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ABSTRACT

Acute myeloid leukemia (AML) is the most common form of acute leukemia in 
adults, affecting approximately 21,000 people annually (nearly 11,000 deaths) in 
the United States. B-cell lymphoma 2 (BCL-2) family proteins, notably myeloid cell 
leukemia-1 (MCL-1), have been associated with both the development and persistence 
of AML. MCL-1 is one of the predominant BCL-2 family members expressed in samples 
from patients with untreated AML. MCL-1 is a critical cell survival factor for cancer 
and contributes to chemotherapy resistance by directly affecting cell death pathways. 
Here, we review the role of MCL-1 in AML and the mechanisms by which the potent 
cyclin-dependent kinase 9 inhibitor alvocidib, through regulation of MCL-1, may serve 
as a rational therapeutic approach against the disease.

INTRODUCTION

Acute myeloid leukemia (AML) is the most 
common form of acute leukemia in adults. According to 
the American Cancer Society, the incidence of AML has 
increased 1.7% per year from 2004 to 2013 [1]. In 2017 
in the United States, it was estimated that AML affected 
approximately 21,000 people and resulted in nearly 11,000 
deaths. Moreover, although death rates from other acute 
and chronic leukemias decreased by about 1% per year 
from 2005 to 2014, mortality rates remained consistent for 
AML [1]. AML is characterized by the infiltration of bone 
marrow, blood, and other tissues by poorly differentiated 
hematopoietic cells. It displays distinct clinicopathologic, 
cytogenetic, and genetic characteristics; these and other 
factors are used to categorize patients according to most 
appropriate treatment, prognosis, risk of resistance, or 
potential for treatment-related mortality [2–4].

Alterations in apoptotic pathways are common in 
human malignancies and, in certain cancers, essential 
for tumorigenesis and cancer maintenance [5]. In this 
context, B-cell lymphoma 2 (BCL-2) family proteins, 
notably myeloid cell leukemia-1 (MCL-1), are known for 
their role in both the development and persistence of AML 
[6, 7], and are often associated with cancer-cell survival 

and resistance to chemotherapy [8, 9]. Furthermore, as 
explored in detail in this article, gene expression analysis 
suggests that MCL-1 is one of the predominant BCL-2 
family members expressed in samples from patients with 
untreated AML [10]. Here, we review the role of MCL-1 
in AML and the mechanisms by which the potent cyclin-
dependent kinase (CDK) 9 inhibitor alvocidib may serve, 
through regulation of MCL-1, as a rational therapeutic 
approach against the disease.

CURRENT AND NOVEL TARGETED 
THERAPIES FOR ACUTE AND 
CHRONIC LEUKEMIAS

Standard treatment for AML consists of intensive 
induction chemotherapy, followed by consolidation 
chemotherapy or allogeneic hematopoietic stem cell 
transplantation (HSCT) in patients with high-risk disease. 
Select groups of patients are offered lower-intensity 
therapy (eg, hypomethylating agents) or investigational 
therapy in a clinical trial [11]. Patients with AML have 
a poor prognosis, particularly older patients [1, 12–18]. 
Complete responses are achieved in only approximately 
40% of patients aged 70 years or older compared with 
approximately 70% of patients aged 60 years or younger 
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[19]. Despite marked advances in understanding the 
biology and genetics of AML, therapeutic progress has 
been limited [1]. For the past 30 years, cytarabine and 
anthracycline-based induction chemotherapy has been the 
standard of care [20–23].

