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ABSTRACT

Overexpression of Luteinizing Hormone Releasing Hormone Receptor (LHRH-R) 
in various cancers and restricted expression of the receptor in healthy cells qualifies 
it as a valuable cancer biomarker. Previously, LHRH-R targeted peptides have been 
utilized to deliver attached payloads to LHRH-R expressing cancers. We report here 
for the first time the utilization of a small molecule non-peptidic ligand (BOEPL) of 
LHRH-R to deliver attached payloads to LHRH-R positive tumors. For this purpose, 
we linked the BOEPL ligand to a near infrared dye via various linkers. In vitro, these 
conjugates demonstrated low nanomolar binding affinity and in vivo they exhibited 
receptor-mediated uptake specifically in tumor tissue. Moreover, tumor uptake 
could be blocked by administration of excess unlabeled conjugate, and time course 
experiments showed retention of the dye conjugate in the tumor up to 12 h post 
injection. Because uptake of BOEPL-targeted NIR dye conjugates by nonmalignant 
organs/tissues was negligible and since the transient presence of targeted NIR dye in 
the kidneys was a result of clearance mechanism, we suggest that a BOEPL-targeted 
NIR dye might constitute a useful agent for fluorescence-guided surgery of LHRH-R 
positive cancers. Moreover, our results also provide proof of concept that BOEPL can 
be successfully used to deliver attached payloads to LHRH-R positive tumors in vivo.

INTRODUCTION

Luteinizing hormone releasing hormone receptor 
(LHRH-R; aka gonadotropin-releasing hormone receptor) 
is expressed primarily in the pituitary gland where its 
activation promotes the biosynthesis and secretion of both 
luteinizing hormone (LH) and follicle stimulating hormone 
(FSH) [1–3]. The consequent systemic increase in LH and 
FSH levels induces survival/proliferation of reproductive 
tissues and the synthesis and release of testosterone and/or 
estrogen. Because these gonadal steroids further stimulate 
both growth and survival of cells in the mammary glands, 
ovaries, prostate glands, and endometrium, the net 
consequence of LHRH-R activation is the expansion and 
differentiation of reproductive tissues [1–6].

LHRH-R is also significantly upregulated in ~50% 
of hormone-dependent breast cancers [7, 8], ~86% of 
prostate cancers [9–11], ~80% of endometrial cancers 
[12, 13], and ~90% of ovarian cancers, [12, 14] where 
it is similarly believed to promote cell proliferation and 
survival. Moreover, LHRH-R is also over-expressed in 
many non-hormone dependent cancers, including cancers 
of the pancreas [15], skin [16], brain [17], kidney [18], 
and, liver [19]. Not surprisingly, efforts to treat LHRH-R 
positive tumors have focused on the development of 
antagonists that can block production of LH and FSH 
and thereby prevent the biosynthesis of androgens and 
estrogens that promote tumor growth.

Because of its limited expression in normal tissues 
[1], LHRH-R has also been exploited for the targeted 
delivery of both imaging and therapeutic agents [20, 21] 
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to LHRH-R positive tumors. In some cases, antibodies or 
LHRH peptides that bind LHRH-R have been used to carry 
attached imaging agents (e.g. with ultrasound [22], MRI 
[23], PET [24], SPECT [25], or fluorescence [26] contrast 
agents) to LHRH-R expressing cells, while in other cases 
these peptidic targeting ligands have been employed to 
deliver chemotherapeutic agents [21, 27, 28] to receptor 
expressing cells. Although the results of virtually all of 
these studies have demonstrated considerable promise, a 
limitation in most of the studies has been an unexpected 
off-target uptake in the liver and/or kidneys [22, 23].

Because neither the liver nor kidneys expresses 
significant levels of LHRH-R, we wondered whether 
the unpredicted accumulation LHRH-R targeted drugs 
in these organs might derive from the exclusive use of 
peptides/proteins as targeting ligands and the prominent 
expression of peptide scavenger receptors in both liver 
and kidneys [29, 30]. To examine this possibility, we 
elected to develop a non-peptidic LHRH-R ligand to 
determine whether it might avoid the unwanted uptake in 
kidneys and liver. In this paper, we report the first use of 
a non-peptidic LHRH-R ligand for delivery of attached 
payloads to LHRH-R positive cells. For proof of concept, 
we compare the uptake of our non-peptidic LHRH-R 
targeting ligand linked to a near infrared (NIR) dye in 
healthy and malignant tissues of mice implanted with 
various LHRH-R positive breast, ovarian, and endometrial 
cancer xenografts. We report here that incorporation of 
our non-peptidic LHRH-R targeting ligand into a ligand-
indocyanine dye conjugate enables accumulation of the 

fluorescent conjugate in the aforementioned tumors 
without promoting significant retention in either the liver 
or kidneys.

RESULTS

Synthesis of NIR dye conjugates

Two LHRH-R targeted NIR dye conjugates 
(Figure 1) were synthesized by first conjugating a 
modified LHRH-R antagonist (BOEPL) to one of two 
hydrophilic linkers via solid phase peptide chemistry, 
followed by coupling of the ligand-linker conjugate 
(BOEPL-L2, or BOEPL-L3) to an NIR dye (S0456), as 
described in Supplementary Figures 1 and 2. Because past 
experience has demonstrated that the properties of the 
linker can significantly influence the affinity, specificity 
and pharmacokinetics of the final ligand-linker-cargo 
conjugate [31], two different linker chemistries (i.e. 
PEG and peptidoglycan) were examined to determine 
which would yield the ligand-dye conjugate with the best 
properties.

