 
advantages and weaknesses (Figure 2, Table 2). Currently, 
many approaches can help obtain either spatial distribution 
of the cells or detailed molecular information of certain 
cell types, however, very few approaches can provide 
both. Therefore, hypotheses generated from one approach 
are generally tested by combination of other approaches, 
such as combination of imaging-based strategies and 
high-throughput analyses of dispersed cells followed by 
molecular analyses.

Imaging

Imaging is the most powerful tool for visualizing 
the structure of tissues, spatial distributions of cells, and 
determining specific cell types. Many microscopy-based 
imaging approaches have been developed to observe 
cellular distributions within tissues, such as confocal 

Table 2: Experimental approaches for analyzing cell–cell interactions

IHC Microscopy In vivo 
imaging

Flow 
cytometry

Mass 
cytometry Microfluidics (F)

ISH
Imaging 

MS
Raman 

spec
Cyclic 
IHC

Spatial 
information +++ +++ +++ --- --- --- +++ +++ + +++

Live cells 
without fixing - ++ +++ + + ++ --- --- +++ ---

Time course  
live imaging - ++ +++ +++ +++

Molecular 
analysis (low 
throughput)

+ + + ++ ++ + + ++ + ++

Omics analysis
(High 
throughput)

--- -- - +++ +++ +++ + +++ - --

+++ denotes strong advantage; ++ denotes moderate advantage; + denotes low advantage; - denotes disadvantage.
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microscopy, super-high-resolution microscopy, in vivo 
two photon microscopy, electron microscopy and atomic 
force microscopy. However, quantification and throughput 
are the two main weaknesses of imaging-based methods. 
Imaging can quantify proteins, RNAs, lipids and sugar 
chains using labeled antibodies; however, microscopy-
based quantification is easily confounded by many factors 
including poor signal-to-noise ratio, high background, 
photobleaching of fluorophore and low resolution of the 
images [43]. Additionally, the number of targets that can 
be detected is limited by antibody availability and the 
number of fluorophores in the visible spectrum. Overall, 
the imaging allows visualization of cell–cell interactions 
with less accurate quantification and limited throughput. 
Recent technological advances, however, have been 
improving throughput of imaging in high-content imaging 
and automated microscopes [44].
Fixed tissue imaging

Immunohistochemistry (IHC) has been used since 
the 19th century to directly detect and observe the cells 
in tissue sections [45]. It is still widely used to observe 
the structure and distribution of specific cells in tissues 
in laboratory experiments and in clinical cancer diagnosis 
[46]. Most of the clinical samples are chemically fixed for 
further analysis. These histology images have contributed 
to the vast body of knowledge in understanding the 
distribution pattern of cells in tumor tissues. Cells 
labeled by cell type-specific dyes and antibodies enable 
the gain of spatial information in the tissue. Observation 
of tissue section showed disseminated breast cancer 
cell in proximity of microvasculature are maintained in 
dormant state [47]. Relative protein expression levels 
can also be quantified using IHC. Further, laser capture 
microdissection systems can directly excise a specific 
area or single cells for downstream analysis of global 
gene expression and proteomic analysis, providing both 
spatial information and correlated molecular information 
[48]. However, despite its widespread use, IHC has some 
drawbacks. First, fixation precludes time-scale analysis on 
live cells. Second, fixation of tissues lowers the quality 
of RNA, DNA and proteins extracted from sample tissue, 
which poses major obstacles to comprehensive analysis 
of limited samples available from a section. Although 
throughput has improved with tissue microarrays that 
contain up to 1000 tissues on one slide, analysis time per 
sample is limited by microscope observation.
Live tissue imaging

 To overcome limitations posed by tissue fixation, 
recent technologies have been developed to enable high-
resolution, real-time imaging under more physiological 
states, either ex vivo or in vivo [49]. Tissue architecture 
including detailed morphologies and distributions of 
individual cells are visualized in ex vivo tissues by 
labeling using fluorescent-labeled dyes, antibodies, and 
introduction of fluorophores to target proteins. Recently, 

the advent of CRISPR-Cas9-mediated cell-type specific 
labeling has enabled live cell tracking (lineage tracing) 
and studies of cell–cell interactions [50–53]. Several 
approaches to in vivo imaging have also emerged that 
allow imaging of cell–cell interactions under the most 
physiological conditions [54]. Intravital microscopy, 
imaging of live animal at microscopic resolution, is a 
strong tool to observe cell behavior directly, including 
cell migration and direct contacts [55]. However, imaging 
depth (~1000 µm, mostly a few to hundreds µm) [49] and 
challenges in in vivo labeling of specific cell-type limit the 
application of these methods. Alternatively, whole body 
distribution of disseminated cancer cells can be detected 
using in vivo imaging techniques such as fluorescence, 
luminescence, ultrasonography (US), positron emission 
tomography (PET), magnetic resonance imaging (MRI), 
and computed tomography (CT) [56]. Because this 
constitutes a noninvasive investigation, spatial information 
of TME can be observed repeatedly with time sensitivity 
under physiological conditions. The weakness is these 
imaging strategies have lower resolution than in vivo 
microscopy (a few mm). However, Vacok and colleagues 
applied improved optical coherence tomography to mouse 
to achieve three-dimensional, wide-field, in-depth (2 mm) 
live observations of blood vessel arrangement and cancer 
necrosis, and drug response of cancer [57].