In recent years, multiple efforts have focused 
on the development of targeted therapeutics directed 
against relevant proteins (Table 1) [24–61]. These include 
approved agents such as the kinase inhibitor midostaurin 
for patients with FLT3 mutation-positive AML (Rydapt®, 
Novartis Pharmacueticals Corporation, East Hanover, 
NJ, USA); the isocitrate dehydrogenase inhibitors (IDH) 
ivosidenib (Tibsovo®, Agios Pharmaceuticals, Cambridge, 
MA, USA) and enasidenib (Idhifa®, Celgene Corporation, 
Summit, NJ, USA and Agios Pharmaceuticals, Cambridge, 
MA, USA) for patients with IDH1 mutation-positive 
and IDH2 mutation-positive AML, respectively; and the 
CD33-targeted antibody-drug conjungate gemtuzumab 
(Mylotarg™, Wyeth Pharmaceuticals, Philadelphia, PA, 
USA). Other agents under investigation in AML [62] 
include poly ADP-ribose polymerase inhibitors that may 
trigger irreparable DNA damage [63, 64]; epigenetic drugs 
that may modulate methylation, acetylation, and cell 
signaling and cycling [65]; and Aurora kinase inhibitors, 
which target the Aurora family of serine/threonine 
kinases, enzymes essential for multiple processes during 
mitosis, including chromosome alignment, centrosomal 
maturation, mitotic spindle formation, and cytokinesis 
[66–69]. Additional compounds have received orphan 
drug designation for the treatment of AML [70], including 
the histone deacetylase inhibitor pracinostat (MEI Pharma, 
San Diego, CA, USA) and the CDK9 inhibitor alvocidib 
(Tolero Pharmaceuticals, Lehi, UT, USA).

Alvocidib (also known as L86-8275, NSC 649890, 
and flavopiridol) is a semisynthetic flavonoid derived from 
rohitukine, an alkaloid isolated from a plant indigenous 
to India. Early studies described it as a potent compound 
capable of reversibly blocking cell progression at more 
than one point of the cell cycle, as addressed in this 
review [71].

CLINICAL STUDIES WITH ALVOCIDIB

Alvocidib was the first CDK inhibitor to enter 
human clinical trials [72]. Multiple preclinical [6, 73–77] 
and clinical [49, 78–85] studies have been conducted, 
leading to combination therapies that, based on the 
mechanism(s) of action of alvocidib, have shown clinical 
activity supporting futher development. These include the 
addition of alvocidib to regimens containing cytarabine 
and mitoxantrone (ACM [formerly FLAM]) [81, 82, 84] 
and fludarabine/rituximab, investigated in a phase I trial in 
patients with mantle cell lymphoma, chronic lymphocytic 
leukemia (CLL), or indolent B-cell non-Hodgkin’s 
lymphoma [83]. In fact, in earlier phase II trials, the 
ACM regimen showed an overall complete remission 

rate of 67-80% in patients with newly diagnosed, poor-
risk AML, with low rates of morbidity and mortality [81, 
86, 87]. More recently, these observations were extended 
to a multicenter randomized phase II trial in adults with 
newly diagnosed AML with intermediate- and adverse-risk 
cytogenetics [84]. ACM led to higher complete remission 
rates than 7+3 (70% vs 46%; p = 0.003); this improvement 
persisted after 7+3 ± 5+2 (70% vs 57%; p = 0.08), further 
illustrating the efficacy of ACM induction in patients with 
newly diagnosed AML [84, 85]. Importantly, ACM was 
not associated with increased toxicity relative to 7+3, 
with similar rates of tumor lysis syndrome (TLS; 8% vs 
7%, respectively). However, two ACM-treated patients 
compared with one 7+3-treated patient experienced early 
death due to TLS, and three grade 4 TLS toxicities were 
reported, all in patients treated with ACM [84].

Combination therapy with other targeted agents 
has also been studied. In a phase I trial, alvocidib was 
investigated in combination with the histone deacetylase 
inhibitor vorinostat in patients with relapsed, refractory, 
or poor prognosis acute leukemia or refractory anemia 
with excess type-2 blasts [49]. In this study, no objective 
responses were achieved, although 13 of 26 evaluable 
patients exhibited stable disease. The combination of 
alvocidib with vorinostat was well tolerated, with fatigue 
being the most common non-hematologic adverse event. 
No patient experienced TLS, but this study was designed 
to monitor and prophylactically treat TLS [49]. Alvocidib 
was also studied in combination with the proteasome 
inhibitor bortezomib in a phase I trial of patients with 
recurrent or refractory B-cell neoplasms [80] and as a 
bolus infusion in a similar patient population [79]. These 
studies showed that the regimen was clinically active in 
these patients and, importantly, the nonhybrid schedule 
regimen was recommended for subsequent studies 
[79, 80]. Based on preclinical findings that alvocidib 
potentiated imatinib-mediated cell death in human Bcr-
Abl+ cells, a phase I trial of alvocidib plus imatinib in 
advanced Bcr-Abl+ leukemias was initiated [78]. These 
studies, along with others, led to the designation of 
alvocidib as an orphan drug in 2014 [70].

