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ABSTRACT

Tumor heterogeneity may arise through genetic drift and environmentally driven 
clonal selection for metabolic fitness. This would promote subpopulations derived 
from single cancer cells that exhibit distinct phenotypes while conserving vital pro-
survival pathways. We aimed to identify significant drivers of cell fitness in pancreatic 
adenocarcinoma (PDAC) creating subclones in different nutrient formulations 
to encourage differential metabolic reprogramming. The genetic and phenotypic 
expression profiles of each subclone were analyzed relative to a healthy control cell line 
(hTert-HPNE). The subclones exhibited distinct variations in protein expression and lipid 
metabolism. Relative to hTert-HPNE, PSN-1 subclones uniformly maintained modified 
sphingolipid signaling and specifically retained elevated sphingosine-1-phosphate (S1P) 
relative to C16 ceramide (C16 Cer) ratios. Each clone utilized a different perturbation to 
this pathway, but maintained this modified signaling to preserve cancerous phenotypes, 
such as rapid proliferation and defense against mitochondria-mediated apoptosis. 
Although the subclones were unique in their sensitivity, inhibition of S1P synthesis 
significantly reduced the ratio of S1P/C16 Cer, slowed cell proliferation, and enhanced 
sensitivity to apoptotic signals. This reliance on S1P signaling identifies this pathway 
as a promising drug-sensitizing target that may be used to eliminate cancerous cells 
consistently across uniquely reprogrammed PDAC clones. 
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INTRODUCTION

Cancer development is a highly dynamic biochemical 
process driven by both neutral evolution and environmental 
pressure [1]. Due to the combined influences of stochastic 
and selective factors, like genetic instability and metabolic 
stress, a single originating cancer cell can give rise to 
heterogeneous clonal populations with distinct genetic and/or 
phenotypic profiles [2]. Inter- and intra-tumor heterogeneity 
promote drug resistance and limit the predictability of cancer 

prognosis [3–5]. Alternatively, multiple subclones may 
exhibit parallel evolution, whereby specific adaptations or 
pro-cancer pathways are selectively maintained throughout 
tumor progression [6]. Conserved pathways provide a degree 
of evolutionary predictability [3] and potentially serve 
as ubiquitous drug targets among heterogeneous cancer 
subclones [7, 8]. Predicting which pathways are retained 
so that different subclones will consistently respond to 
treatments, versus those which are frequently divergent, 
remains limited in most tumor types [3]. 
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Pancreatic ductal adenocarcinomas (PDAC) 
display frequent, severe levels of inter- and intra-
tumor heterogeneity driven by successive genetic and 
epigenetic modifications in early and metastatic stages 
[9]. Chemotherapy is effective in some patients, but most 
tumors develop resistance mechanisms and efforts to 
improve standard chemotherapeutic procedures have failed 
clinical trials [10]. An increased understanding of conserved 
pathways at the genomic, transcriptomic, and metabolic 
levels of PDAC cellular evolution will pave the way for 
novel therapeutic opportunities [9].

A growing body of work reveals that deregulation 
of lipid metabolism (both structural and signaling lipids, 
Supplementary Figure 1) may be one of the most definitive 
metabolic hallmarks of cancer, presenting important 
targets for therapeutic intervention [11–19]. Cancer-
promoting changes in lipid utilization and signaling may 
be traced back to the core lipid-metabolizing enzymes  
[15, 16, 20–23]. Altered expression and/or regulation 
of lipid modifying enzymes can drive pro-cancer lipid 
metabolism and signaling. In many tumor types, mRNA 
and protein expression of Fatty Acid Synthase (FASN) are 
increased to fuel demands for de novo lipid synthesis to 
support new membrane formation and energy production 
[20, 24]. FASN and other lipid-modifying enzymes are 
involved in complex molecular networks including both 
signaling and non-effector metabolites with multiple 
points of interplay between complimentary and competing 
signals. Though many substrates within these networks are 
structurally similar, even small modifications to a given 
lipid can impose vastly different physiological effects [13]. 

Dysregulated signaling through bioactive 
sphingolipids shifts the balance between pro-growth 
versus pro-death pathways in cancer cells [11, 12, 25, 26].  
Two interconvertible sphingolipid metabolites, 
ceramide and sphingosine-1-phosphate (LipidMaps ID# 
LMSP01050001, S1P), have been shown to have competing 
signaling roles in cancer cell fate [12, 27–30] (Figure 1). 
Ceramide is metabolized to form S1P in two enzymatic 
steps (deacylation and phosphorylation) by the protein 
Sphingosine Kinase (SK). At basal levels, ceramide is 
continuously recycled from S1P by the reverse of these two 
reactions. This ceramide salvage pathway can also be signal-
mediated to alter endogenous ceramide concentrations 
relative to S1P in order to promote stress tolerance [30]. 
Current research indicates C16 Ceramide (LipidMaps ID# 
LMSP02010004, Cer(d18:1/16:0), Figure 1) is a potent 
pro-apoptotic signal involved in cell cycle arrest, cell 
senescence, and tumor suppression [31–36]. Alternatively, 
S1P acts as a pro-survival signal by promoting stress 
tolerance, cell motility, angiogenesis, and optimal growth 
factor induced proliferation [30, 33]. Although endogenous 
S1P is generally less abundant than ceramide, it is highly 
mobile and suppresses ceramide-induced apoptosis [37]. 
These findings by Cuvillier et al. led to the birth of the 
term “sphingolipid rheostat” which is used to describe the 

interplay between competing ceramide and S1P signals and 
their opposing effects on cell fate [30, 37]. 

While several enzymes are involved in the synthesis, 
degradation, and turnover of C16 Cer and S1P (Figure 1), 
literature suggests that Sphingosine Kinase 1 (SK1) plays a 
central role in regulating the sphingolipid rheostat [38–46].  
Overexpression of SK1 has been reported in a wide range 
of tumors, including breast, colon, lung, ovarian, kidney, 
and rectal tumors [45]. Elevated SK1 activity is linked to 
tumor angiogenesis and progression as well as resistance 
to radiation and chemotherapy [45]. Therefore, SK1 may 
serve as a powerful drug target to shift the sphingolipid 
rheostat toward a healthy balance between pro- and anti-
apoptotic signals in drug resistant cancers.

Here, we sought to explore cancer cell evolution and 
identify conserved pathways among differentially evolved 
clonal populations that contribute to the aggressive and 
drug-resistant nature of PDAC. We developed a panel 
of phenotypically heterogeneous human PDAC cell 
populations from the same genetic origin (PSN-1) [47] 
to investigate how micoenvironmental pressures promote 
common and differential evolutionary paths in pancreatic 
cancer (Figure 2). The original PSN-1 stock was split 
into four isolated subcultures: psn1-A (pA), psn1-B (pB), 
psn1-C (pC), and psn1-D (pD). The pA and pC groups were 
passaged in standard growth conditions while pB and pD 
cells were subcultured using different nutrient formulations 
(Supplementary Figure 2) for one month. The pA and pC 
groups were used to represent a form of “neutral evolution” 
since they were influenced purely by internal stresses, such 
as rapid division rates, which have been shown to promote 
spontaneous genetic and metabolic instability [2]. In 
addition to “neutral” evolutionary stress, the pB and pD 
cells were introduced to modified microenvironmental cues 
from the new nutrient formulations, thereby representing 
subclones influenced both by stochastic internal and 
environmentally induced external pressures (Figure 2).

We compared the genetic and metabolic signatures 
of the four PSN-1 subclones to one another. We also used 
a non-oncogenic immortalized ductal pancreatic cell 
line, hTert-HPNE (hTert, hT) [48] as a healthy control 
in each assay to provide context for how much human 
ductal pancreatic cells can change their biochemistry 
and relative to the changes between individual subclones 
(Figure 2). Although our genomics data suggested the four 
PSN-1 subclones were virtually isogenic, they exhibited 
consistent phenotypic variations, suggesting that each 
cancer group followed a unique evolutionary path driven 
by non-genetic variations in molecular expression and 
regulation. At the same time, all four subclones maintained 
similar cancer-like phenotypes relative to hTert, such as 
irregular cell shapes and morphology, rapid proliferation 
rates, altered enzyme expression and activity levels, as 
well resistance to apoptotic signaling. This suggests that 
the most important pro-cancer pathways were selectively 
conserved across all four PSN-1 clones. 
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Despite numerous differentially expressed genes and 
metabolic modifications between individual subclones, 
each of our assays identified SK1-mediated S1P/C16 Cer 
metabolism as a key element regulating the shift between 
cancerous and healthy phenotypes in heterogeneous clonal 
populations. We propose that the selective pressure to 
maintain rapid growth and apoptotic resistance promotes 
this shift in SK1-mediated S1P/C16 Cer metabolism 
because it is a significant component of metabolic 
reprogramming in human pancreatic cancer cells. This 
“cancerous” sphingolipid rheostat is promoted through 
synergistic modification of transcription, translation, and 
enzyme activation, yet may be corrected in any subclonal 
variant through selective regulation of this metabolic 
pathway (Figure 1).

RESULTS

PDAC subclones and healthy controls displayed 
variations in cell size and morphology

Morphological phenotypes are intimately linked 
with shifts in cell stress, transcription, enzyme activity, 
and metabolism, thus serving as structural manifestations 

of interplay between environmental and intracellular cues 
[49]. Healthy control (hTert) cells were compared to the 
cancer subclones in order to establish a relevant size range.  
The hTert cells were extremely elongated with little to no 
rounded centers or terminal ends relative to the cancer 
groups (Supplementary Figure 3A–3E). All four cancer 
lines were significantly smaller than hTert cells (P < 0.01), 
which may be connected to their rapid cell division rates.

Within the cancer groups, each subclone displayed 
specific morphological characteristics. The pA subclones 
exhibited both punctate and spheroid cell shapes 
composed of very rounded centers with short, pursed 
edges (Supplementary Figure 3A). The pB cells were 
generally thinner, less defined, and more elongated with 
rigid, sharp corners and darker nuclei than the other cancer 
groups (Supplementary Figure 3B). The pC cells portrayed 
plumper, concave spindle shapes with both smooth and 
sharp edges (Supplementary Figure 3C). The pD group 
included very punctate as well as fusiform cell shapes with 
well-defined, smooth edges (Supplementary Figure 3D). 
On average, pD cells were larger than the other cancer 
subclones and this difference was significant between pA 
and pD groups (P = 0.005) (Supplementary Figure 3F). 
We hypothesized that these phenotypic variations may be 

Figure 1: Structures and metabolism of pro-apoptotic C16 Cer and pro-survival S1P. Ceramides result from the breakdown 
of more complex sphingolipids like sphingomyelins and glycosphingolipids or are synthesized de novo from serine and palmitoyl-CoA (C16 
Cer shown). Ceramidase catalyzes the de-acylation of Ceramide to form sphingosine. Sphingosine Kinase phosphorylates sphingosine in 
an ATP-dependent manner to generate S1P. S1P is removed from the sphingolipid metabolism pathway when it is degraded by S1P Lyase, 
yielding precursors for phospholipid synthesis (hexadecenol and phosphoethanolamine). Ceramide can be recycled via S1P phosphatase-
catalyzed dephosphorylation of S1P to reform sphingosine, which is acylated by Ceramide Synthase (CerS) to reform ceramide. The chain 
length of the resulting ceramide depends on the type of CerS that acts on sphingosine, e.g. CerS5 produces C16 Cer from sphingosine. C16 
Cer promotes cell cycle arrest and apoptosis while S1P stimulates pro-survival and pro-proliferative signaling cascades. 
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indicators of biochemical perturbations between cancerous 
and healthy cells as well as between individual PSN-1 
subclones.

DNA fingerprints were identical in distinct 
PDAC clonal populations

STRs are short, tandemly repeated DNA sequences 
(~2–6 bp) scattered somewhat evenly throughout the 
human genome [50]. Because STRs display high degrees 
of polymorphism between individuals, they are used to 
produce a unique numerical pattern made up of 8 STR 
markers (along with amelogenin for sex determination) 
known as the “DNA fingerprint” (Supplementary 
Figure 4A–4B) [51]. A cell line is considered authentic 
when there is a ≥80% match between the sample cell 
line and the reference STR profile [51]. As a reference, 
there was a 100% match between our hTert cells and the 
American Type Culture Collection (ATCC) reference 
profile for hTert-HPNE (Supplementary Figure 4A). 

We compared STR profiles of cells from each PSN-1  
subclone (pA, pB, pC, pD) collected at the end of the 

study (time~6 months) to cells from the original PSN-1 
stock (time = 0) (Figure 2). The original stock displayed 
a 92% match with the ATCC PSN-1 reference profile 
(Supplementary Figure 4B), indicating that our originating 
PSN-1 line was an authentic representation of the PSN-1 
human cell line [47]. Each of the four PSN-1 subclones 
(pA, pB, pC, and pD) displayed equivalent matches (92%) 
with the PSN-1 reference profile. This indicates that any 
evolutionary changes that may have occurred throughout 
the study did not affect the DNA fingerprint nor the ability 
to trace each PSN-1 subclonal population back to the 
original tissue donor. 

PDAC subclones exhibited distinct nscSNP 
profiles relative to healthy control cells, but were 
virtually isogenic relative to one another

Single nucleotide polymorphisms (SNPs) resulting 
from selectively maintained point mutations are the most 
common type of genetic variation throughout the human 
genome [52]. Non-synonymous SNPs in coding regions 
(nscSNPs) and regulatory regions of the genome tend 

Figure 2: Schematic of experimental workflow used to generate isolated pancreatic cancer subclones from a common 
genetic origin and identify pro-survival pathways. 
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to have the greatest effects on phenotype [53] and may 
provide a foundation for cancer development and tumor 
heterogeneity [52, 54, 55]. Sequence variant analysis from 
RNA-Seq data was used to compare the genomes of each 
cell type (hT, pA, pB, pC, pD). There were numerous 
nscSNPs detected in each sample from both hTert and 
cancer groups relative to the reference genome (640,451 
total nscSNPs detected in 13,657 total genes across 16 
samples) (Supplementary Database 1). Interestingly, the 
median nscSNP density was highest in the slower growing 
hT cells (0.059%), followed by pC (0.049%), pA (0.044%), 
pB (0.043%), and pD cells (0.039%) (Supplementary 
Database 1). This indicates that the genomes of both cancer 
and healthy ductal pancreatic cell cultures were susceptible 
to nscSNP-driven genetic variation.

We used heat map clustering to visualize broad 
differences between gene specific nscSNP densities 
in each sample (Figure 3A). All four hT biological 
replicates clustered together (left) and did not intermix 
or cluster with nscSNP profiles from any cancer sample 
(right) (Figure 3A). On the other hand, nscSNP profiles 
of biological replicates from the four cancer groups were 
quite intermixed and clustered together throughout the 
right-hand portion of the heat map (Figure 3A). Overall, 
there were no clear differences distinguishing the genome-
wide nscSNP signatures of the four PSN-1 subclones 
relative to one another (Figure 3A). 