Single cell analyses by fluidics

Flow cytometry

Flow cytometry can analyze individual cells 
quantitatively and in high throughput. Developed in the 
1960s [58], it became an indispensable technology for 
analysis of mixed cell populations. One classical usage 
for cell interaction studies is to detect direct physical 
cell–cell interactions in high-throughput manner [59–61]. 
Multiplex labeling identifies composition of various 
cell types that exist in TME based on surface protein 
marker expression [62]. Changes in cell components can 
provide insight into the role of stromal cells in tumor-
supporting microenvironment [63, 64]. In addition, 
quantification of multiple proteins in single cells using 
dyes or fluorescently-labeled antibodies can be achieved 
using flow cytometry. Similarly, flow cytometry has also 
been used to measure mRNA or microRNA expression 
levels using labeled antisense nucleotides [65, 66]. In 
combination with Fluorescence Activated Cell Sorting 
(FACS), target cells can be isolated and collected in a 
high-throughput manner, enabling further comprehensive 
gene expression and proteomic analysis. For example, 
tumor-infiltrated immune cell populations can be classified 
and collected for further molecular analysis [67]. Imaging 
flow cytometry is another high throughput approach to 
analyze thousands of individual cells per second by taking 
images of cells simultaneously to provide morphological 
information [68]. This provide advantage over traditional 
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flow cytometry in multiplexing imaging capability. High-
throughput analysis of flow cytometry has enabled studies 
of rare cell types, such as cancer stem cells. FACS can 
analyze and sort cancer stem cell-like population from 
tumor for further investigations. For example, stem cell-
like cells in patient-derived glioblastoma specimen were 
isolated as a EGFR-positive population for transcriptome 
analysis [69].

However, flow cytometry and other single cell-
based methodologies have notable drawback that requires 
tissue dissociation and single cell suspension. Collagenase 
and/or trypsin are used to disperse cells, which degrade 
adhesion molecules, tight junctions and extracellular 
matrices in TME. Information on three-dimensional 
distributions of cells and non-cellular components is 
completely lost during this process. Therefore, although 
flow cytometry has strong advantages for molecular 
analysis, it cannot obtain spatial and structural effects on 
cell–cell interaction simultaneously.
Microfluidics

Microfluidics offers another way to analyze cells 
in a high throughput manner at single cell levels, with 
a notable difference from flow cytometry, by culturing 
single cells in a microchamber. Single cells are isolated 
by trapping the cells in a microfluidics cavity, then the 
cells are incubated and monitored real-time, or proteins 
and RNA levels can be analyzed directly on chip [70]. 
Wang and colleagues directly observed effect of cell 
interaction of glioblastoma multiforme cancer cells 
in controlled microchip [71]. Recently-developed 
“cancer-on-a-chip”, where cancer cells are cultured 
in microchambers mimicking TME, provide insight 
into interaction between cancer cells and TME [72, 
73]. Similarly, the organ chip model mimicking lung 
environment with lung cancer cells has been shown 
to recapitulate growth rate, therapeutic responses and 
metastatic niche [74]. These microchambers allow 
observation of real-time and 3D immune-cancer cell 
interactions [75], cell behavior in metastatic cascades, 
such as EMT, invasion and adhesion for intra-and 
extravasation [76]. However, the requirement of tissue 
dispersion to single cells and difficulties in mimicking 
TME in vitro remain a challenge.

Overall, flow cytometry followed by FACS and 
microfluidics are ideal for high throughput comprehensive 
molecular analysis. However, the loss of structural 
information to cell dispersion required for the techniques 
remains as a critical issue.

Molecular analyses of single cells

Transcriptomic analysis: single cell-RNA sequencing 
(sc-RNAseq)

Recent droplet-based technological advances have 
enabled transcriptomic profiling of single cells [77, 78]. 