ALVOCIDIB AND CYCLIN-DEPENDENT 
KINASES: EFFECTS ON CELL CYCLE 
AND GENE EXPRESSION

One of the most relevant hallmarks of cancer 
cells is their ability to maintain proliferation, an effect 
directly associated with a deregulated cell cycle [5, 88]. 
Unconstrained proliferation secondary to the loss of 
cell-cycle regulation plays a key role in the initiation 
and progression of cancer. Early studies conducted to 
identify the mechanism(s) of action of alvocidib showed 
its inhibitory effects on cell-cycle progression [71, 89–91].

Progression through the cell cycle is monitored at 
cell-cycle checkpoints where potential defects in DNA 
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synthesis and/or chromosome segregation are regulated 
through checkpoint activation and cell-cycle arrest [92, 
93]. This regulatory process involves multiple proteins, 
including cyclins, CDKs, and CDK inhibitors (CKIs), 
leading ultimately to CDK inhibition [94]. Mutations in 
CDKs and their regulators (cyclins and CKIs), as well as 
epigenetic repression of these genes, have been shown to 
be directly associated with deregulation of the cell cycle in 
multiple types of cancers [95, 96]. Through the cell cycle, 
cells divide and replicate following a precise and strictly 
regulated process. This is coordinated by the activation and 
degradation of heterodimeric protein complexes formed by 
catalytic serine/threonine CDKs, notably CDK2/4/6, and 
their regulatory counterparts, a subset of cyclins directly 
involved in driving the cell cycle. Regulatory cyclins 
include D-type cyclins (D1, D2, and D3), which bind 
preferentially to CDK4/6, and E-type (E1 and E2) and 
A-type (A1 and A2) cyclins, which bind to CDK2 [95–
97]. CDK/cyclin activity is negatively regulated by two 
families of CKIs: the INK4 (p16Ink4a, p15Ink4b, p18Ink4c, 
and p19Ink4d, which inhibit the cyclin D-dependent 
CDK2/4/6) and Cip/Kip (p21waf1, p27kip1, and p57kip2, 
which inhibit CDK2/cyclin E or A) (Figure 1) [95, 96]. In 

addition, cell-cycle regulatory proteins associate with each 
other through the retinoblastoma protein (pRb), which is 
phosphorylated by activated cyclin D–CDK4/6 complexes. 
This process regulates pRb-modulated availability of the 
transcription factor E2F: unphosphorylated pRb blocks the 
availability of E2F, while cyclin D–CDK4/6-mediated pRb 
phosphorylation releases E2F, triggering the transcription 
of early E2F-responsive genes, including cyclins E and 
A (Figure 2A–2B) [100]. The effect of alvocidib on cell-
cycle progression has been linked to inhibition of several 
CDKs, including CDK1, 2, and 4/6 [68, 86–88]. The main 
molecular mechanisms that have been associated with the 
activity of alvocidib are summarized in Table 2 [49, 71, 
73–75, 77, 89, 90, 94, 101–126].

In addition to its inhibitory effects on cell-cycle–
related CDKs, alvocidib exhibits its most potent effects 
on CDK7 and CDK9, both of which are non–cell-cycle-
related and play important roles in transcription and gene 
expression, including several genes that are critical for 
cell survival under stress [102, 105–107]. Both CDK7 
and CDK9 target the carboxyl-terminal domain (CTD) 
of RNA polymerase II, controlling, through sequential 
phosphorylation of different residues, the transcription 

Table 1: Targeted-therapies for AML molecules*

FMS-like tyrosine kinase 3 kinase inhibitors
  • Sorafenib (Nexavar®; Bayer Healthcare Pharmaceuticals Inc, Whippany, NJ, USA) [24–28]
  • Midostaurin (Rydapt®; Novartis, East Hanover, NJ, USA) [29–31]
  • Quizartinib (Daiichi Sankyo Group, Parsippany, NJ, USA) [32, 33]
  • Crenolanib besylate (Arog Pharmaceuticals, Inc, Dallas, TX, USA) [34, 35]
  • Gilteritinib (Astellas Pharma, Tokyo, Japan) [36]