We used a Principle Component Analysis (PCA) of 
the SNP data in binary form (presence or absence of a 
nscSNP) to investigate genome-wide differences in these 
coding region SNPs between each group (Figure 3B). 
There was a clear separation between the nscSNP profiles 
of all four hTert replicates relative to the cancer samples, 
suggesting that there were a large number of differences in 
nscSNP densities per gene between the healthy and cancer 
groups (Figure 3B). On the other hand, all of the biological 
replicates derived from the four different PSN-1 clones (3 
from each group) formed another fairly isolated cluster 
on the PCA plot (Figure 3B). This further indicates that 
the genome-wide nscSNPs densities between the different 
cancer groups did not significantly change throughout the 
subculturing experiment. The overlapping points of the 
subclone replicates (Figure 3A) suggest that there were 
no significant differences in global nscSNP compositions 
between individual PSN-1 subclones.

Isogenic PDAC subclones displayed significant 
variations in global mRNA expression 

We compared the relative mRNA concentrations to 
identify genes that were differentially expressed between 
cell types using the DESeq2 Bioconductor package 
statistical criteria [56]. There were 19,946 common genes 
quantified in all of the groups that met the statistical 
criteria for quantitative mRNA analysis (See Materials 
and Methods) [56].  Relative to healthy (hT, pA, pB, 

pC, pD) (Supplementary Database 2), there were about 
half as many significant differentially expressed genes 
between the cancer subclones (31.3%; adjusted P < 0.1) 
(Supplementary Database 3). 

Hierarchal heat map clustering and a PCA were 
used to explore general differences in the global mRNA 
expression profiles (n = 19,946 genes) of each group 
(Figure 4A1-A2). Both the heat map (Figure 4A1) and 
PCA (Figure 4A2) displayed a very clear division between 
mRNA profiles of the cancer groups (pA, pB, pC, pD) 
relative to the healthy control (hT). There were also 
fewer significant differences in mRNA expression levels 
between the different PSN-1 subclones (Supplementary 
Database 3), demonstrating that the cancer groups 
altered transcription in different ways over the course 
of the subculturing experiment. Based on the PCA plot 
(Figure 4A2), the clones most similar in terms of mRNA 
expression were those whose nutrient formulations were 
unchanged (pA and pC) (Figure 2). In contrast, cancers 
subcultured in different nutrient formulations (pB and 
pD) displayed greater degrees of variance relative to pA 
and pC. Subclones subjected to the more extreme nutrient 
change (pD, wherein FBS was increased two-fold) 
displayed the greatest variation in global mRNA levels 
relative to the other three cancer subclones (pA, pB, pC) 
(Figure 4A2). This suggests that PSN-1 subclones not only 
altered mRNA expression levels in response to intrinsic 
sources of stress such as rapid cell division (as in the 
cases of pA and pC), but may have also further modified 
transcription in response to specific nutrient stresses, as 
exemplified by the pD cells. 

Isogenic PDAC subclones displayed global shifts 
in protein expression 

To determine whether these global shifts in 
transcription affected the proteome, we performed a 
comparative quantitative proteomics analysis of each 
cell group. There were 1,378 unique proteins identified 
across all groups (Supplementary Database 4) that met 
our statistical criteria for quantitative analysis and protein 
expression profiling. We used hierarchal heat map clustering 
and a PCA to compare the protein expression profiles of 
each cell type (Figure 4B1–2). Similar to our RNA-Seq data 
(Figure 4A1–A2), the heat map and PCA of our proteomics 
data revealed a very clear separation between the global 
protein expression profiles of the four cancer groups relative 
to the healthy control (Figure 4B1-2). Within the fairly tight 
cluster of points representing cancerous protein signatures 
on the PCA plot, the pC cells were measurably distant from 
the other three subclones (Figure 4B2). This suggests that 
protein metabolism was most altered in pC cells as a result 
of internal (non-environmental) pressures over the course of 
the subculturing process.  

We performed a protein ontology analysis using 
David Bioinformatics Functional Annotation Tools [17] 
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to determine whether certain types of functional proteins 
were differentially expressed between cell types. Among 
numerous significantly differentially expressed proteins in 
the hTert cells relative to the cancerous groups (corrected 
P value <0.05), ~39% were upregulated (fold change 
>1) and 61% were downregulated (fold change <1) 
(Supplementary Database 5). We were not surprised to 
find that the top three significantly enriched ontologies 
(Benjamini score for enrichment <0.05) among proteins 
that were significantly upregulated in hT relative to the 
cancer groups were involved in actin filament binding, 
focal adhesion, and cytoskeleton. A decrease in actin 
proteins and other cytoskeletal components may have 
accompanied the structural framework of the smaller, 
more punctate cancer cells relative to the longer, more 
elongated hT cells (Supplementary Figure 3). Among 
the list of significantly downregulated proteins in hTert 
relative to the cancer groups, the top three significantly 
enriched ontologies (Benjamini score for enrichment 
<0.05) were mRNA processing, mRNA splicing, and the 
spliceosome as a whole. This suggests that the cancer 
cells transcribe and process mRNA differently than hTert, 
which may have contributed to the severe global shift in 
the mRNA expression profiles of the cancer subgroups 
relative to hTert (Figure 4A2).

There was also some evidence for differential 
expression of specific protein ontologies between individual 

cancer subclones (Supplementary Databases 6–9). Neither 
pA nor pD cells displayed significant changes in recognized 
ontologies relative to the other subclones. The pB cells were 
upregulated in nucleotide binding, ATP-binding, and ATP-
dependent RNA helicase activity. This suggests a difference 
in the way pB cells bind and use ATP, especially with 
regards to RNA processing, which may have contributed to 
variations in the global mRNA profile of pB relative to other 
subclones (Figure 4A1-2). The pC cells were upregulated 
in amino acid transport and metabolism proteins, the 
extracellular exosome, and metal-binding proteins. Altered 
expression of amino acid metabolism networks may 
have affected protein metabolism and contributed to the 
wide separation between the pC proteome relative to the 
other cancer subclones depicted on the PCA plot (Figure 
4B2). Among the downregulated proteins in pC, the most 
enriched functional groups were translation and structural 
components of the ribosome. These results coupled with the 
evidence that proteins involved in amino acid metabolism 
were upregulated suggest that, compared to the other cancer 
groups, pC significantly altered protein synthesis and 
metabolism systems relative to the global proteome. 

Overall, our protein ontology analysis showed that 
each PSN-1 subclone modified protein expression levels in 
unique ways to support cellular metabolism and morphology. 
However, we did not find any clear evidence of significant 
cell-fate signaling mechanisms that were conserved across 

Figure 3: Genome-wide nscSNP Analysis PSN-1 subclones and healthy control cells. (A) Hierarchal clustering and heat 
map of non-synonymous coding SNPs detected via RNA-Seq of healthy control cells (hT) and PSN-1 subclones (pA, pB, pC, pD)  
(n = 640,451 nscSNPs). Measurements were collected in biological triplicate or quadruplicate, (all 16 shown for comparison); the group 
name and replicate number are shown for each sample. Rows were centered; no scaling was applied to rows; both rows and columns were 
clustered using Hierarchal Euclidean distance metric with complete linkage. Each row represents a different gene (n = 13,657 genes). The 
scale from low (yellow) to high (red) represents the relative level of nscSNPs normalized to the gene length (kb) that were detected in 
the respective sample. (B) PCA of nscSNPs measured via RNA-Seq of healthy control cells (hT) and PSN-1 subclones (pA, pB, pC, pD)  
(n = 640,451 nscSNPs). Measurements were collected in biological triplicate or quadruplicate, resulting in a total of 16 samples. SVD 
was used to calculate principal components; X and Y axis show principal component 1 and principal component 2, which explain 29.3% 
and 9.7% of the total variance, respectively. The orange circles represent hT samples, green squares represent pA samples, bright green 
diamonds represent pB samples, blue triangles represent pC samples, and purple upside-down triangles represent pD samples. The pink 
open circle is shown to differentiate samples from the healthy control group (hT) from those of the cancer subculture groups (pA, pB, pC, 
pD) which are clustered within the purple circle. One biological replicate from the pC group and one from pD group are not visible due to 
overlap with points from biological replicates of the same group.
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the cancer subclones relative to the hTert. Because lipid 
metabolism and signaling play important roles in cancer cell 
fate (Supplementary Figure 1) we next explored methods to 
identify and monitor intracellular lipid concentrations.  

Isogenic PDAC subclones displayed global 
shifts in lipid concentrations including bioactive 
sphingolipids Sphingosine-1-phopshate and C16 
Ceramide

We measured lipidomic profiles of each cell 
group in multiple experimental stages (Figure 4C, 4D, 
Supplementary Figure 5). To avoid background 
contamination from plastics, all lipid samples were 
prepared using glass pipettes and vials (See Materials and 
Methods). In our initial shotgun lipidomics assay using 
direct injection electrospray ionization mass spectrometry, 
a total of 980 unique lipids were identified among all 
five groups (Supplementary Database 10) that met our 
statistical criteria (See Materials and Methods). All eight 
lipid categories were represented in this list, including 
saccharolipids (0.4%), sterols (5.1%), polyketides 
(5.4%), prenols (7.2%), sphingolipids (10.0%), fatty acids 
(19.2%), glycerolipids (21.8%), and glycerophospholipids 
(30.9%). Relative concentrations of the detected lipids 
were used to develop preliminary lipidomic profiles of 
each cell type (Supplementary Figure 5).

The random stress clones (pA and pC) provide 
a baseline for changes due to rapid proliferation and 
extended culture.  These clones were maintained on an 
unchanging nutrient formulation except that multiple 
batches of fetal bovine serum (FBS) were utilized 
during the month of culture.  FBS is a natural product 
whose composition can change from batch to batch. 
Lipid extractions from RPMI 1640 cell culture medium 
containing three different batches of FBS (RPMI 1640 
+ 10% FBS) showed that concentrations of individual 
serum components can vary approximately 70% between 
batches (Median CV of lipid concentrations across three 
batches = 0.73, Supplementary Database 15). Based on 
paired t-tests comparing individual lipids across the 
different batches of FBS, there was no significant change 
overall across 800 lipid species quantified (P > 0.05, 
Supplementary Database 15). Changes in serum metabolite 
concentrations may have influenced random shifts in 
metabolic signatures between cell types. We attempted to 
control for these random changes by preparing cell culture 
medium for each group using the same batch of FBS 
throughout the study so that each subclone was affected 
by the same fluctuating serum-based variations in growth 
medium while pB and pD cells were also exposed to the 
designed nutrient changes (Figure 2). 

Hierarchal heat map clustering and a PCA (Figure 4) 
illustrated a clear lipidome fingerprinting separation 
between cancer and healthy cells. This suggests that 
lipid concentrations and lipid metabolic networks were 

severely altered in relatively similar manners across the 
PDAC subclones compared to the healthy control. At 
the same time, both the heat map and PCA (Figure 4, 
Supplementary Figure 5) suggested apparent differences 
in global lipid levels between the four cancer groups, 
indicating that each subclone altered lipid expression and/
or metabolism at slightly different degrees relative to one 
another during the subculturing experiment. 

Most interestingly, our shotgun lipidomics 
analysis revealed connected differences between two 
interconvertible sphingolipid metabolites (Figure 1), C16 
Cer (Supplementary Figure 5B) and S1P (Supplementary 
Figure 5C), in each subclone relative to hTert. C16 Cer 
levels were depleted in all four cancer groups relative to 
hTert and this decrease was significant in pB, pC, and 
pD cells (P < 0.05). On the other hand, S1P levels were 
elevated in all the cancer groups relative to hT and this 
increase was statistically significant in pA cells (p < 0.05). 
These preliminary results suggested that S1P production 
from C16 Cer (Figure 1) was suppressed in hTert cells 
whereas C16 Cer metabolism to S1P was upregulated to 
some degree in each cancer subclone. Despite numerous 
concentration differences throughout the lipidome between 
the different PSN-1 clones (Supplementary Figure 5A1-
A2), these data suggested that these modified C16 Cer 
and S1P levels were conserved in the same direction 
across all four isolated PDAC clones relative to healthy 
control. Although C16 Cer and S1P levels were shifted by 
fairly different degrees in each subclone (Supplementary 
Figure 5B, 5C), PSN-1 cells may depend on some form of 
sphingolipid metabolite imbalance to regulate pro-survival 
pathways throughout different stages of progression or 
evolution. Our next goal was to verify these results and 
confirm whether this imbalance in the S1P/C16 Cer axis 
was indeed maintained as a pro-cancer mechanism among 
the PSN-1 subclones. 

Sphingolipid focused LC-MS confirmed that 
both global lipid expression and S1P/C16 Cer 
metabolism were modified in PDAC subclones 
relative to the healthy control 

Although we consistently detected C16 Cer among 
hundreds of other lipid species, our initial direct injection 
lipidomics method was limited in its ability to consistently 
and accurately identify S1P species. Adapting the S1P 
focused LC-MS/MS approach developed by Bode and 
Gräler (B&G) [57], we measured S1P and C16 Cer along 
with the global lipidome of the PSN-1 subclones and 
hTert cells (Supplementary Database 4). The LC-MS/MS 
improved the confidence level of each lipid annotation 
using retention time (RT) (Supplementary Figure 6) and 
fragmentation alignment relative to deuterated internal 
standards (Supplementary Figures 7, 8). 