Cells dissociated from tissues were isolated into single 
cells by FACS, microfluidics, microdroplets or picowells 
to capture single cell per a droplet or a well [79]. Droplet-
based technology integrated with sc-RNAseq has been 
applied to profile intra-tumoral immune cells in breast 
cancer [80]. Patel and colleagues transcriptionally 
described heterogeneity in glioblastoma using sc-RNAseq 
[81]. Combined with DNA barcoding, thousands of 
individual cells can be now analyzed [78]. The use of 
single cell-RNA sequencing is being widely adopted to 
describe heterogenous population in complex tissues.
Protein analyses: mass cytometry

Proteomic analysis in single cell is in need because 
transcription and actual protein amount is often different. 
While comprehensive analyses of proteins are not yet 
possible, mass cytometry is one of the most high-throughput 
protein analyses. Isolated cells are labeled with multiplexed 
metal-conjugated antibodies, and the amount of target 
proteins is detected by Cytometry by Time of Flight (CyTOF) 
mass spectrometry [82]. The current technology enables to 
measure approximately 40 proteins simultaneously [83]. 
Simoni et al recently described CD8+ T cell populations 
infiltrated into different types of tumors [84].

Although dissociation of the tissue disrupts spatial 
information, high-throughput molecular analyses in single 
cell level boost generation of hypothesis relating to cell–
cell interactions that are subjected to validation using other 
experimental approaches.

EMERGING APPROACHES TO ANALYZE 
CELL–CELL INTERACTIONS

To study cell–cell interaction in TME, spatial 
information at the resolution of a single cell is essential, 
and microscopy is currently the most powerful tool 
to obtain it. However, current imaging technologies 
are intractable to comprehensive molecular analysis. 
To further understand complex cell–cell interactions, 
technologies that offer both spatial information and high-
throughput molecular analyses are highly needed. Here, 
we discuss some emerging approaches that have been 
developed to obtain molecular information linked with 
spatial information (Figure 2).

Imaging-coupled transcriptional profiling

The importance of connection between transcription 
and spatial distribution of the cells are discussed in 
other reviews [85, 86]. Fluorescent in situ hybridization 
(FISH) allows measurement of gene expression using 
fluorescent probes recognizing RNAs linking transcription 
patterns with spatial organization of single cell cells 
within tissues. FISH usually has low throughput due 
to limits on the number of fluorescent probes that can 
be used simultaneously. Recently, multiplexed in situ 
hybridization has been developed. Moffitt and colleagues 
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developed multiplexed in situ hybridization that can 
analyze 130 RNAs from approximately 40,000 cells in 
18 h, using error-robust barcodes and sequential cleavage 
of fluorophores [87]. Although this strategy dramatically 
enhances the throughput of FISH, the number of 
transcripts that can be measured simultaneously is still 
far from comprehensive analysis. Wang and colleagues 
developed 3D in-situ RNA sequence, named STARmap, 
using mouse brain [88]. They could analyze up to 1020 
marker genes in single cell level, and categorized cells 
into 16 cell types based on expression patterns. The in situ 
transcription analyses outlined above suffer from the need 
for tissue fixation. A sequence-based strategy overcomes 
this by introducing photoactivatable tags into live cells 
together with a cell penetrating peptide [89]. Activation 
of these tags within specific target cells allows isolation 
of mRNA signals from individual cells for transcriptomic 
analysis. This strategy has advantages that allow for 
analysis of live cells and use of well-established RNA-
seq platforms. Overall, imaging-based transcriptome will 
describe the cells in different transcription state related to 
its surrounding environment.

Imaging-based mass spectrometry (IMS)

IMS is an approach that integrates the strength of 
imaging and unbiased proteomic analysis through matrix-
assisted laser desorption ionization [90]. By measuring 
mass/charge signals at various coordinates, it can analyze 
both the existence of target molecules and information 
about their localization in tissues. IMS enables analysis 
of thousands of proteins, lipids, and metabolites without 
labeling directly from the tissues. Despite these advantages, 
IMS suffers from two main drawbacks: 1) low resolution 
(5–200 μm for IMS vs 1 μm for fluorescence microscopy); 
and 2) low sensitivity that causes inability to detect low 
abundant proteins. To enable detection of low abundant 
or active form of proteins, a combination of metal-labeled 
antibodies and mass cytometry has been developed [91]. 
Using rare earth metals-labeled antibodies, it is possible to 
detect at least 32 (and possibly up to 100) proteins using 
more antibodies. Giesen and colleagues have developed 
high resolution imaging mass cytometry by combining IHC 
imaging and laser-based ablation for mass cytometry [92]. 
Mirnezami and colleagues could show heterogeneity of 
patient colorectal cancer by lipid-based analysis [93]. It has 
been shown that sequential images can be used to develop 
3D IMS image [94]. These imaging technologies have 
improved resolution and provide single cell level analyses, 
however, there is still a tradeoff between resolution and 
comprehensive analysis of molecules.