Antibody-based therapies
  • Gemtuzumab ozogamicin (anti-CD33; Mylotarg™, Pfizer, New York, NY, USA) [37–39]
  • IMGN779 (anti-CD33; ImmunoGen, Waltham MA, USA) [40]
  • MCLA117 (bispecific anti-CLEC12A×CD3; Merus, Cambridge, MA, USA) [41]
  • CAR T cells [42]
  • Flotetuzumab (bispecific anti-CD123×CD3; MacroGenics, Rockville, MD, USA) [43]
  • IMGN632 (anti-CD123; ImmunoGen, Waltham MA, USA) [44]

Isocitrate dehydrogenase 1 and 2
  • Enasidenib (Idhifa®; Celgene Corporation, Summit, NJ, USA and Agios Pharmaceuticals, Cambridge, MA, USA) [45]
  • Ivosidenib (Tibsovo®; Agios Pharmaceuticals, Cambridge, MA, USA) [46]

Other small molecule compounds
  • HDAC inhibitors:
  – vorinostat (Zolinza®; Merck, Kenilworth, NJ, USA) [47–50]
  – panobinostat (Farydak®; Novartis, Cambridge, MA, USA) [51, 52]
  – romidepsin (Istodax®; Celgene Corporations, Summit, NJ, USA) [53–55]
  – SB939 (Pracinostat®; MEI Pharma, San Diego, CA, USA) [56]
    – SNDX 275 (Entinostat®; Syndax, Waltham, MA, USA) [57]
  • BCL-2 inhibitor: venetoclax (Venclexta®; AbbVie-Genentech, North Chicago, IL, USA) [58–61]

*Not inclusive of all compounds that have been or are undergoing clinical study.
Abbreviations: AML, acute myeloid leukemia; BCL-2, B-cell lymphoma 2; CAR, chimeric antigen receptor; HDAC, 
histone deacetylase.
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Figure 1: Cell cycle. Cells divide and replicate following a precise and strictly regulated process. Cell-cycle progression is coordinated 
by the activation and degradation of heterodimeric protein complexes formed by catalytic serine/threonine cyclin-dependent kinases 
(CDK; CDK2/4/6), and their regulatory counterparts (D-type cyclins D1, D2, D3; E-type cyclins E1 and E2; A-type cyclins A1 and A2). 
[95–97] The activity of CDK/cyclin complexes is negatively regulated by two families of CDK inhibitors: INK4 (p16Ink4a, p15Ink4b, 
p18Ink4c, p19Ink4d, which inhibit the cyclin D-dependent CDK2/4/6) and Cip/Kip (p21waf1, p27kip1, p57kip2, which inhibit CDK2/
cyclin E or A) [98, 99].

Figure 2: Cell-cycle regulatory proteins. (A) Cell-cycle regulatory proteins are associated with each other through the retinoblastoma 
protein (pRb), which is phosphorylated by the activated cyclin D–CDK4/6 complexes, a process that regulates pRb-modulated availability 
of the transcription factor E2F. (B) Unphosphorylated pRb blocks the availability of E2F, while cyclin D–CDK4/6-mediated pRb 
phosphorylation releases E2F, triggering the transcription of early E2F responsive genes, including cyclins E and A. [100] The effects of 
alvocidib on cell-cycle progression are linked to its ability of inhibiting several CDKs including CDK1, 2, and 4/6 [71, 89–91].
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process at several stages including initiation, elongation, and 
termination [127, 128]. CDK7 and its associated regulatory 
proteins cyclin H and MAT1 are part of a complex within 
transcription factor IIH, which regulates RNA polymerase 
II during the initiation phase and during promoter clearance 
[129–131]. CDK9, on the other hand, is part of positive 
transcription elongation factor b (P-TEFb) and is modulated 
by its association with cyclins T1, T2a, and T2b, having a 
unique role in the regulation of RNA polymerase II during 
productive elongation [132–134].