A total of 500 lipids identified across all samples  
(n = 30) were used for quantitative lipidomic profiling after 
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Figure 4: Comparison of mRNA, protein, and lipid expression profiles of pancreatic cancer subclones (pA, pB, pC, 
pD) and healthy control (hT). (A1-A2) Results of RNA-Seq assay of global mRNA extracted from pancreatic cancer subclones and 
healthy control cell lysates. (A1) Heat map and hierarchal clustering of cancer subclone and hT transcriptomes. Rows were centered; no 
scaling was applied to rows; both rows and columns were clustered using Hierarchal Euclidean distance metric with complete linkage. 
Each row represents a unique gene (n = 19,946 genes). The color scale from -2 (blue) to 2 (orange) represents the mean normalized mRNA 
concentration of 3-4 biological replicates per group (3 per cancer group and 4 hT) calculated for each gene as Log2(normalized mRNA 
Counts of gene). (A2) PCA of cancer subclone transcriptomes and healthy control. No scaling was applied to rows; SVD with imputation 
was used to calculate principal components; X and Y axis show principal component 1 and principal component 2 that explain 82.1% and 
10.2% of the total variance, respectively. (B1-B2) Results of global quantitative proteomics analysis of proteins extracted from whole cell 
lysates of pancreatic cancer subclones and hT cultures. (B1) Heat map and hierarchal clustering of cancer subclone and healthy control 
global proteomes. Rows were centered; no scaling was applied to rows; both rows and columns were clustered using Hierarchal Euclidean 
distance metric with complete linkage. Each row represents a unique protein identification (n = 1,378 proteins). The color scale from -4 
(blue) to 4 (orange) represents the mean normalized protein concentration of 3–4 biological replicates per group (4 per cancer group and 3 
hT) calculated for each protein as Log2(AUCProtein/AUCTotal). (B2) PCA of cancer subclone and healthy control cell proteomes. No scaling 
was applied to rows; SVD with imputation was used to calculate principal components; X and Y axis show that principal component 1 and 
principal component 2 explain 66.8% and 18.3% of the total variance, respectively. (C1-C3) Results of quantitative lipidomics analysis 
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meeting our statistical criteria (see Materials and Methods) 
(Figure 4C1-3; Supplementary Database 11). A wide range 
of lipid species were represented in this list including 
glycerophospholipids (32.0%), sphingolipids (30.4%), 
sterols (13.6%), fatty acids (12.8%), polyketides (7.2%), 
glycerolipids (3.2%), and prenols (0.8%) at various levels 
of expression across the different cell types (Figure 4C1). 
The heat map (Figure 4C2) and PCA (Figure 4C3) of these 
data displayed similar trends between groups as observed 
in our initial shotgun assay (Supplementary Figure 5A1-2)  
despite the major changes in sample preparation, LC 
method, and MS instrument type that were used to produce 
the two sets of data. 

There were significant degrees of variance between 
cancers, suggesting that each PSN-1 clone rerouted 
lipid metabolic pathways in different manners during 
the subculturing experiment. For example, as observed 
in the mRNA profiling analysis (Figure 4A1-A2), cells 
subjected to the most extreme nutrient formulation change 
(pD) displayed the greatest degree of variance in lipid 
expression relative to the other three cancer groups in 
the PCA (Figure 4C3). The concentrations of 16% of the 
quantified lipids were significantly different (corrected P 
< 0.05) in pD cells relative to the other three cancer groups 
(Supplementary Database 11). Note that pD cells were 
maintained in double the concentration of FBS (20%) 
as the other groups (10%) (Figure 2) which is the main 
source of available lipids in cell culture [58]. Among lipids 
that were significantly differentially expressed in pD cells 
(P < 0.05), 70% were reduced on average relative to the 
other cancer groups (fold change <1). This may suggest 
that the pD cells became dependent on the more abundant 
supply of lipids so that when they returned to the base 
media for the lipidomics experiment, intracellular lipid 
concentrations readily dropped compared to the other 

subclones that were fully accustomed to 10% FBS in the 
culture media. Overall, our global lipidomics data suggests 
PSN-1 cells alter global lipid metabolism in response to 
changes in microenvironmental resources.

Similar to what was observed in the untargeted 
lipidomics analysis (Figure 5A), our targeted LC-MS 
analysis (Supplementary Database 14) revealed an 
increased S1P/C16 Cer ratio in each of the subclones 
(Figure 7, blue circles). This occurred because basal S1P 
concentrations were elevated in the cancer groups relative 
to the healthy control and this increase was significant in 
pA, pC, and pD cells (P < 0.05) (Supplementary Figure 
9A, blue circles). In addition, C16 Cer concentrations were 
significantly depleted in pB, pC and pD cells relative to 
the healthy control (P < 0.05) (Supplementary Figure 9B, 
blue circles). 

Baseline C16 Cer levels were slightly, but 
significantly (P < 0.05) higher in pA cells compared to 
hTert; however, pA samples exhibited the highest basal 
S1P concentrations of the entire experiment, which may 
have helped balance signaling effects of the elevated C16 
Cer levels in these cells relative to hT (Supplementary 
Figure 9A–9B, blue circles). Basal S1P expression in pB 
cells was not significantly higher than hTert; however, 
basal C16 Cer expression was lowest in pB cells compared 
to all the other groups, which may have helped balance the 
less elevated S1P levels. The pC and pD cells displayed 
the highest average basal S1P levels and significantly low 
basal C16 Cer levels, suggesting that these groups altered 
S1P/C16 Cer metabolism from both ends of the pathway 
(Figure 1) to favor S1P production and suppress C16 Cer 
levels. Overall, our LC-MS method confirmed that the 
cancer subgroups were phenotypically distinct from one 
another at the level of the global lipidome. In addition, 
all four PSN-1 strains modified intracellular S1P and/or 

measured by LC-MS of lipids extracted from pancreatic cancer subclones and hT cell lysates. (C1) Heat map and hierarchal clustering of 
cancer subclone and healthy control intracellular lipidomes. Rows were centered; no scaling was applied to rows. Both rows and columns 
were clustered using Hierarchal Euclidean distance metric with complete linkage. Each row represents a unique lipid annotation (n = 500 
species). The color scale from -3 (blue) to 3 (orange) represents the mean normalized lipid concentration of three biological replicates per 
group calculated for each lipid as Log2(AUCLipid/AUCTotal). (C2) Categorized intracellular lipidome compositions of species measured via 
quantitative intracellular LC-MS analysis. Data are expressed as the mean (Avg) normalized concentration (AUCAvgLipids/AUCTotal) of total 
lipids measured in each category ± SEM measured in three biological replicates per cell type. (C3) PCA of cancer subclone and healthy 
control intracellular lipidomes. No scaling was applied to rows; SVD with imputation was used to calculate principal components; X and 
Y axis show principal component 1 and principal component 2 that explain 41.4% and 24.7% of the total variance, respectively. (D1-D3) 
Results of quantitative extracellular lipidomics analysis measured by LC-MS of lipids extracted from the complete growth medium used 
in cell cultures during intracellular lipidomics experiment (RPMI 1640 + 10% FBS). The negative control or “Blank” (blnk) represents the 
lipidome of fresh complete cell medium that was never exposed to cell cultures. (D1) Hierarchal clustering and heat map of cancer subclone 
and healthy control extracellular lipidomes. Rows were centered; no scaling was applied to rows. Both rows and columns were clustered 
using Hierarchal Euclidean distance metric with complete linkage. Each row represents a unique lipid annotation (n = 112 lipids). The 
color scale from -2 (blue) to 2 (orange) represents the mean normalized lipid concentration of 3 biological replicates per group calculated 
for each lipid as Log2(AUC of lipid/Sum AUC of total lipids quantified in sample). Rows were centered; unit variance scaling was applied 
to rows. Both rows and columns were clustered using correlation distance and average linkage. (D2) Categorized intracellular lipidome 
compositions of species measured via quantitative extracellular LC-MS analysis. Data are expressed as the mean (Avg) normalized 
concentration (AUCAvgLipids/AUCTotal) of total lipids measured in each category ±SEM measured in three biological replicates per cell type. 
(D3) PCA of cancer subclones and healthy control extracellular lipidomes compared to blank. No scaling was applied to rows; SVD with 
imputation was used to calculate principal components. X and Y axis show principal component 1 and principal component 2 that explain 
64.4% and 16.1% of the total variance, respectively. 
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C16 Cer metabolite levels to some extent relative to the 
healthy control.

Extracellular lipid profiles of PDAC subclones 
mirrored the intracellular lipid profiles  

If intracellular S1P is elevated, extracellular S1P 
levels may also be elevated [59]. The FBS in our media 
has high concentrations of many lipid species including 
S1P [60], therefore we compared the lipids extracted from 
growth medium samples that were exposed to cell cultures 
versus the fresh media as negative controls. The negative 
controls (blanks) were prepared by performing modified 
B&D extractions on fresh complete cell medium (RPMI-
1640 with L-glutamine and high glucose, 10% FBS, 1x 
PBS) that was incubated in empty culture dishes (no cells) 
under the same conditions (37° C, 5% CO2) for the same 
amount of time as the cell-exposed samples (12 hours). 
There were 113 different lipid species (Supplementary 
Database 12) in the resulting list of annotations that met 
our statistical criteria (see Materials and Methods) and used 
for a global extracellular lipid profiling (Figure 4D1–D3).  
A variety of lipids types were represented at different 
levels across the five cell types including prenols (4%), 
glycerolipids (6%), sphingolipids (6%), polyketides (7%), 
fatty acids (10%), sterols (11%), and glycerophospholipids 
(56%) (Figure 4D1).

We used hierarchal heat map clustering and a PCA to 
make general comparisons between the extracellular lipid 
profiles of each group relative to the blank (Figure 4D2-D3).  
The heat map (Figure 4D2) and PCA (Figure 4D3) 
depicted three distinct clusters or subgroups within the 
dataset made up of the lipid profile(s) of (1) blanks, (2) 
hT, (3) pA, pB, and pC cells, and (3) pD cells. Above all, 
the heat map and PCA illustrated considerable degrees of 
variance between the global lipidome of the blank relative 
to samples exposed to cell culture (Figure 4D2-D3).  
We also observed that the inter- and extracellular lipidomes 
of all the cell groups were correlated. Similar to the 
intercellular lipid profiles (Figure 4C1, C3), pA, pB, and 
pC groups were more similar to each other while pD 
displayed the greatest degree of variance. This suggests 
that changes in nutrient lipid levels (Figure 2) can induce 
adaptive lipid metabolic reprogramming that greatly affect 
both intra- and extracellular lipidomes, as demonstrated by 
the pD cells (Figure 4D3). 

This analysis provided a means to measure 
and compare extracellular S1P levels between cell 
types. Extracellular S1P levels from hT, pA, and pB 
cell cultures were slightly higher on average, but not 
significantly different than the S1P measured in the blank 
(Supplementary Figure 9C, blue circles). On the other 
hand, pC and pD cells displayed significantly higher 
extracellular S1P concentrations relative to the blank  
(P < 0.05) (Supplementary Figure 9C, blue circles). This 
suggests that, S1P produced within pC and pD cells was 

exported at higher levels relative to the other groups.  This 
has been shown to promote pro-survival S1P signaling 
in an autocrine and/paracrine fashion [61]. These results 
provided further evidence that each PSN-1 subclone 
altered lipid utilization networks in unique ways to support 
pro-survival S1P signaling from within and/or outside of 
the cell. 

Pathway specific lipidomics and RNA-Seq 
analyses suggest a parallel shift in S1P/C16 Cer 
metabolism in PDAC subclones driven in part by 
Sphingosine Kinase 1

We identified several enzymes directly involved 
in perturbing the S1P/C16 Cer lipid ratio by RNA-Seq, 
including Acid Ceramidase (ACdase), Neutral Ceramidase 
(N-Cdase), Ceramide Synthase 5 (Cers5), S1P Phosphatases 
1 and 2 (SPPases 1 and 2), S1P Lyase 1 (S1PL1), and 
Sphingosine Kinases 1 and 2 (Figure 5B). Among these 
enzymes, there were one or more nonsynonymous coding 
SNPs detected in ACdase, N-Cdase, CerS5, SK1, SK2, 
and S1PL1 (Supplementary Database 13). The median 
nscSNP densities of these five enzymes in each cell type 
(hT:0.043%, pA: 0.059%, pB:0.048%, pC: 0.068%, 
pD:0.068%) were similar to the median nscSNP densities 
of their corresponding genomes (hT: 0.059%, pA: 0.049%, 
pB:0.044%, pC: 0.043%, pD:0.039%). All four cancer 
groups displayed much higher SNP densities in ACdase 
(0.11%-0.15%), relative to ACdase enzymes in hTert 
(0.04%) (Figure 5C). In silico evaluations (see Materials 
and Methods) suggested two of these SNPs (C→T, G→T) 
(A→G, T→C, C→T) (Supplementary Database 13). 
However, there seemed to be no major effect on ACdase 
expression in the cancer groups relative to hTert, since 
ACdase mRNA levels were not significantly different from 
hT in any of the cancer groups (Supplementary Figure 10A).

One potentially significant polymorphism foreseen 
in this analysis was an L→P polymorphism repeatedly 
detected in position 237 of SK1 isoform 2 (SK1-2) [62] 
in pA cells (Supplementary Database 13). Residue 273 
in SK1-2 is the equivalent of 187L in SK1-1, which 
is involved in an alpha helix in the C4 region of the 
C-terminal domain next to the sphingosine binding pocket 
[45]. The prediction tool suggested that this 273L→P 
polymorphism detected in the pA cells was probably 
damaging. This prediction is appropriate since switching 
from a more flexible leucine to an inflexible proline could 
break the helix, potentially affecting binding or substrate 
affinity to the proximal sphingosine binding site. While 
the SNP analysis provided some evidence that pA was 
biochemically reprogrammed in slightly different ways 
with respect to the pathway of interest, it did not provide 
any significant evidence of genetic forces driving the 
major shift S1P/C16 observed across the four cancer 
groups relative to hTert (Figure 5A). 
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We looked further into our RNA-Seq data to 
determine whether SK1 or any of the other sphingolipid 
metabolic enzymes were transcribed differently in 
the cancer groups relative to the healthy control. The 
normalized mRNA levels of the eight sphingosine 
metabolic enzymes were compared on a heat map 
(Figure 5D) and PCA plot (Figure 5E). According to 
the heat map, SPPase2 and SK1 mRNA levels appeared 
to be most altered relative to the other six enzymes 
(Figure 5D). Interestingly, these two enzymes catalyze 
opposite reactions in the C16 Cer/S1P metabolic pathway; 
SPPase2 dephosphorylates S1P to form sphingosine 
whereas SK1 phosphorylates sphingosine to form S1P 
(Figure 5B). Hence, we predicted that Step 2 (Figure 5B), 
wherein sphingosine was either phosphorylated or 
dephosphorylated, was a critical point of control in the 
S1P/C16 Cer metabolic pathway with respect to driving 
differences between the healthy and cancer groups. The 
Dunnett’s test was used to determine significant differences 
in mRNA levels of each enzyme between the cancer 
groups relative to the healthy control (Figure 5F–5G,  
Supplementary Figure 10). There were no clear trends 
in SPPase2 mRNA levels among the cancer groups or 
significant differences relative to the healthy control 
(Figure 5F). On the other hand, SK1 mRNA levels were 
depleted in all four cancer groups relative to hTert and this 
difference was significant (P < 0.05) in all but the pB cells 
(Figure 5G). This suggests that SK1 may be regulated 
differently in PSN-1 clones relative to healthy cells and 
perhaps may be linked with the shift from healthy to 
cancerous sphingolipid metabolism.