Raman microscopy (RM)

Raman spectroscopy (RS), an optical technique 
based on inelastic scattering of light by vibrating 
molecules, has been adapted to provide chemical 

fingerprints of cells in complex tissues. Raman microscope 
(RM), a microscope coupled with RS, can elucidate 
relationships between tissue architecture and molecular 
distributions. Studies using RM to aid clinical diagnosis 
have been reported [95, 96]. RM is non-invasive and 
requires no staining or labeling, which permits dynamic 
acquisition of molecular data such as lipids, proteins, 
and water content in live tissues. RM has been used for 
identifying lipid composition in TME [97]. In combination 
with 2-photon microscopy, Lee and colleagues imaged 
invasive cancer cells, blood flow, and direct cancer 
cells-host cells interaction in TME of mouse mammary 
tumors [98]. Inability to provide molecular (genomic 
and proteomic) information limits the usefulness of this 
emerging approach.

Cyclic immunofluorescence (IF)

IHC is limited by the number of antibodies that 
can be used on a single section. This stems from the 
requirement that antibodies from different species be used 
for each target, and that most microscopes only detect 
<10 fluorescent channels. To overcome these limitations, 
several strategies to inactivate, block, or strip the first 
round of antibodies to allow multiple rounds of IHC 
on a single section have been developed [99, 100]. Lin 
and colleagues optimized 3-color cyclic IF to perform 
multiplexed analyses of drug response of melanoma cells 
with 5 cycles of cyclic IF [101]. Cyclic IF has also been 
shown to be effective on tissue samples [102]. Although 
antibody staining cycles are theoretically unlimited, 
this strategy is practically limited to approximately 16 
channels because of damage to samples and long per-
round staining time resulting in low throughput. Therefore, 
cyclic immunofluorescence has methodological limitation 
to be applicable for more comprehensive analyses.

CONCLUSIONS

The structural and functional integrity of all 
multicellular organisms is coordinated by and dependent 
on cell–cell communication mediated via spatial and 
temporal interaction. The study of cell–cell interactions 
is crucial to the understanding of many biological 
processes, including organ formation and size control, 
tissue packing, and immunological reactions. Without 
cell–cell contact, our tissues, organs and whole body 
would lose their structure and function; even slight 
disturbances can result in pathological conditions such as 
cancer. It is widely recognized that cell–cell interactions 
in the microenvironment contribute to tumor progression. 
In order to study a phenomenon as complex as cell–cell 
interaction, careful experimental designs using relevant 
model systems and analytical strategies must be 
implemented.

Using cell–cell interactions in the tumor tissue as an 
example, we first discussed various experimental models 
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that are used to study TME. In general, there is a tradeoff 
between applicable experimental strategies and physiological 
relevance of the system. Understanding the limitations and 
exploiting the advantages of each experimental model 
are fundamental to this research. Current experimental 
approaches provide either high-throughput molecular 
analysis (cell sorting-based methods) or spatial information 
through imaging (microscopy-based methods). Emerging 
approaches combine the advantages of these two to perform 
both spatial distribution analysis and high-throughput 
molecular analysis (Figure 2). A combination of microscopy 
and ‘omics’ (ex, tagged RNAseq and IMS) will provide a 
powerful strategy for investigating cell–cell interactions.

Recent technical advances have enabled single cell 
transcriptomics (scRNAseq); for biochemists and molecular 
biologists, however, high throughput single cell proteomic 
analysis remains a challenge. Proteins are the actual 
effectors of cellular functions, but transcription levels and 
protein levels do not correlate in many cases. Therefore, 
highly sensitive MS instruments that can analyze large 
number of proteins from a single cell are required.

 Further, methods that will allow delivery of gene 
modification (knockdown/overexpression) to targeted 
single cells in tissues in a high throughput manner and 
enable dynamic/kinetic measurements are also needed. 
Application of basic molecular biology techniques to 
specific cell-type of interest in a complex tissue context 
will be a strong tool to reveal the effect of one cell 
on the surrounding cells. In addition, to reconstitute 
the regulatory networks, we will need to elaborate 
computational modeling strategies that combine all 
molecular and spatial information data [103].

Cells interact through both transient and prolonged 
physical contact, surface receptor interaction, cellular 
junctions, cell matrix interactions, and secreted stimuli 
from neighboring cells or from distant organs. Can we 
determine the type of cell interactions, whether it is direct 
contact, autocrine or paracrine signaling? New approaches 
are also needed to answer some of these fundamental 
questions in cell communication.

Overall, new technologies, together with appropriate 
experimental models, will reveal the spatial and molecular 
resolution of cell–cell interaction. Insight into cell–cell 
interaction will provide deeper understandings of TME 
as well as the physiological systems of multicellular 
organisms.
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