Targeting gene transcription as a means of 
controlling the expression of critical proteins has been 
considered a potentially risky strategy because of 
nonselective effects that may impact both cancer and 
normal cells [135, 138]. However, recent studies have 
shown that a number of highly expressed genes that are 
either  oncogenic  (eg,  MYC,  MYCN,  RUNX1)  [137–
140] and/or provide critical survival advantages (eg, 
MCL-1) [8] are highly dependent on continuous active 
transcription. Gene expression relies on cis-acting DNA 
sequences, namely transcription enhancers, which increase 
transcription independently of their orientation and 
distance relative to the RNA start site. These transcription 
enhancers are discrete DNA elements that contain specific 
sequence motifs with which DNA-binding proteins 
interact and transmit molecular signals to genes [141, 142]. 
To maintain adequate levels of short-life proteins such as 
MCL-1 in cancer cells, the continuous active transcription 
of the genes coding for these proteins is often driven by 
large sections of DNA that comprise multiple enhancers, 
named “super-enhancers” [143–145]. Although the 
activities of thousands of genes are controlled by enhancer 
elements, only those genes with especially prominent roles 
are controlled by super-enhancers [143]. These regions 
are densely populated by components of the transcription 
machinery (ie, in addition to transcription factors, co-
factors, RNA polymerase II, and CDKs), including targets 
of alvocidib therapy CDK7, CDK8, CDK9, CDK12, and 

CDK13 [143, 146, 147]. From a therapeutic standpoint, 
that most of the genes regulated by “super-enhancers” 
code for short half-life mRNAs and proteins makes 
targeting gene transcription a feasible approach in cancer 
therapy, as highly selective effects may be reached before 
a global transcriptional down-regulation is achieved [136].

ALVOCIDIB AND APOPTOSIS IN 
CANCER CELLS: REGULATION OF 
MCL-1

Dysregulation and evasion of apoptosis is one of 
Hanahan and Weinberg’s hallmarks of cancer [5, 88]. Cell 
death by apoptosis may occur through two major signaling 
pathways: the intrinsic (or mitochondrial) pathway and 
the extrinsic (or death receptor-mediated) pathway [148, 
149]. Early studies provide evidence that exposure of 
human leukemia cells to alvocidib triggers apoptosis 
by the mitochondrial rather than the death receptor–
mediated pathway [75, 111]. The intrinsic apoptotic 
pathway, following pro–cell death stimuli, is initiated by 
mitochondrial outer membrane permeabilization (MOMP) 
and the release of cytochrome c from the intermembrane 
space [150]. This process is controlled by the BCL-2 
family of proteins [148], which are grouped into three 
classes: proapoptotic effector proteins, including BAX and 
BAK, which are responsible for MOMP; anti-apoptotic 
BCL-2 proteins, such as BCL-2, BCL-xL and MCL-1, 
which block MOMP; and the BCL-2 homology (BH)3-
only proteins BID, BIM, BAD, BIK, HRK, PUMA, BMF, 
and NOXA, which either activate proapoptotic effectors 
and/or neutralize anti-apoptotic BCL-2 proteins [148, 
151]. Multiple studies have investigated the BCL-2 family 
of proteins as therapeutic targets. The most advanced of 
these efforts led to the approval of the BCL-2 inhibitor 
venetoclax for patients with high-risk CLL [152]. In AML, 
venetoclax has shown preclinical activity [153], with 

Table 2: Main molecular mechanisms involved in the activity of alvocidib

Modulation of cell cycle
  • Cell cycle arrest at the G1 phase through inhibition of cell cycle-related CDK1, CDK2, CDK4, and CDK6 [71, 89, 90, 
94, 102, 103]
  • CDKI p21CIP1 transcriptional inhibition. [49, 73, 103, 104]
Regulation of transcription
  • Inhibition of non–cell-cycle–related CDK7 and CDK9 [103, 105–107]
  • Potent alteration of the expression of genes involved in cell cycle, cell death, and transcriptional regulation, among 
others [108–110]
Effects on cell death–apoptosis pathways
  • Mithocondrial-mediated cell death induction [75, 111]
  • Regulation of MCL-1 [74, 112–114]
  • Regulates the expression of other pro- and anti-apoptotic proteins including BCL-2-[115–121] and IAP-[77, 116, 
122–126] family proteins