 The PCA of [mRNA] depicted clear separations 
between hTert and PSN1, as well as subclones whose 
nutrients were changed (pB, pD) versus unchanged (pA, pC)  
(Figure 5E). We hypothesized that SK1 plays an important 
role in differentiating the “healthy” phenotypes exhibited 
by hTert from the cancer groups by playing a key role 
relative to other sphingolipid modifying enzymes in 
regulating S1P/C16 Cer metabolism in response to 
different metabolic stresses. We also anticipated that each 
cancer group may achieve a modified S1P/C16 Cer axis to 
promote clonal survival in different ways, especially since 
there were variations in sphingolipid enzyme expression 
between cancer groups subjected to different metabolic 
pressures (Figure 5, Supplementary Figure 10). 

SK1 activity may be modulated by a 
combination of increased total concentration 
and ERK2-mediated phospho-activation in 
pancreatic cancer subclones 

Because SK1 was not detected in our global 
proteomics analysis, we used Western blotting to measure 
SK1 protein expression levels in each cell group (Figure 6A).  
SK1 concentrations varied greatly among the cancer 
groups, supporting our hypothesis that the different PSN-

1 subclones may have used SK1 to dysregulate S1P/
C16 Cer metabolism. Unlike SK1 mRNA, the average 
SK1 protein concentration was higher in all the cancer 
groups relative to hTert and this difference was significant 
in  pA (P < 0.0001), pB (P < 0.0001), and pC (P < 0.05) 
(Figure 6A). These results suggest SK1 protein expression 
was increased to some degree to promote S1P synthesis in 
each PDAC subclone compared to the healthy control. 

The results of our SK1 Western blots led us to 
question why SK1 protein expression (Figure 6A) seemed 
to be in the opposite direction of SK1 mRNA expression 
(Figure 5G) in the cancer groups relative to hTert. 
Indeed, we saw that SK1 mRNA levels were depleted 
while SK1 protein levels were increased. This may 
indicate that SK1 translation was post-transcriptionally 
elevated. In contrast to SK1, both mRNA and protein 
levels of Beta-actin (Supplementary Figure 11A1-A2)  
and Gamma-actin (Supplementary Figure 11B1-B2) 
in the four cancer groups were depleted relative to 
hTert. This suggests that, unlike SK1, cytoplasmic actin 
proteins were transcriptionally regulated in the PDAC 
cells. We also checked another cancer-promoting lipid 
modifying enzyme, fatty acid synthase (FASN), for 
which we had both RNA-Seq and protein quantitation 
data from our proteomics analysis. Both FASN mRNA 
and protein levels have been shown to be overexpressed 
in most human cancers including PDAC, making FASN 
an important disease biomarker [63]. Consistent with 
other research [20, 24, 63] both the mRNA and protein 
expression levels of FASN were significantly increased 
in PDAC cells relative to the healthy control (P < 0.01) 
(Supplementary Figure 12A, 12B). Based on these results, 
we proposed that SK1 protein expression, as opposed to 
other differentially expressed species in the cancer groups 
like actin and FASN, was post-transcriptionally elevated 
in the PDAC subclones. 

 To compare activation levels of SK1 enzyme 
in the five cell groups, we used a phospho-SK1 
(Ser225) polyclonal antibody to detect endogenous 
SK1 phosphorylation (Figure 6B). All the cancer 
groups displayed a significant increase in the amount of 
phosphorylated SK1 (p-SK1) relative to hTert (P < 0.001). 
The pA and pB cells exhibited the highest SK1 levels as 
well as increased SK1 phospho-activation relative to hTert; 
the pC cells displayed a smaller but significant increase in 
SK1 expression and phosphorylation compared to hTert; in 
contrast, total SK1 protein expression was not significantly 
increased but the median p-SK1 concentration was highest 
in the pD cells relative to hTert (Figure 6A, 6B). This 
suggests the perturbed S1P/C16 Cer ratio observed across 
PDAC subclones (Figure 5A) was achieved in unique ways 
by modulating SK1 concentration and activation levels in 
each subclone. Overall, the results of our Western blots 
indicate that overactive SK1 may be required to maintain 
sphingolipid metabolic reprogramming and signaling in 
PDAC cells under different forms of metabolic stress.
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The high p-SK1 levels we observed in the cancer 
groups may be due to increased expression of the SK1 
activating kinase, MAPK1/ERK2 (Figure 6C, 6D). ERK1/2 
are key components of the pro-proliferative Ras/MAPK 
signaling pathway that is hyperactivated in many human 
cancers [64]. Both ERK1 and ERK2 activate SK1 via 
phosphorylation at Ser225 [59]. Although very similar in 
structure, ERK2 has much higher activating efficiency for 
human SK1 than ERK1 [59]. ERK2 mRNA expression was 
significantly reduced in all four cancer groups at different 
degrees relative to hTert (P < 0.001) (Figure 6C). However, 
ERK2 protein expression was elevated in all the cancer 

groups relative to hTert and this increase was significant in pA 
(P < 0.001), pB (P < 0.05), and pC (P < 0.05) cells (Figure 
6D). ERK2 was detected in all five cell groups in our RNA-
Seq and proteomics analyses. These assays suggest that like 
SK1, ERK2 protein expression was post-transcriptionally 
increased in the cancer groups relative to hTert.

Increased p-SK1 levels (Figure 6B) may be attributed 
in part to this increase in the expression of its high-affinity 
activating kinase (ERK2) in PSN-1 cells relative to hTert 
(Figure 6D). Because protein synthesis is energetically 
costly, cancer cells under microenvironmental/ metabolic 
stress can limit translation to a specific subset of mRNA’s 

Figure 5: Data derived from lipidomics and RNA-Seq assays suggest a conserved shift in signaling sphingolipid 
metabolism in pancreatic cancer subclones relative to the healthy control driven in part by SK1. (A) Box plot of the 
normalized concentration of S1P over C16 Cer measured by shotgun lipidomics assay in each cancer subclone and hT whole cell lysates. 
Both sphingolipids were observed within the mass accuracy cutoff in 2 biological duplicates per group and the data are represented as the 
log transformed ratio of the normalized (norm.) concentrations of each lipid: Ln[(AUCS1P/AUCTotal)/(AUCC16Cer/AUCTotal)]. (B) Enzymes 
directly involved in C16 Cer/S1P metabolism identified by RNA-Seq of cancer subclones (pA, pB, pC, pD) and hT cell lysates. Enzyme 
names that are bolded displayed nonsynonymous coding SNP(s) in one or more of the cell types. (C) Densities of nscSNPs detected in one 
or more samples from each group. Data are represented as the number of nscSNPs normalized to the corresponding mRNA transcript length 
in kb. Error bars represent the SEM of 3-4 biological replicates per group. (D) Hierarchal clustering and heat map of mRNA levels of the 
enzymes that participate in the S1P/C16 Cer metabolism pathway shown in panel (B) measured by RNA-Seq of cancer clones (pA-D) and 
hT cell lysates. Rows were centered; no scaling was applied to rows; both rows and columns were clustered using Hierarchal Euclidean 
distance metric with complete linkage. The color scale from -1 (blue) to 1 (orange) represents the mean normalized mRNA concentration of 
3–4 biological replicates per group on a Log2 scale. (E) PCA of mRNA levels of the enzymes involved in S1P/C16 Cer metabolism shown 
in panel (B) that were detected by RNA-Seq of cancer clones and hT cell lysates. No scaling was applied to data; SVD with imputation 
was used to calculate principal components; X and Y axis show principal component 1 and principal component 2 that explain 44% and 
37.9% of the total variance, respectively. The question mark represents the major question that arose from this analysis: which enzyme(s) 
were important drivers of PC2, separating the healthy control from the cancer groups? (F–G) Box plots of normalized (F) SPPase2 and 
(G) SK1 mRNA levels measured by RNA-Seq of cancer subclones and hT cells. Data are represented as the Log2 transformed normalized 
mRNA counts measured in biological triplicate or quadruplet. (A, F–G) The *indicates P < 0.05 with the Dunnett’s Test used to compare 
measurements from all cancer groups to the healthy control. Tukey-Kramer Tests were used to determine significant differences between 
cancer subcultures; pairs that were significantly different are highlighted in the comma-separated list on the right-hand corners of each plot, 
where ‡indicates P < 0.05.
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that code proteins best suited to support survival and 
disease progression [64]. Based on these results, we 
believe that SK1 and ERK2 were among this subset of 
preferred mRNA molecules to promote S1P synthesis and 
pro-survival signaling in the PDAC clones.

SK inhibition normalized S1P/C16 Cer levels in 
distinct PDAC subclones 

We developed a sphingolipid targeted LC-MS based 
assay to quantify the effects of SK1 inhibition on S1P/
C16 Cer metabolism (Supplementary Database 14). Cells 
were treated with Sphingosine Kinase Inhibitor 2 (SKI-
II, 4-[[4-(4-Chlorophenyl)-2-thiazolyl]amino]phenol) a 
non-lipid compound displaying selective, competitive 

inhibition of human SK1 and SK2 [65].  SK-II has also 
been shown to exhibit noncompetitive inhibition of 
ceramide dihydroceramide desaturase 1 (Des1), the final 
step in de novo synthesis of ceramide [66]. Average S1P 
concentrations were higher in the vehicle controls of all 
the cancer groups relative to hTert and this difference 
was significant in pA (P < 0.05), pC (P < 0.05), and 
pD (P < 0.05) cells (Supplementary Figure 9A). SKI-II 
treatment reduced average intracellular S1P levels in all 
four cancer groups relative to their corresponding vehicle 
controls and normalized intracellular S1P levels in all 
the cancer groups relative to the healthy control. On the 
other hand, SKI-II had virtually no effect on intracellular 
S1P concentrations in hTert cells. This suggests that SK1-
mediated S1P production was initially higher in the cancer 

Figure 6: SK1 expression and/or ERK2-mediated phosphorylation was increased in pancreatic cancer subclones 
relative to healthy control cells. (A, B) Representative Western blots and relative concentrations of (A) total SK1 and (B) phosphor-
activated SK1 enzymes (p-SK1) in cancer subclones and hT cells lysates. Western blots were performed in biological quadruplet and actin 
was used for loading controls. Quantitation of each replicate is represented as (A) Ln(SK1/Actin) and (B) Ln(p-SK1/Actin) in the box plots 
below the respective representative Western blots. (A–B) The ***indicates P < 0.0001, **indicates P < 0.001, and *indicates P < 0.05 with 
the Dunnett’s Test used to compare all cancer groups to the healthy control (hT). Tukey-Kramer Tests were used to determine significant 
differences between cancer groups; pairs that were significantly different are highlighted in the comma-separated lists on the right-hand 
corner of (A), where ‡ ‡indicates P < 0.005 and ‡indicates P < 0.05. (C) Box plot of normalized mRNA levels of MAPK1/ERK2 in cancer 
subcultures and hT cells measured by RNA-Seq. Measurements were collected in biological triplicate and represented on a Log2 scale. 
(D) Box plot of normalized MAPK1 protein concentrations measured by quantitative proteomics of cancer subcultures and hT whole 
cell lysates. Data are represented as the mean normalized MAPK1/ERK2 protein concentration (AUCMAPK1/AUCTotal) of 3–4 biological 
replicates per group. (C–D) The Dunnett’s Test was used to compare the cancer groups to the healthy control (hT), wherein **indicates  
P ≤ 0.0003 and *indicates P < 0.05. Tukey-Kramer Tests were used to determine which cancer groups differed from each other; pairs 
that were significantly different are highlighted in the comma-separated lists on the top right-hand corner of each plot, where ‡ ‡indicates  
P < 0.01 and ‡indicates P < 0.05.
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groups, but SKI-II effectively suppressed hyperactive 
levels of SK1 mediated S1P synthesis. 

SKI-II treatment also reduced average extracellular 
S1P levels in all of the cancer subclones, though this 
decrease was only significant in pA cells (P < 0.05) 
(Supplementary Figure 9C). Moreover, SKI-II treatment 
normalized extracellular S1P levels in the two cancer 
groups whose baseline extracellular S1P concentrations 
were significantly higher than the blank (P < 0.05), i.e. 
pC and pD cells. Alternatively, SKI-II treatment led to an 
increase in intracellular C16 Cer levels in all of the cancer 
subclones relative to the corresponding vehicle controls, 
though this difference was only statistically significant 
in pA cells (P < 0.05) (Supplementary Figure 7B). This 
suggests that the decrease in SK1 driven S1P production 
from ceramide precursors allowed C16 Cer concentrations 
to increase in cells treated with SKI-II. 

The ratio of intracellular S1P/C16 Cer is considered 
a metric of the sphingolipid rheostat and serves as a critical 
biosensor for predicting cell fate and drug sensitivity 
[30, 41, 67–69]. On average, the ratio of S1P to C16 Cer was 

higher in all the cancer vehicle control groups relative to 
hTert and this increase was significant in pB (P < 0.00001), 
pC (P < 0.005), and pD (P < 0.00001) cells (Figure 7). 
This indicates that the sphingolipid rheostat was perturbed 
in all PSN-1 subclones, favoring S1P accumulation 
relative to C16 Cer. Note that this perturbation occurred at 
significantly different degrees between different subclones. 
Baseline S1P/C16 Cer in the pB and pD vehicle control 
groups were significantly higher than pA and pC vehicle 
controls (P < 0.01). This further supports our hypothesis 
that each subclone adapted different ways to maintain an 
imbalance in sphingolipid metabolism promoting pro-
survival S1P levels relative to pro-apoptotic C16 Cer. 

Despite the wide variations in basal C16 Cer and 
S1P levels, SKI-II significantly reduced the S1P/C16 Cer 
ratio in all the cancer subclones relative to the respective 
vehicle controls (P < 0.05) (Figure 7). Importantly, SKI-II 
treatment effectively normalized the average S1P/C16 Cer 
ratio in all groups whose basal S1P/C16 Cer ratios were 
significantly higher than the healthy control, including pB, 
pC, pD. Overall, these results together with the Western 

Figure 7: Targeted measurement of S1P/C16 Cer ratio suggests SK1 is a key driver of the conserved S1P:C16 Cer 
imbalance in pancreatic cancer subcultures, which may be corrected by SKI-II treatment. Box plots of S1P relative to C16 
Cer concentrations measured by LC-MS of lipids extracted from pancreatic cancer subclones and hT cell lysates treated with the vehicle 
(1x PBS) (blue circles) versus SKI-II (13 μM; red circles) for 12 hours. Both lipids were normalized to corresponding deuterated internal 
standards (S1P to 100 pmol of spiked S1P(d18:1-d7) and C16 Cer to 50 pmol of spiked Cer(d18:1-d7/16:0)). Data are represented as the 
ratio of the normalized S1P concentration (where pmolS1P/AUCS1P = pmolS1P-d7/AUCS1P-d7) relative to the normalized C16 Cer concentration 
(where pmolC16Cer/AUCC16Cer = pmolC16Cer-d7/AUCC16Cer-d7). The dotted gray line is the mean S1P/C16 Cer ratio of the hT Vehicle Control 
group, shown as a reference to represent a normal sphingolipid rheostat or the “healthy” balance between S1P and C16 Cer in non-
cancerous human ductal pancreatic cells. The *indicates P = 0.002 and **indicates P < 0.0001 with the Dunnett’s Test used to compare the 
Vehicle Control groups of the cancer subclones to the healthy (hT) Vehicle Control group. The †indicates P < 0.05 with Student’s t-tests 
comparing each Vehicle Control group to the corresponding SKI-II-treated group of the same cell type. The Tukey-Kramer test was 
used to compare all of the cancer groups to one another other; pairs of groups whose baseline (Vehicle Control) ratios of S1P/C16 Cer 
were significantly different from each other prior to SKI-II treatment are comma-separated in the highlighted list below the plot, where  
‡ ‡ ‡indicates P ≤ 0.0002, ‡ ‡indicates P < 0.01, and ‡indicates P < 0.05.
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Blots (Figure 6) suggest that SK1 plays a significant 
role in regulating the perturbed sphingolipid rheostat in 
differentially evolved PDAC cells but may be corrected by 
SKI-II treatment. Next, we sought to determine whether 
elevated S1P/C16 Cer in PSN-1 clones contributed to their 
rapid growth rates and pro-survival signaling.

SKI-II treatment reduced PDAC cell 
proliferation in a dose-dependent manner

We performed a live-cell confluence assay to 
generate growth curves of each cell type and measure 
the effects of SK1 activity on PDAC cell proliferation 
(Figure 8A, 8C; Supplementary Figure 13A-E). Cells 
were treated with a low (4.3 µM), medium (13 µM) or 
high (39 µM) dose of SKI-II and their growth rates were 
compared to corresponding vehicle controls. The vehicle 
control groups of all four PSN-1 subclones displayed rapid 
average basal proliferation rates, approximately 1.5 times 
faster than the healthy control (Figure 8C). The pB cells 
exhibited the highest average proliferation rate (1.12% 
confluence per hour), followed by pA (1.08% confluence 
per hour), pC (1.05% confluence per hour), pD (1.04% 
confluence per hour), and hTert (0.72% confluence 

per hour). SKI-II treatment significantly reduced the 
proliferation rates of all four cancer groups (P < 0.05) in a 
dose-dependent manner (Figure 8C). SKI-II also reduced 
average hTert growth in a dose-dependent manner, though 
the change in proliferation rate was only statistically 
significant at the highest dose of SKI-II (39 µM) in hT 
cells (Figure 8B, 8C, Supplementary Figure 13A). 

Interestingly, each PSN-1 subclone displayed 
different levels of sensitivity to SKI-II treatment 
(Figure 8C). The pC cells seemed to be less sensitive 
to SKI-II, displaying the lowest average change in 
growth rate in response to the medium (13 µM) and 
high (39 µM) SKI-II doses compared to the other three 
subclones (Figure 8C). On the other hand, pA cells were 
significantly more sensitive to SKI-II treatment relative 
to the other subclones. Although the average proliferation 
rates of all four cancer groups dropped in response to 
the lowest dose of SKI-II (4.3 µM), this reduction was 
only statistically significant in the pA cells (P < 0.05) 
(Figure 8A, 8C). In addition, pA cells exhibited the 
greatest drop in proliferation in response to the high dose 
of SKI-II (39 µM) (P < 0.00001) relative to the other cell 
types (Figure 8C). This increased sensitivity may be due 
to the lower basal S1P/C16 Cer ratio displayed in the pA 

Figure 8: SK1 inhibition significantly slowed pancreatic cancer cell proliferation relative to the healthy control and 
each cancer subclones displayed a distinct level of dose-dependent SKI-II sensitivity. Representative cell growth curves 
of (A) pA and (B) hT cells treated with Vehicle (1× PBS, blue dots) and the following concentrations of SKI-II: 4.3 μM (red circles),  
13 μM (red triangles), and 39 μM (red squares). (A–B) Data are represented as the mean phase object confluence ± SEM of four biological 
replicates per group over time in hours. The gray lines are the linear trend lines of a portion of the linear-like growth period shown to 
illustrate how the proliferation rates for each cell group/condition were calculated. (C) Comparison of proliferation rates and sensitivity to 
increasing concentrations of SKI-II in pA (black dots), pB (gray triangles), pC (purple diamonds), pD (green squares), and hT (pink circles) 
cells. Growth rates were determined by calculating the slope of the linear-like growth phase of each group, where x = time (hours) and  
y = percent phase object confluence (% P.O.C.). Data are represented as the mean proliferation rate ± SEM of four biological replicates per 
group plotted against the SKI-II concentration in µM. (A–C) Student’s t-tests were used to compare the proliferation rates of individual 
cell types treated with each concentration of SKI-II to the respective Vehicle Control group of the same cell type, where ***indicates  
P < 0.00001, **indicates P < 0.005, and *indicates P < 0.05. 
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cells relative to the other cancer groups (Figure 7); a less 
extreme level of basal pro-proliferative S1P relative to 
C16 Cer may have made it so a lower concentration of 
SK1 inhibitor was sufficient to restore the healthy “hTert-
like” balance in the sphingolipid rheostat in pA cells 
compared to the other cancer groups whose S1P/C16 Cer 
ratios were significantly higher (P < 0.05) (Figure 7). This 
suggests the cancer subclones adapted different levels of 
dependence on SK1 mediated S1P synthesis to support 
their rapid proliferation rates.   

Treating with SKI-II was sufficient to either 
normalize or significantly lower the growth rates of all 
four PSN-1 clones relative to hT (Figure 8C). Indeed, just 
4.3 µM SKI-II treatment was sufficient to normalize pA 
cell proliferation (0.52 ± 0.1% confluence per hour) to the 
rate of the hT vehicle control (0.72 ± 0.01% confluence per 
hour) (Figure 8C). The medium SKI-II dose (13 µM) was 
sufficient to significantly lower pB cell proliferation (0.38 ± 
0.2% confluence per hour) and pD cell proliferation (0.11 ± 
0.06% confluence per hour) relative to rate of the hT vehicle 
control (0.72 ± 0.01% confluence per hour) (Figure 8C).  
Even for the pC cells which seemed to be the most resistant 
to SKI-II treatment, the medium SKI-II dose (13 µM) was 
sufficient to nearly normalize pC cell growth (0.78 ± 0.05% 
confluence per hour) relative to the growth rate of hT cells 
treated with the low (4.3 µM) SKI-II dose (0.71 ± 0.02% 
confluence per hour) (Figure 8C). The average proliferation 
rates of all four cancer groups treated with the high SKI-II 
dose (39 µM) (pA: -0.03, pB: 0.30, pC: 0.34, pD: 0.13% 
confluence per hour) were also considerably lower than 
hT cells treated with the same dose (0.48% confluence per 
hour) (Figure 8C). These results suggest each differentially 
evolved PDAC subclone was dependent to some extent 
on SK1 enzyme activity to support their rapid basal 
proliferation rates. 

PDAC subclones displayed different levels 
of drug resistance, but SKI-II sensitized all 
subclones to mitochondria mediated apoptotic 
signals 

We performed a flow cytometric cell death assay 
with propidium iodide staining on PDAC subclones and 
hT cells treated with SKI-II, BH3I-1, or BH3I-1 combined 
with SKI-II (Figures 9; Supplementary Figure 14). BH3I-1 
is a BH3 domain-only peptide activator of mitochondria-
mediated apoptosis [70, 71]. Based on recent literature 
[72], we hypothesized that the SKI-II driven increase in 
C16 Cer levels (Supplementary Figure 9B) and decrease 
in S1P/C16 Cer (Figure 7) would enhance cancer subclone 
sensitivity to drugs, like BH3I-1, that directly induce 
mitochondrial outer membrane permeabilization via Bax/
Bak. As a positive control, we compared BH3I-1 treated 
groups against cells treated with the nucleoside mimetic 
Gemcitabine (Gem). Unlike BH3I-1, Gem promotes 
apoptosis by inducing DNA damage [73]. Gem was 

selected as the control against BH3I-1 not only because 
it acts by a different mechanism to induce apoptosis in 
fast growing cells, but also because it is the most common 
chemotherapeutic used to treat PDAC with extremely low 
success rates [73]. 

We determined the half-maximal effective 
concentrations (EC50) of compounds in each cell 
group treated Gem, or BH3I-1 combined with SKI-II 
(Figure 9A, 9B). The EC50 of each subclone was distinct 
from the others for both combinatorial treatments. The 
pA and pB cells required a higher dose of Gem (9 μM) 
combined with a lower dose of SKI-II (1–3 μM) compared 
to pC (5 μM Gem + 6 μM SKI-II) and pD cells (5 μM Gem 
+ 4 μM SKI-II) (Figure 9A). This suggests the pA and 
pB clones were more resistant to DNA damage-induced 
apoptosis compared to pD and pC clones and more 
sensitive to SK1 inhibition in the context of this treatment. 
Gem treatment was ineffective in hTert cells. This is likely 
due to the fact that hTert is a slower growing cell line 
(Figure 8C) and Gem targets fast-growing cells [74]. 

On the other hand, the BH3I-1 served as an effective 
apoptosis inducer in hTert cells. The hT cells required the 
highest dose of SKI-II (13 μM) combined with the lowest 
dose of BH3I-1 (1 μM) to achieve the EC50 (Figure 9B). 
Overall, much lower concentrations of SKI-II (1–8 μM) 
coupled with higher doses of BH3I-1 (3–8 μM) were 
required to achieve the EC50 in cancer subclones relative 
to hTert cells (Figure 9B). One interpretation of this could 
be that PDAC clones were resistant to mitochondria-
mediated apoptosis, but more sensitive to SK1 inhibition 
compared to healthy cells. The pA and pB cells seemed to 
be the most resistant to BH3I-1, with an EC50 ranging from 
7–8 μM and required the least amount of SKI-II (1–2 μM) 
compared to pC (4 μM BH3I-1 + 8 μM SKI-II) and pD  
(3 μM BH3I-1 + 6 μM SKI-II) (Figure 9B). This may 
mean pA cells were more resistant to mitochondria-
mediated apoptosis compared to pC and pD, but 
more sensitive to SK1 inhibition in the context of this 
combination treatment. The pD cells required the least 
amount of BH3I-1 to achieve the EC50, suggesting that pD 
cells were more sensitive to mitochondrial apoptosis in 
the presence of SKI-II relative to the other cancer clones. 

Using the doses determined for each cell line 
in our EC50 assay, we performed another set of cell-
death experiments to specifically test whether SKI-II 
mediated SK1 inhibition enhanced sensitivity to BH3I-
1 induced apoptosis. SKI-II induced a non-significant, 
but reproducible increase up to 10% in cell death across 
all of the cell groups in response to Gem treatment 
(Supplementary Figure 14A–14E). This may have been 
due to a counterproductive relationship between the 
mechanisms of action for Gem and SKI-II, since Gem 
targets fast growing cells and SK1 inhibition slows the 
proliferation rates of PSN-1 subclones (Figure 8C). 

The percent of cell death in response to BH3I-1 
alone was much lower compared to the response to Gem 
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treatment alone in all cancer groups compared to hTert 
(Supplementary Figure 14A–14E). However, sensitivity to 
BH3I-1 was significantly increased in each cancer subclone 
treated with SKI-II relative to those treated with BH3I-1 
alone (P ≤ 0.001) (Supplementary Figure 14B–14E, Figure 
9C). The BH3 domain is a direct inducer of apoptosis via 
activation of pro-death Bcl-2 family members and does 
not rely on DNA damage checkpoint activation to kill the 
cell [71]. Therefore, the significant increases in cell death 
of PDAC cells treated with BH3I1 combined with SKI-II 
was likely driven by an increase in intracellular signaling 
of pro-apoptotic C16 Cer relative to S1P (Figure 7). 
Meanwhile, there was no significant change in cell death of 
healthy control cells treated with BH3I-1 versus hTert cells 
treated with the [BH3I-1 + SKI-II] combination treatment 
(Figure 9C; Supplementary Figure 14A). Indeed, the 
percent increase in cell death measured in all four cancer 
groups treated with the [BH3I-1 + SKI-II] combination 
versus BH3I-1 alone was significantly higher compared to 
the healthy control (P < 0.05) (Figure 9C). 

There also were slight differences in the percent 
increases in cell death between each cancer subclone 
treated with [BH3I-1 + SKI-II] versus BH3I-1 alone 
(Figure 9C). Based on our Western blots and SK1 activity 
assay, this is likely due to variations in SK1 expression 
(Figure 6A) and activity (Figure 6B, Figure 7) between the 
different PSN-1 subclones and provides further evidence 
that each subclone adapted different methods to defend 
themselves against apoptotic signaling via SK1. Despite 
modifications in SK1 expression and regulation between 

the different subclones, the cell death assay reveals that 
SKI-II treatment effectively sensitized each subclone to 
mitochondria mediated apoptotic signals (Supplementary 
Figure 14B–14E). SK1 may serve as a key therapeutic 
drug target to ubiquitously enhance mitochondria mediated 
apoptosis in differentially reprogrammed PDAC subclones. 

DISCUSSION

To promote stress tolerance, isogenic clones derived 
from the same originating cancer cell can adopt distinct 
metabolic signatures leading to inter- and intra-tumor 
differences in disease progression, and drug resistance  
[3, 75, 76]. Targeting pro-cancer pathways that are selectively 
preserved throughout stochastic and environmentally 
induced metabolic reprogramming will improve treatment 
outcomes in aggressive and therapeutically unresponsive 
cancers like pancreatic ductal adenocarcinoma (PDAC)  
[3, 77]. This study was designed to investigate these 
preserved pro-cancer pathways in a PDAC line (PSN-1) 
under different forms of stress (Figure 2). 