Abbreviations: BCL-2, B-cell lymphoma 2; IAP, inhibitor of apoptosis proteins; MCL, myeloid cell leukemia.
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modest single-agent activity in relapsed/refractory AML 
[61]. However, preliminary clinical data on venetoclax 
in combination with DNA methyltransferase inhibitors 
or low-dose cytarabine have shown encouraging results 
[58,  59,  60,  154–155].  Venetoclax  has  shown  activity 
in preclinical studies in acute lymphoblastic leukemia 
[156, 157] and is currently being investigated in pediatric 
and adult clinical trials. Because of the risk of TLS, 
prophylactic use of anti-hyperuricemics and hydration is 
recommended prior to the first dose of venetoclax [158].

Essential to the mechanism of alvocidib-induced 
anticancer activity is its effect on the expression of 
MCL-1, which has been shown to play a critical role 
in sensitizing cells to cell death [74, 112–114]. High 
levels of anti-apoptotic MCL-1 and other members of 
the BCL-2 family (eg, BCL-2, BCL-xL) have been 
shown to contribute not only to the development of 
some forms of cancer, but also to providing them with 
survival advantages and chemotherapy resistance [6–10, 
159–161]. In fact, amplification of the MCL-1 gene 
is one of the most frequent somatic genetic events in 
human cancer, providing evidence of its central role in the 
pathogenesis of malignancy [159]. Studies examining the 
expression of BCL-2 family members, including MCL-
1 in primary human hematopoietic subsets and leukemic 
blasts from patients with AML, have consistently shown 
high expression levels of MCL-1 transcripts [10]. In a 
functional in vivo study of Myc-induced murine AML 
with high levels of MCL-1, reduction of MCL-1 levels 
through haploinsufficiency abrogated AML development, 
supporting the critical role of MCL-1 in AML 
pathogenesis [10]. Similar observations in AML have 
shown that high levels of MCL-1, but not of other anti-
apoptotic proteins such as BCL-xL, BCL-2 or BCL-w, 
are critical to the development and sustained growth of 
the disease [6]. It is noteworthy that alvocidib has been 
shown to induce the expression of the anti-apoptotic BCL-
2 gene in leukemic blasts in adults with refractory AML 
[119]. However, expression of BCL-2 does not appear to 
have a major impact on alvocidib-induced lethality [75, 
162]. Furthermore, alvocidib displays synergistic effects 
when administered with selective BH3 mimetic BCL-2 
inhibitors (ABT-199 or venetoclax) in in vitro and in vivo 
models of AML [163].

Importantly, the differential effects of MCL-1 versus 
other apoptosis-related BCL-2 family members may 
reside in a newly identified fuction of MCL-1. In addition 
to its role in controlling and opposing cell death, which 
is related to its localization on the outer mitochondrial 
membrane, an amino-terminally truncated isoform of 
MCL-1 was found to be imported into the mitochondrial 
matrix where it facilitates normal mitochondrial function, 
membrane potential, ATP production, respiration, cristae 
ultrastructure, and maintenance of oligomeric ATP 
synthase [164]. These findings provide key information 
on how the diverse functions of MCL-1 may contribute 

to cell homeostasis and function, supporting the evidence 
that high levels of MCL-1 in human cancers contribute to 
malignant cell growth and evasion of apoptosis [165]. One 
distinct difference between MCL-1 and other members of 
the BCL-2 family is its very short half-life, between 0.5 
hours and 4 hours [8, 166], which makes it dependent 
on continuous and active gene transcription, an effect 
achieved (as mentioned above) through super-enhancer–
driven transcription ultimately modulated by CDK9 [143, 
146, 147].