Two PSN1 subclones (pA and pC) were maintained 
without changes in the nutrient formulations while two 
(pB and pD) received modified formulations to test for 
response to modified nutrient status (Figure 2). We found 
that there were detectable morphological changes after 
one month (approximately 10 passages) and subjected the 
subclones to a battery of assays.  Each assay also compared 
these subclones against a ‘healthy’ control line for 

Figure 9: Pancreatic cancer subclones displayed different drug sensitivities yet SKI-II effectively sensitized each 
subclone to mitochondria-mediated apoptotic signals. (A) Concentrations of control apoptosis-inducing treatment (SKI-II + 
Gemcitabine) that were required to achieve the EC50 of each cell group (with the exception of the slower growing hT cells where treatment 
was ineffective). Data are represented as the mean EC50 concentration of 3 biological replicates per group and error bars are drug tolerance 
(±) in µM. (B) Concentrations of targeted mitochondria-mediated apoptosis inducing treatment (SKI-II + BH3I-1) that were required to 
achieve the EC50 of each cell group. Data are represented as the mean EC50 concentration of 3 biological replicates per group and error 
bars are drug tolerance (±) in µM. (C) Comparison of the efficacy of SKI-II in enhancing cell death in response to mitochondria-mediated 
apoptotic signals across cancer subclones and healthy control. Data are represented as the percent increase in cell death of each group 
treated with SKI-II + BH3I-1 versus BH3I-1 alone (3 biological replicates per cell group/treatment). The Dunnett’s test was used to 
compare between the percent increase in cell death of the cancer subclones to the healthy control (hT), wherein ***indicates P = 0.0004, 
**indicates P < 0.008, and *indicates P < 0.05. The Tukey-Kramer test was used to determine whether the percent increase in cell death 
of any of the cancer subcultures was different than any of the other cancer groups; the only pair found to be significantly different is 
highlighted in the bottom right-hand corner of the plot, where ‡indicates P = 0.011.
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reference.  The results of each assay are summarized in a 
divergence tree depicting commonalities and differences in 
global genotypic and phenotypic trends observed between 
groups (Figure 10A). Although there were no significant 
changes in DNA sequence between PSN-1 subclones, they 
exhibited multiple levels of phenotypic variation, including 
shifts in global mRNA, protein, and lipid expression levels 
as well as sensitivity to anti-cancer drugs. 

The mRNA, protein, and lipidomics data also 
identified the S1P signaling pro-cancer metabolic/
signaling pathway that may be mediated predominantly 
by the sphingolipid modifying enzyme Sphingosine 
Kinase (Figure 10B). Modified S1P/C16 Cer metabolism 

was conserved in different manners across the four 
differentially reprogrammed cancer subclones. Our 
proliferation and cell death assays further suggest that this 
pathway serves as an equally effective therapeutic target of 
SKI-II in each subclone by suppressing proliferation rates 
and enhancing mitochondria mediated apoptosis with no 
damaging effects on healthy control cells. 

Our mRNA expression data suggest that differences 
in cancer subclone behavior were driven by changes in 
S1P metabolism (Figure 5D). Sphingosine Kinase 1 
catalyzes the final step of S1P synthesis from ceramide 
precursors (Figure 1) and has previously been shown 
to play an important oncogenic role [46]. Surprisingly, 

Figure 10: Divergence tree of genotypic and phenotypic analyses of isolated pancreatic cancer subcultures (pA, pB, 
pC, pD) and healthy control cells (hT) revealing nongenetic heterogeneity and a conserved, pro-cancer sphingolipid 
metabolic pathway mediated by SK1. (A) The experimental groups used to investigate pro-cancer adaptations in this study are shown 
in the gray box (top). This is followed by each parameter used to broadly compare genotypes and phenotypes of each cell group, as well as to 
determine at which level of expression common pro-cancer adaptations were present. The orange boxes, labeled “Genes”, represent assays 
performed to investigate genetic differences between each group. The yellow box, denoted “RNA”, represents our RNA-Seq analysis used 
to compare mRNA expression levels between groups. The green boxes, labeled “Metabolism”, represent assays to investigate metabolic 
features of each cell group, including protein and lipid (intra/extracellular) expression levels. The purple boxes, labeled “Cell behavior”, 
represent assays performed to measure major physical cancerous phenotypes/responses resulting from biochemical influences. (B) Boxes 
in this panel represent specific measurements of compounds that emerged from each global/omics assay related to the SK1-driven shift in 
S1P/C16 Cer metabolism observed to some degree in each cancer subclone. Relative to the healthy control, these biochemical influences 
promote SK1 activity in the cancer subclones in different manners in order to regulate cancerous behaviors, including proliferation and 
response to pro-mitochondria mediated apoptotic signals. (A–B) The distance between cell groups denoted by the black linker lines 
between each white box represent how closely the groups in each box were related with respect to the indicated assay. The color legend is 
shown to summarize general observations made in each assay, where appropriate; the boxes with groups showing high levels of expression, 
rate, sensitivity, response, or activity relative to the other cells are colored bright red; those cells showing very low levels of the respective 
assay metric relative to the other groups are colored light blue, while groups that were somewhere in between are colored with shades of 
red or blue toward the middle of the red→blue color spectrum. 
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the mRNA expression levels of SK1 were significantly 
reduced in all four cancer groups (Figure 5G). We used 
Western blots to measure the relative levels of total 
SK1 (Figure 6A) as well as active p-SK1 enzymes 
phosphorylated at Serine-225 (Figure 6B). SK1 protein 
concentrations varied between the four subclones and were 
significantly different between certain pairs, including pA/
pD (P < 0.005), pB/pD (P < 0.005), and pB/pC (P < 0.05) 
groups (Figure 6A). All four cancer subclones displayed 
higher levels of SK1 protein expression levels relative 
to the healthy control, though this difference was only 
not significant in pD (Figure 6A). These data combined 
with the RNA-Seq (Figure 5G) suggest that SK1 protein 
expression was post-transcriptionally increased to 
promote S1P synthesis in the cancer groups relative to hT 
cells. SK1 mRNA levels may have been reduced due to 
continual translation/overuse to maintain high SK1 protein 
levels in the cancer cells relative to hTert. Elevated SK1 
protein levels may trigger a negative feedback loop to 
suppress unnecessary SK1 mRNA production which could 
have also contributed to the reduced SK1 mRNA levels in 
the cancer cells compared to hTert.

 Inactive SK1 is generally found in the cytosol 
away from its lipid substrates [59]. After activation 
through ERK2 mediated phosphorylation at Ser-225, SK1 
relocates to the plasma membrane where it localizes onto 
functional lipid-raft subdomains for its catalytic activity 
[59]. Activating levels of SK1 (p-SK1) were significantly 
higher in all the cancer groups relative to the healthy 
control (P < 0.001) (Figure 6B). ERK2 protein expression 
was also higher in all the cancer groups relative to hTert 
and this difference was significant in pA (P < 0.001), 
pB (P < 0.05), and pC (P < 0.05) cells (Figure 6D). We 
thus propose that each cancer subclone achieved lower 
pro-apoptotic C16 Cer and higher pro-inflammatory S1P 
signaling (Figure 7, Supplementary Figure 9) through a 
combination of greater SK1 protein expression and/or 
increased SK1 activity levels through ERK2 mediated 
phosphorylation (Figure 6A, 6B). 

Multiple lipid extraction and mass spectrometry 
techniques confirmed that all four subclones maintained 
an increase in the ratio of intracellular S1P relative to 
C16 Cer, but at different levels (Figure 5A, Figure 7). 
This result was intriguing not only because C16 Cer 
and S1P are interconvertible metabolites (Figure 1), but 
also because they have been shown to exhibit competing 
bioactive capacities in cancer [30]. Together, C16 Cer 
and S1P seem to make up a critical rheostat between pro-
survival versus pro-apoptotic signaling pathways in these 
differentially modified PDAC subclones (Figure 11). 
An increase in the level of pro-survival S1P molecules 
relative to pro-apoptotic C16 Cer has been shown to 
promote cancerous phenotypes like proliferation, stress 
tolerance, and resistance to ceramide-mediated apoptosis 
by activating intracellular targets including TRAF2, an 
essential E3 ubiquitin ligase in the pro-proliferative TNF- 
α/NF-κB signaling pathway [30].  S1P is also known to 
bind Prohibitin 2 (PHB2), a conserved protein responsible 
for mitochondrial membrane assembly and integrity 
[78], while C16-Cer may promote the mitochondria-
mediated apoptotic pathway [35]. We considered the 
increased S1P/C16 Cer ratios in the cancer groups 
(Figure 7) representative of a cancer-promoting shift in 
the sphingolipid rheostat. We hypothesized that this shift 
in S1P/C16 Cer metabolism was used as an important 
stress tolerance mechanism of PSN-1 that was selectively 
conserved at various degrees in each isolated subclone. 

To investigate this hypothesis, we tested the 
effects of pathway inhibition on S1P/C16 ratios and 
drug sensitivity. The subclones all responded to pathway 
inhibition (Figure 7), but with different EC50’s (Figure 9).   
In pA cells, we repeatedly detected a 273L→P 
polymorphism (Supplementary Database 13) found in the 
helix near the sphingosine binding site of SK1.  This may 
have affected the Kd of SK1, leading to a reduction in the 
S1P/C16 Cer ratio in pA cells relative to the other cancers. 
On average, extracellular S1P levels suggest S1P may be 
exported from pC and pD cells, which has been shown 

Figure 11: Schematic model of pro-survival S1P signaling in pancreatic cancer cells (left) followed by a shift in the 
sphingolipid rheostat toward C16 Cer-driven pro-apoptotic signaling induced by SKI-II treatment (right). 
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to promote autocrine/paracrine proliferative signaling 
[61]. Nonetheless, the highly variable S1P/C16 Cer levels 
observed in the other subclones did not seem to have a 
genetic origin (Figure 7, Supplementary Figure 9).

Overall, these initial implications from our targeted 
measurement of S1P/C16 Cer confirmed that although 
the sphingolipid rheostat was perturbed to some extent 
in each cancer subclone, increased levels of S1P may 
be used to hyperactivate both intra- and extracellular 
pro-proliferative targets. SKI-II treatment significantly 
reduced the S1P/C16 Cer ratio in all four cancer groups 
(P < 0.05), normalizing S1P/C16 Cer levels relative to the 
healthy control. Our Western blot data (Figure 6) suggests 
that SK1 concentration and phospho-activation is a major 
factor driving the S1P/C16 Cer imbalance in these cancer 
cells (Figure 7). Previous studies also report that SK1 is 
elevated in many human cancers and these elevated levels 
contribute to cancer development, drug resistance, and 
poor prognosis [38, 39, 42, 44, 66, 79–81]. While SKI-
II is considered a selective inhibitor of SK1 [65], it also 
inhibits sphingosine kinase 2 and has been shown to have 
off-target effects on ceramide dihydroceramide desaturase 
1 (Des1), leading to reduced S1P accumulation in gastric 
cancer cells [66]. So, SKI-II may inhibit S1P synthesis 
directly by blocking SK1 and SK2 or indirectly by slowing 
de novo synthesis of its metabolic precursor ceramide by 
simultaneously inhibiting Des1. This synergistic inhibition 
of the pathway may improve the effectiveness of SKI-II in 
normalizing S1P signaling across the different subclones 
(Figure 7). 

Variations in S1P/C16 Cer levels (Figure 7) resulting 
from the SK1 mediated drive for increased proliferation may 
be linked to changes in cell size, shape, and production of 
membrane lipids to accommodate rapid growth rates of the 
cancer subclones (Figure 8C; Supplementary Figure 4C1; 
3). While the cancer groups grew at nearly equivalent 
rapid rates, ranging from 1.04 to 1.12% confluence 
per hour (Figure 8C), there were modest but consistent 
variations in the general morphology and average sizes 
of individual subclones (Supplementary Figure 3A–3D).  
These morphological differences may be considered 
structural manifestations of the variations in mRNA and 
protein expression levels (Figure 4A, 4B), lipid metabolism 
(Figure 4C, 4D), and SK1 activity (Figures 6B, 7)  
induced by different internal and environmental stimuli that 
occurred during the subculturing process. For example, the 
slight increase in pD cell size may be linked to the shift 
in intra- and extracellular lipidomic profiles of pD cells 
relative to the other clones (Figure 4C, 4D). Lipid uptake 
has been shown to increase in some cancers [82]. The 
two-fold increase in serum lipids during the subculturing 
experiment (Figure 2) may have allowed pD cells to uptake 
and produce more lipids to accommodate larger plasma 
membranes. Indeed, pD cells exhibited the highest average 
concentration of cellular glycerolipids relative to the other 

cancer groups (Figure 4C1) which may have facilitated pD 
cell membrane growth (Supplementary Figure 1). 

The generally smaller PDAC cell size 
(Supplementary Figure 3) may also be correlated with the 
reduced cytoplasmic actin mRNA and protein expression 
levels (Supplementary Figure 11A, 11B). The relative 
mRNA and protein concentrations of Beta-actin and 
Gamma-actin were depleted in all cancer groups relative 
to the healthy control (P < 0.01). Considerably higher 
actin mRNA and protein levels may be used to support the 
significantly larger cytoplasmic areas of hT cells relative 
to the cancers (Supplementary Figure 3F). In addition, pD 
cells were generally the largest of the four cancers and 
also exhibited the highest average actin concentrations 
relative to the other subclones (Supplementary Figure 
11A2, S11B2). These data suggest that shifts in mRNA, 
protein, and lipid expression resulting from intrinsic and 
microenvironmental signals are intimately linked with 
hallmark cancer phenotypes like cell size and shape 
abnormalities. 

Despite designed (Figure 2) and random variations 
in nutrient status (Supplementary Database 15), our study 
suggests that increased SK1 mediated S1P signaling may 
provide a pro-survival signaling environment to support 
cancerous behaviors in metabolically unstable PDAC 
subclones. To explore this concept further, we measured 
the effects of SK1 on PDAC cell proliferation. SKI-II 
treatment significantly reduced the growth rates of each 
cancer group in a unique dose-dependent manner relative 
to the healthy control (Figure 8; Supplementary Figure 
13A–13E). These results suggest that enhanced SK1 
activity was required to maintain rapid growth rates of 
all four PSN-1 subclones. Therefore, S1P signaling may 
serve as an important therapeutic target to uniformly 
suppress proliferation across pancreatic tumors made up 
of heterogeneous cell populations. 

We tested whether SKI-II treatment was sufficient 
to enhance C16 Cer mediated pro-apoptotic signaling 
and drug sensitivity in the PDAC clones. One common 
mechanism by which ceramides communicate extracellular 
stress signals to the cell is by forming ordered, ceramide-
enriched microdomains or lipid rafts [72]. Rafts on the 
outer layer can induce changes in the inner layer of the 
membrane, thereby transducing extracellular stress signals 
to pro-apoptotic effector molecules in the cytosol [30, 83]. 
In response to apoptotic stimuli, ceramides located in the 
outer mitochondrial membrane form ordered channels or 
pores, causing protein leakage from the intermembrane 
space and cytochrome c release, an initial step in the 
mitochondria-mediated apoptotic pathway [35]. 

Ceramide species have also been shown to regulate 
pro-apoptotic Bcl-2 family proteins and/or splice variants 
through multiple mechanisms [84, 85]. Without the 
second-messenger properties of ceramide, the ability of the 
cell to undergo programmed cell death becomes severely 
impaired or in some cases disabled entirely [38, 86]. Thus, 

Oncotargetwww.oncotarget.com



469

active levels of ceramide are necessary to prevent tissue 
damage by minimizing the accumulation of damaged and 
oncogenic cells. Although the pathophysiological effects 
of ceramides in general have been reviewed thoroughly, 
the biological functions and techniques to measure specific 
ceramide species, such as C16 Cer, are less implicit [87], 
yet increasingly important for uncovering potential 
therapeutic applications [32].

Based on recent literature [72], we hypothesized that 
the increase in intracellular C16 Cer levels (Supplementary 
Figure 9B) induced by SKI-II may enhance PDAC cell 
sensitivity to mitochondria mediated apoptosis while 
suppressing S1P driven anti-apoptotic signaling. We 
performed a series of cell death assays to compare drug 
sensitives between each cell type and evaluate whether 
SK1 inhibition affected therapeutic responses to BH3I-1, 
a peptide activator of mitochondria mediated apoptosis 
relative to a standard chemotherapeutic, Gemcitabine 
(Figures 9, Supplementary Figure 14). Our results 
suggest the SK1 mediated shift in the S1P/C16 Cer ratio 
(Figure 7) provides some defense against mitochondria-
mediated apoptosis in each cancer subclone. Much lower 
concentrations of SKI-II (1–8 μM) coupled with higher 
doses of BH3I-1 (3–8 μM) were required to achieve the 
EC50 in the PDAC relative to hTert cells (Figure 9B). The 
pA and pB cells seemed to be the most resistant to BH3I-
1, with an EC50 ranging from 7–8 μM, and required the 
least amount of SKI-II (1–2 μM) in the combinatorial 
treatment compared to pC (4 μM BH3I-1 + 8 μM SKI-II) 
and pD cells (3 μM BH3I-1 + 6 μM SKI-II) (Figure 9B), 
suggesting that pA and pB cells were more resistant to 
mitochondria-mediated apoptosis compared to pC and 
pD. The pD cells required the least amount of BH3I-1 
to achieve its EC50, suggesting they were more sensitive 
to apoptosis in the presence of SKI-II relative to other 
subclones (Figure 9B). Another way to interpret our EC50 
results is to consider the individual concentrations of the 
two treatment components as less important compared 
to the total [SKI-II μM + BH3I-1 μM]. This may be the 
more definitive determinant of the EC50 since the two 
compounds are administered simultaneously and work 
toward the same general effect: an increase in apoptotic 
signaling. In this case, hTert required the highest combined 
sum total of SKI-II/BH3I-1 concentrations (14 μM), 
followed by pC (12 μM), pA (10 μM), pD (9 μM), and pA 
(8 μM) to achieve their individual EC50 levels (Figure 9B). 

In the presence of SKI-II, there was a very modest 
increase in cell death resulting from Gemcitabine (Gem) 
treatment (Supplementary Figure 14). In order for a 
nucleoside analogue like Gem to have maximal effect, 
cells should be proliferating rapidly [88].  Since SKI-
II treatment induced a potent anti-proliferative effect 
on the cancer clones (Figure 8C) it may have actively 
reduced Gem efficacy. On the other hand, BH3I-1 was a 
significantly more effective companion to SKI-II. SKI-
II significantly enhanced the percent cell death of each 

cancer subclone exposed to BH3I-1 (P < 0.05) (Figure 9,  
Supplementary Figure 14), supporting the idea that 
increasing C16 Cer sensitized these cells to pro-apoptotic 
signaling at the mitochondria [38, 86]. 

Pancreatic cancer has historically been difficult to 
treat [89, 90] due to the resistant nature and the unique 
treatment-refractory environments established by individual 
tumors [91, 92]. Although Gemcitabine is the most common 
chemotherapeutic used to treat pancreatic cancer, the 
tumor response rate is just 12% [73]. Resistance to Gem 
presents major clinical challenges and new strategies to 
enhance PDAC drug sensitivity are in high demand [73]. In 
addition, inter- and intra-tumor heterogeneity resulting from 
differential cellular evolution reduces the predictability 
of individual treatment outcomes between isogenic 
experimental models and individual patients [9]. 

We showed that S1P signaling is a preserved 
pathway in metabolically reprogrammed PDAC cells and 
may be used as a ubiquitous drug target among isogenic 
subclones. Consistent with previous research [59], the 
model established in this study states that ERK2 initiates 
a pro-survival positive feedback loop by phosphorylating 
and activating SK1, thereby promoting S1P synthesis and 
suppressing relative C16 Cer concentrations. S1P in turn 
stimulates inter- and extracellular pro-inflammatory targets 
including the initial activating kinase ERK2 [59], leading 
to increased pancreatic cancer cell proliferation and drug 
resistance (Figure 11, left panel). SKI-II mediated SK1 
inhibition increases pro-apoptotic C16 Cer levels relative 
to S1P, interrupting this S1P pro-inflammatory feedback 
loop, thereby reducing proliferation and minimizing 
anti-apoptotic defense systems (Figure 11, right panel). 
Concomitant suppression of S1P and enhancement of 
intracellular C16 Cer levels by inhibition of SK1 activity 
may serve as an effective strategy to restore a healthy 
balance between pro- and anti-apoptotic signaling in 
metabolically dynamic pancreatic cancers. 

MATERIALS AND METHODS

Experimental design

The originating PSN-1 cell line and hTert cell 
line were obtained from Dr. David Bearss at Tolero 
Pharmaceuticals and were not tested for mycoplasma 
contamination after arrival.  We developed a panel of 
differentially reprogrammed human ductal pancreatic 
cancer cells originating from the same genetic origin 
(PSN-1) [47] (Figure 2). The original PSN-1 cells 
were authenticated using the ATCC human cell line 
short tandem repeat (STR) profiling analysis [51] 
(Supplementary Figure 4B). These original cells were 
subcultured into four different randomly assigned groups: 
psn1-A (pA), psn1-B (pB), psn1-C (pC) and psn1-D (pD). 

The first set of groups, pA and pC, were used to 
investigate stochastic, time-dependent factors influencing 
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cancer evolution and were cultured separately in the 
baseline growth conditions in RPMI-1640 cell medium 
(Thermo Fisher cat # 11875093) with L-glutamine, 
high glucose, 10% FBS, and penicillin/streptomycin 
(PS) (1×) at 37° C and 5% CO2. The other groups, pB 
and pD, were cultured in new combinations of randomly 
assigned growth conditions during the same month to 
encourage environment-induced adaptions and metabolic 
reprogramming. The pB cells were maintained in DMEM 
cell medium with 10% FBS and 1× PS at 37° C and 5% 
CO2. The pD cells underwent the greatest nutrient change 
as they were cultured in IMDM cell culture medium with 
double the concentration of FBS (20%) and 1× PS at 37° C  
and 5% CO2. All three cell mediums used in this portion 
of the study (RPMI-1640, DMEM, IMDM) contained 
the same concentration of D-Glucose (25 mM). RPMI 
is generally the most different of the three in terms of 
contents and concentrations while DMEM and IMDM are 
more similar formulations (Supplementary Figure 2). The 
formulations differ the most in amino acid (Supplementary 
Figure 2A) and vitamin content (Supplementary 
Figure 2B). RPMI contains the greatest variety of amino 
acids; however, their concentrations tend to be lower 
than those in DMEM and IMDM.  RPMI also contains 
the greatest variety of vitamins and is the only one of the 
three mediums to include Glutathione, an antioxidant that 
promotes cell growth and viability.  After the month-long 
evolutionary period of culturing the cancer groups in these 
different cell culture mediums, frozen stocks of each group 
were prepared and stored in liquid nitrogen. 

The growth conditions of each group were unified to 
the original growth medium (RPMI-1640 with L-glutamine 
and high glucose, 10% FBS, 1× PS) to obtain consistency 
of experimental conditions across all groups during 
the in vitro assays that followed. To minimize further 
cancer evolution/adaptive changes in each cell group 
from occurring throughout the study after the 1-month 
evolutionary period (Figure 2), cells from each group 
were passaged no more than 10 times before returning to 
an original frozen stock of the respective group.

Cell size/morphology analysis 

Light microscope imaging was used to compare cell 
shapes and sizes. ImageJ image analysis software was 
used to measure the cell areas of 40 different randomly 
selected cells on three different tissue culture dishes in 
each group (Supplementary Figure 3).

STR profiling

Cell samples from each group were collected and 
STR profiles were generated using the ATCC Human Cell 
Line Authentication Service. Eight STR markers (plus 
amelogenin for gender determination) were amplified from 
cellular DNA via Polymerase Chain Reaction (PCR) and 
converted to the respective alleles by comparing to allelic 

ladders [51] (Supplementary Figure 4). These alleles were 
then converted to corresponding numeric values which 
were used to generate an STR profile of each group [51]. 
The STR Profile of each group was then compared to the 
corresponding reference profiles to determine the degree 
of relatedness (% match) to the original tissue [51].

RNA-Seq analysis 

The mRNA extracts were prepared from cell cultures 
of each group using the Direct-zol™ RNA MiniPrep 
Plus Kit. Samples were stored at –80° C for one week to 
one month. Three to four samples from each group with 
RQN values ≥8.0 and were selected for sequencing at the 
DNA Sequencing Center (DNASC) at Brigham Young 
University. There was a Poly-A enrichment prior to the 
library construction and libraries were sequenced using 
the HiSeq 250 Cycle Paired-End (125 cycles from each 
end) sequencing method.

Resulting sequencing data was downloaded and 
quality analyzed using the fastqc package [93]. All 
samples passed the major sequencing quality parameters. 
Reads were then aligned to the human genome (GRCh38) 
and assigned to features using an R script based on the 
Rsubread package [94]. 

SNP analysis/SNP profiling and data analysis

Variant analysis of the RNA-seq data was conducted 
using custom R scripts based on the VariantTools 
Bioconductor package. Variants were first called 
individually for each sample and then results for all samples 
collated into a single table with presence or absence of a 
variant at every genomic position with a variant in at least 
one sample. A PCA analysis comparing samples was then 
conducted using logisticPCA, which is designed for binary 
datasets [95]. Nonsynonymous mutations were identified 
using the VariantAnnotation package [96] and their effects 
predicted using Polyphen2 [97].

RNA expression profiling and data analysis

The DESeq2 R/Bioconductor package was used 
to filter and normalize raw RNA-Seq data as well as to 
identify differentially expressed genes between groups 
[56]. The hierarchal heat map of the normalized RNA-
Seq data was created using DESeq2 and the PCA plot was 
made using ClustVis [98].  

Protein expression profiling and data analysis

Proteomics samples were prepared from whole 
cell lysates collected from cell cultures of each group 
using an on-filter trypsin digest procedure. Cells were 
first grown to 70–80% confluence on 15cm tissue 
culture dishes. The cell medium was aspirated and 
cells were washed with 1x PBS. Cells were trypsinzed 
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and pelleted by centrifugation for 5 minutes at 1200 
rpm. The pellet was gently washed with 1× PBS. 
Pelleted cells were lysed and protein was denatured 
in 6 M guanidine/HCl 100 mM Tris/HCl (pH 8.5) on 
a tissue homogenizer for 30 seconds. Total protein was 
quantified using a bicinchoninic acid (BCA) assay. Fifty 
μg of protein from the sample was transferred to a 30 
kD spin filter and washed 2–3 times with 6 M guanidine/
HCl 100 mM Tris/HCl (pH 8.5). Disulfide bonds 
were reduced using dithiothreitol and alkylated using 
iodoacetamide. The filter was washed twice with 25 
mM ammonium bicarbonate. Proteins were re-suspended 
in 25 mM ammonium bicarbonate (pH~8) and digested 
overnight using Pierce MS-Grade Trypsin. The trypsin 
digest was quenched and peptides were spun through 
30kDa filters via centrifugation. Samples were dried 
in a vacuum evaporator and re-suspended in 50 μL of 
3% acetonitrile/0.1% formic acid. Proteomics data 
was collected from each sample on a Lumos Orbitrap 
(Thermo) mass spectrometer. To reduce the influence of 
time-dependent fluctuation or cross contamination from 
run to run, the sample analysis schedule was randomized 
using a random number generator. 

PEAKS Studio software was used for de novo 
sequencing to identify proteins in our raw MS data as well 
as to quantify, filter (quality-control) and normalize our 
label-free quantitation data for each protein [99]. Peptides 
were identified from MS/MS spectra by searching against 
the Swiss-Prot human database. Protein annotations with at 
least 2 unique peptides and a false discovery rate less than 
1% were included in the comparative quantitative analysis. 
We used t-tests corrected for multiple comparisons using 
the Benjamini-Hochberg method to determine significant 
differences in protein concentrations between groups. 
The hierarchal heat map of the normalized protein 
concentrations was created using DESeq2 [56] and the 
PCA plot was made using ClustVis [98]. We used t-tests 
to determine significant differences between protein 
concentrations in each group; p-values were corrected 
for multiple comparisons using the Benjamini-Hochberg 
procedure. Protein concentrations were considered 
significantly differentially expressed if both the p-value 
and corrected p-value were <0.05. The concentrations of 
differentially expressed proteins were compared between 
groups by calculating the fold change in concentration 
(mean concentration of each individual group relative to 
the mean concentration in the other groups). If the fold 
change was >1 the protein was considered upregulated 
and if the fold change was <1 the protein was considered 
downregulated. 

DAVID Bioinformatics Functional Annotation 
Tools were used identify enriched functional-related gene 
groups in each list of significantly differentially expressed 
proteins [17]. The top three gene ontologies with the 
highest enrichment scores were considered relevant but 
only considered significantly enriched if the Benjamini 

score for enrichment calculated by the functional analysis 
tool was <0.05 [17].

Shotgun lipidomics assay development and data 
analysis

Lipids with mass difference from LMSD <50 ppm 
were used in quantitative analysis

Several extraction methods were evaluated to 
determine which method would best sample each of the 
major lipid classes and introduce the least amount of bias 
into our mass spectrometry analysis. All methods had 
differential extraction efficiency with differences in the 
observed lipid categories and classes. One complication 
with mass spectrometry techniques is that it requires a 
charged molecule to make measurements. Many lipids do 
not have an intrinsic charge, but addition of ammonium 
acetate in the extraction protocol increased the coverage 
of lipids from all categories in both positive and negative 
ion modes. Based on the initial lipid classifications 
we determined that a modification to Bligh and Dyer 
extraction with addition of isopropanol and an ammonium 
acetate adduct [100] resulted in the most reproducible, 
broad coverage of the major lipid categories. Total unique 
lipid identifications that met our criteria were compared 
for each of the extraction methods. We repeatedly 
identified the largest number of lipid species using the 
modified Bligh and Dyer technique [100]. The sample 
preparation procedure used in this shotgun lipidomics 
assay is explained in the following paragraph. 