Despite alvocidib showing potent clinical activity 
against blood cancers, patients develop primary or 
acquired resistance to treatment throughout their clinical 
course. To understand the mechanism of acquired 
resistance to alvocidib in leukemia, an alvocidib-resistant 
cell line was created in a CLL model [161]. The alvocidib-
resistant cell line exhibited high transcriptional activity 
and increased CDK9 activity to promote RNA polymerase 
II activity, thereby increasing RNA transcription of 
alvocidib targets. The alvocidib-resistant cell line also 
exhibited increased transcription and stability of MCL-
1. Of particular importance, knockdown of MCL-1 in the 
alvocidib-resistant cell line partially restored sensitivity 
to alvocidib. This suggests that the upregulation and 
stability of MCL-1, as well as enhanced CDK9 activity, 
are important components of acquired resistance to 
alvocidib [161]. The relationship between the level 
of MCL-1 expression and the response to alvocidib is 
being examined in a phase II study of patients with AML 
(NCT02520011).

Other proteins affected by alvocidib and critically 
involved in the regulation of apoptotic signaling include 
the inhibitor of apoptosis proteins (IAP) family, a group 
of eight structurally related proteins with the ability to 
suppress apoptosis, most notably X-linked IAP (XIAP), 
c-IAP1, c-IAP2, and survivin [167, 168]. Although 
c-IAP1 and c-IAP2 exert their inhibitory effects on cell 
death indirectly by functioning as E3 ubiquitin ligases 
promoting the ubiquitination of caspase-3 and -7 [169, 
170], XIAP binds  to  and  inhibits  caspase-3,  -7,  and  -9 
[167]. Alvocidib has been shown to down-regulate XIAP 
at the transcriptional level [77].

CLINICAL DEVELOPMENT OF MCL-1 
SMALL MOLECULE INHIBITORS

Several studies investigating the role that MCL-1 
expression plays in cancer development and treatment 
have resulted in significant efforts to develop compounds, 
such as alvocidib, that may target this apoptosis-
inhibitory protein. Approaches to down-regulate MCL-1 
expression have been directed multiple ways: inhibiting 
its transcription via CDK9 inhibition, as is the case with 
alvocidib and other CDK inhibitors [113, 114]; at the 
translational level, as occurring in human leukemia cells 
exposed to sorafenib [171]; or by targeting protein-protein 



Oncotarget1256www.oncotarget.com

interactions to directly affect MCL-1 anti-apoptotic 
activity [8, 172–174].

In addition to alvocidib, there are other MCL-1 
inhibitors in development. The small molecule S63845 
(Servier Laboratories, Suresnes, France and Novartis, 
Basel, Switzerland) [174] has been shown to bind with 
high affinity to the BH3-binding groove of MCL-1, 
resulting in apoptosis of MCL-1–dependent multiple 
myeloma, leukemia, and lymphoma cells [174]. In 
addition, S63845 has been shown to sensitize several solid 
cancer cell lines (including breast cancer and melanoma) 
to other therapeutic agents. The small molecule MCL-1 
inhibitors AMG 176 (Amgen, Thousand Oaks, CA, USA) 
[175] and AZD5991 (AstraZeneca, Cambridge, UK) [176] 
are currently in phase I clinical evaluation (NCT02675452 
and NCT03218683, respectively) and continue to accrue 
patients in the US. Other compounds under clinical 
study include MIK665 (NCT02992483) and S64315 
(NCT02979366). Given  the marked  interest  in MCL-1 
inhibitors and the efforts currently underway in academic 
institutions and pharmaceutical laboratories, a summary of 
some of these studies has been recently published [172].

SUMMARY

Since its introduction to the field of cancer 
therapeutics, alvocidib has received much attention, 
resulting in an accumulation of knowledge and 
understanding of the mechanisms affecting cancer cell 
survival. This has led to the development of promising 
combination therapies against leukemia, including AML, 
where efficacious approaches are urgently needed. It is 
clear that alvocidib, by targeting the CDK9/MCL-1 axis 
and thereby interfering with one of the main pro-survival 
proteins, represents a unique compound in an area of 
research where much effort is being invested. Advances 
have been made in terms of identifying new strategies and 
schedules of administration that have greatly improved the 
clinical activity of alvocidib, notably as part of regimens 
such as ACM, where results supporting its further 
development have been recorded, especially in patients 
with newly diagnosed AML.
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