Cell pellets were re-suspended in 1.5 mL cell lysis 
buffer (0.1M Tris-HCl at pH 7.6) and homogenized 
by circular cut tissue homogenizer (Omni) and vortex 
(30 seconds at 850 RPM). The homogenate was then 
transferred to glass vial (4.5 dram) where a two-phase 
extraction was completed to remove the lipid constituents 
[100]. Sample collection and homogenization steps 
were performed under cold collection environments and 
under nitrogen to reduce oxidation. The final extraction 
mixture contained the 1.5 mL aqueous homogenate 
and then an additional 3 mL of chloroform/methanol/
isopropanol (3:1:1.25, v/v/v). A larger extraction batch 
with the Bligh and Dyer was extracted over 24 hours with 
shaking gave the closest match to a spiked standard. The 
organic lipid containing layer was then concentrated under 
reduced pressure at room temperature. The concentrated 
lipid extract was divided into two separate samples for 
comparison of adduct effects. The half sample analyzed 
without adduct was diluted with organic phase solution 
chloroform/methanol/isopropanol (3:1:1.25, v/v/v) 
with 0.1% formic acid (Thermo) at a 9-fold dilution by 
volume (9:1, solution: organic layer extraction) to a total 
volume of 250 μL immediately prior to data collection. 
The half sample analyzed with adduct was diluted with 
the same organic phase solution with 0.1% formic acid 
and ammonium acetate (1.5 mM) to promote ionization 
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of some of the neutral lipid species. The sample (with and 
without adduct) was run in both positive and negative 
instrument modes to increase specificity and variety of 
lipids through intra-source selection of differentially 
ionizable species. 

To reduce the influence of time-dependent 
fluctuation or cross contamination from run to run, the 
sample analysis schedule was randomized using a random 
number generator. In this way if the wash cycle between 
sample runs did not remove all the contaminants from the 
capillary line, the contaminated peak should not appear 
more than once in the technical replicates and is thereby 
removed by the data analysis filters. Sample (250 µL) was 
infused at 10 µL/min onto a Thermo LTQ-Orbitrap XL 
mass spectrometer using an IonMax ESI soft-ionization 
direct inject technique. During the infusion a high 
resolution (≥100,000) MS1 survey scan cycled through 
m/z “windows” (75–250 m/z, 250–400 m/z, 400–600 m/z, 
600–800 m/z, and 800–1800 m/z). The top 5 most intense 
ions from each scan were selected for fragmentation, after 
an ion had been selected for fragmentation twice it was 
excluded from further MS/MS selection. 

The typical data acquisition measured approximately 
2000 different ions. Initial lipid identifications were assigned 
for each ion based on the parent mass of ion in the primary 
survey scan. To increase accuracy, the m/z of each ion was 
corrected according to the standard curve of the internal 
standards.  The instrumental noise was determined as the 
baseline detection level across all spectra.  Only those 
peaks that are estimated to be at least twice the level of 
the instrumental noise are included. The data files were 
analyzed using in-house developed module for the MSPIRE 
proteomics package [101] which compared the masses 
and fragmentation patterns against expected masses and 
fragments for the lipids within the LIPID MAPS database 
[102]. Ions which differed from the theoretical mass provided 
by the database by more than 50 ppm were removed from 
the data set. For quantitation comparisons across groups, MS 
intensity data for each lipid was normalized to the sum of 
all the species quantified in each sample. The normalized 
summed spectral intensity for each sample was considered a 
single quantitative data point each lipid.

Intra/extracellular lipidomics LC-MS/MS 
analysis 

We established a sphingolipid focused extraction 
technique and reverse-phase (RP) LC-MS/MS method 
based on the procedure developed by Bode et al. [57]. 
Cell cultures were plated onto 15-cm cell culture dishes in 
complete RPMI 1640 cell culture medium and incubated 
at 37° C, 5% CO2. Once cells reached 65–75% confluence, 
the cell medium was aspirated and cells were washed twice 
with 1xPBS. Medium was replaced with fresh, pre-warmed 
(37° C) complete RPMI 1640 containing 13 µM of SKI-
II inhibitor or an equivalent volume of 1x PBS for vehicle 
controls. Cell cultures were incubated for 12 hours at 37° C,  

5% CO2. After the incubation period, the medium was 
aspirated from the cells and transferred to a glass pear-
shaped flask. Total lipids were extracted from the flask using 
the modified B&D technique [100], vacuum dried, dissolved 
in 100 µL of 4:1 (v/v) MeOH/CHCl3 and sealed under 
argon in glass MS vials. Meanwhile, cells on the plate were 
washed with 1x PBS two times, trypsinized, and pelleted 
via centrifugation at 1200 rpm for 5 min. The supernatant 
was decanted and the sphingolipid modified lipid extraction 
technique based on the B&G method [57] was performed 
on wet ice, in glass centrifuge tubes under argon gas to 
minimize lipid oxidation (procedure detailed below). 

Cells were lysed via vortex in 1 mL of NaCl for 
20 seconds. One mL of MeOH and 200 µL of 6 M HCl 
were added. The lysate was vortexed for 10 seconds. The 
organic phase lipid extraction was performed by adding 
2 mL of CHCl3 to the sample which were vortexed for  
2 minutes and then centrifuged for 3 minutes at 1900 g. 
The lower organic phase was transferred to a glass test 
tube. The phase extraction steps were repeated on the 
remaining aqueous layer in the sample and the resulting 
organic phase was combined with the first. CHCl3 was 
evaporated from the sample in a vacuum concentrator. The 
vacuum-dried lipids were dissolved in 100 µL of 4:1 (v/v) 
MeOH/CHCl3 and sealed under argon in glass MS vials. 

Samples were analyzed via RP-LC-MS on a stepwise 
gradient using a Luna Omega 1.6uM Polar C18 100Å LC 
Column, 150*2.1mm (Phenomenex Part # 00F-4748-AN). 
The mobile phases were 1% Formic Acid (Buffer A) and 
100% Methanol (Buffer B) run on the following gradient 
at 100 µL/min: 10%→100% Buffer B (0–5 minutes), 
100% Buffer B (5–25 minutes), 100%→10% Buffer B 
(25–27 minutes) with a stop time of 45 minutes. Liquid 
chromatography was followed by positive ESI on a Dual 
Jetstream ESI source, MS/MS fragmentation using variable 
collision energy based on ion mass, and mass detection 
using an Agilent quadrupole-time-of-flight (QTOF) mass 
spectrometer. To reduce the influence of time-dependent 
fluctuation or cross contamination from run to run, the 
sample analysis schedule was randomized using a random 
number generator. To reduce sample carryover on the 
column, a blank containing 4:1 (v/v) MeOH/CHCl3 was 
run in between each sample. The injection needle was 
also washed twice with 48% acetonitrile/48% H2O/1% 
formic acid/1% cyclohexane followed by 99% isopropyl 
alcohol/1% cyclohexane to reduce sample carryover on the 
needle between each run. 

We set up a workflow in the Agilent MassHunter 
Qualitative Analysis workstation to annotate signals in our 
raw MS data using the Metlin Lipids MS Database [103]. 
To verify these annotations, we measured the retention time 
(RT) alignment of each lipid by calculating the coefficient 
of variation (CV) of the respective RT across all the 
samples run on this method (6 per cell group = 30 samples 
total). We used the 500 lipids with the lowest CV of RT 
(<25%) in our global quantitative lipidomics analysis. 
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Only 112 total lipids among the lipids identified in the cell 
medium samples met these criteria (CV of RT ≤25%) and 
were used for global extracellular lipid profiling.

Western blot analysis

Cell pellets were lysed with ice-cold RIPA lysis 
buffer supplemented with protease inhibitor (Thermo 
scientific #A32965) and Phosphatase inhibitor (Thermo 
scientific #A32957). Protein concentrations of the clarified 
lysates were determined with the DC Protein Assay 
(BioRad). 50ug of total protein from each sample were 
resolved on 10% SDS-PAGE. Gels were then transferred 
to nitrocellulose membrane and were immunoblotted for 
proteins of interest (SK1 and p-SK1). Actin was used 
for loading controls. The following antibodies were 
used: Actin (C-2) (Santa Cruz Biotechnology sc-8432), 
Anti-SPHK1 antibody (Abcam ab71700), and SPHK1-
Phospho-Ser225 Antibody (Proteintech 19561–1-AP). 
Proteins of interest were visualized and quantified by the 
Li-Cor Odyssey Classic or CLx imaging system and the 
Image Studio software package. 

Targeted S1P/C16 cer quantitative analysis 

Cell cultures were plated onto 15-cm cell culture 
dishes in complete RPMI 1640 Cell Medium and 
incubated at 37° C, 5% CO2. Once cells reached 65–75% 
confluence, the cell medium was aspirated and cells were 
washed twice with 1xPBS. Medium was replaced with 
fresh, pre-warmed (37° C) complete RPMI 1640 medium 
containing 13 µM of SKI-II inhibitor or an equivalent 
volume of 1× PBS for vehicle controls. All cells were 
treated with an equal dose of the inhibitor to maintain 
sample uniformity, which was the highest concentration of 
SKI-II used in our EC50 estimation assay. We considered 
this dose representative of the concentration of SKI-II 
required to sensitize cells to a drug-induced effect on 
cell viability in a population of healthy pancreatic cells. 
Cell cultures treated with SKI-II and vehicle controls 
were incubated for 12 hours at 37° C, 5% CO2. After the 
incubation period, total lipids were extracted from the 
cells and cell medium followed by RP-LC-MS analysis 
using positive electrospray ionization using the methods 
described above (Intra/extracellular Lipidomics LC-MS 
Analysis). To increase the detection and accuracy of our 
S1P and C16 Cer measurements, we spiked deuterated 
and/or odd-chain internal standards into each sample 
immediately following the cell lysis step and switched to 
a targeted version of our RP-LC-MS method designed to 
specifically select protonated S1P and C16 Cer ions for 
MS/MS fragmentation. Diluted stock solutions of the 
internal standards were made by diluting in MeOH and 
the following volumes were spiked into each sample prior 
to lipid extractions: 20 µL of 2.5 µM C16 Cer-d7 diluted 
in MeOH, 20 µL of 2.5 µM C17 Cer diluted in MeOH, and 
20 µL of 5 µM S1P in MeOH.

Our sphingolipid optimized sample preparation and 
LC-MS method significantly improved the singal:noise ratio 
of C16 Cer ions in all of our samples, greatly increasing 
the confidence of our annotation and quantitation of this 
particular target. Yet, we were concerned that the QTOF 
lacked sensitivity required to detect low S1P levels because 
it was not observed all our cell samples. In addition, the 
upper pressure limit on the pumps leading to our QTOF 
instrument limited our ability to run at pressures high 
enough to potentially increase the S1P signal:noise ratio. 
To further improve the consistency and accuracy of our 
S1P detection and quantitation, we reran our samples using 
an S1P targeted method with higher pressure pumps and a 
more sensitive triple-quadrupole (qQq) mass spectrometer 
at the Metabolomics Core Facility at the University of Utah. 
This method significantly improved the chromatography, 
signal intensity, fragment verification, and overall 
consistency of our S1P measurements in all our samples 
(Supplementary Figures 6B; 8A, 8B). 

The identities of our two sphingolipid targets, C16 
Cer and S1P, were confirmed by retention time alignment 
(Supplementary Figure 6A–6B) and MS/MS fragment 
verification (Supplementary Figures 7–8) with the 
corresponding internal standards. Quantitation of S1P and 
C16 Cer was performed by normalizing to the AUC of 
the corresponding internal standards initially spiked into 
the cell lysates (50 pmol of C16 Cer-d7, 50 pmol of C17 
Cer, and 100 pmol of S1P-d7). The following equation 
was used for C16 Cer quantitation: (50 pmol)/(AUCC16Cer-d7 

or C17 Cer) = (x pmol) / (AUCD7C16Cer), where x = [C16 Cer] 
(Supplementary Figure 6A). Note that C16 Cer was 
normalized to whichever internal standard had higher a 
signal:noise ratio in the MS run (C16 Cer-d7 or C17 Cer). 
The following equation was used for S1P quantitation: 
(100 pmol)/(AUCD7S1P) = (x pmol)/(AUCS1P), where x = 
[S1P] (Supplementary Figure 6B).   

Cell proliferation assay

Cells from each group were plated evenly on a 
24-well tissue culture dishes and incubated overnight at 
37° C, 5% CO2. Each dose of SKI-II inhibitor (Santa Cruz 
Biotechnology cas 312636-16-1) was prepared by serial 
dilution in complete RPMI 1640 Cell Medium (Thermo 
Fisher cat # 11875093). The SKI-II treated volumes of cell 
medium were sterilized on 0.2 µm filters and heated to 
37° C. Wells containing adhered cells in the tissue culture 
dishes were aspirated and washed twice with 1x PBS. One 
mL of SKI-II treated medium was added to each well. 
Real-time phase object confluence was monitored over 
time using an Incucyte ZOOM® Live-Cell Analysis System 
at 37° C, 5% CO2 and quantitative data were analyzed using 
the Incucyte ZOOM® data analysis software to generate 
cell growth curves. Proliferation rates were determined by 
calculating the mean slope of the linear-like growth phases 
of 3–4 biological replicates per group.
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Flow cytometry cell death assays

Cell death assays were completed by plating cells in 
T-75 flasks (~10,000 cells/cm2) in log-phase growth and 
allowing a minimum of 6 hours for growth and adhesion 
before drug treatment. Growth media was replaced with 
fresh media prior to injection of drugs into culture flasks or 
plates. Cells were then treated for 12–24 hours with drugs. 
At the end of drug treatment, dead cells were removed 
and collected in a new plate. Cells were washed with 1× 
PBS and this was collected and combined into the new 
plate. Living adhered cells were removed from growth 
plates using 0.05% pH balanced trypsin at 37° C and 
then transferred to the new plate. Under dark conditions 
on ice a 1 mg/100 mL solution of propidium iodide 
(PI) was mixed with light shaking into the cell mixture 
and allowed 15 minutes to stain. PI is a DNA-binding 
fluorescent dye used to distinguish between live cells with 
intact membranes versus dead cells whose membranes 
are permeable to the dye [104]. Cell counts were then 
collected on a red/blue acoustically focused Applied 
Biosciences Attune flow cytometer at a scan rate of  
200 µL/min using BL2-PI blue laser and BL1 blue laser. 
Data was analyzed with the Attune software.

Quantitation and statistical tests

If not otherwise specified, figure development 
as well as data quantitation and statistical tests were 
conducted in Excel (dot plots, bar graphs, t-tests, 
Benjamini-Hochberg procedure) and JMP (box plots, 
t-tests, Dunnett’s tests, Tukey-Kramer tests). 
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