In vitro binding affinity: The binding affinities 
of the NIR conjugates (BOEPL-L2-S0456, BOEPL-
L3-S0456) for breast cancer cells (MDA-MB-231) were 
first determined by measuring the cell bound fluorescence 
of each conjugate as a function of its concentration in the 
growth medium. The apparent Kd of the BOEPL-L2-S0456 
conjugate was found to be 10.1 nM, while that of BOEPL-
L3-S0456 was measured at 3.9 nM (Figure 2). The fact 

Figure 1: Chemical structure of LHRH-R targeting ligands and NIR conjugates: Structure of LHRH-R targeting 
ligands NBI42902 (ligand reported in the literature), BOEPL (modified ligand). Structure of LHRH-R targeted NIR dye 
conjugates: BOEPL-L2-S0456 (with PEG linker), and BOEPL-L3-S0456 (with peptidoglycan linker).
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that Ki of the parent ligand is reported to be much lower 
(0.19 nM [32]) is consistent with previous observations 
that attachment of a linker to a ligand can often reduce 
the ligand’s affinity for its receptor [31]. Nevertheless, the 
observations that the conjugate’s affinity for its receptor 
is in the low nM range suggest that the conjugate’s 
association with the cancer cells is of high affinity.

In vivo imaging and biodistribution: Since the NIR 
dye conjugates demonstrated high affinity and specificity 
for its receptor in vitro, we next investigated the ability 
of the above conjugates to target receptor positive 
tumors in vivo. For this purpose, mice bearing LHRH-R 

positive tumors (MDA-MB-231, OVCAR-3 or HEC-1B) 
were imaged with a near infrared fluorescence camera 
2 h after intravenous injection of the LHRH-R targeted 
dye conjugates. in vivo BOEPL-2-S0456 demonstrated 
receptor mediated uptake in MDA-MB-231 tumor in mice 
xenografts (Figure 3). The dye conjugate also showed 
non-specific kidney and liver uptake. Since the liver and 
kidneys are responsible for dye excretion, the fluorescence 
in these organs was likely due to clearance of the dye 
conjugate via renal and hepatic routes. Nevertheless, to 
reduce the scavenging of BOEPL-L2-S0456 by the liver, 
the PEG linker was replaced by a peptidoglycan linker 

Figure 2: In vitro binding of BOEPL-L2-S0456 and BOEPL-L3-S0456 for MDA-MB-231 breast cancer cells expressing 
LHRH-R. The cells were incubated with various concentration of the dye conjugates at 37°C for 1 h. After incubation cells were washed 
three times and then dissolved in 1% SDS. Cell bound fluorescence was measured by fluorimeter.

Figure 3: (A) In vivo uptake of the BOEPL-L2-S0456 dye conjugate in MDA-MB-231 tumor xenografts. Mice were treated 
intravenously with the dye conjugate either in the presence (Competition) or absence (Dye) of 100-fold excess of the unlabeled conjugates. 
(B) Uptake of BOEPL-L2-S0456 by various organs. All the images were acquired 2 h post injection. List of organs from top to bottom: 
Tumor, heart, lungs, pancreas, spleen, muscle, skin, small intestine, large intestine, stomach, liver, and kidney. Green arrow indicates tumor.
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previously shown to reduce liver uptake to yield BOEPL-
L3-S0456. Importantly, 2 h post injection, BOEPL-
L3-S0456 was found to accumulate in the MBA-MB-231 
breast cancer tumor but largely avoid liver uptake (Figure 
4). Moreover, unlabeled targeting ligand (BOEPL-L3) 
was able to block the tumor uptake of BOEPL-L3-S0456, 
confirming that tumor uptake was indeed receptor 
mediated. Biodistribution study showed that other than 
the tumor, only kidney exhibited high fluorescence. The 
fluorescence intensity of the tumor was lower than that of 
the kidney, but as evidenced in the competition studies, 
accumulation of the dye conjugate in tumor was receptor-
mediated, whereas that of the kidney was due to excretion 

of the dye conjugate via the renal route. The ability of 
BOEPL-L3-S0456 to target receptor-positive tumors was 
further evaluated by injecting the dye conjugate into mice 
bearing ovarian cancer (OVCAR-3 tumors, Figure 5) and 
endometrial xenografts (HEC-1B tumors, Figure 6). In 
both tumor models, BOEPL-L3-S0456 showed receptor-
mediated uptake and was found to excrete through renal 
route. Other than tumor and kidney other organs showed 
little to no signal.

To investigate the retention time of the dye 
conjugate in the tumor, a time-course study was 
performed. Mice were injected with 10 nmoles of the dye 
conjugates and imaged at 2 h, 8 h, and 12 h (Figure 7). 

Figure 4: (A) In vivo uptake of the BOEPL-L3-S0456 dye conjugate in MDA-MB-231 tumor xenografts. Mice were treated 
intravenously with the dye conjugate either in the presence (Competition) or absence (Dye) of 100-fold excess of the unlabeled conjugates. 
(B) Uptake of BOEPL-L3-S0456 by various organs. All the images were acquired 2 h post injection. List of organs from top to bottom: 
Tumor, brain, heart, lungs, stomach, small intestine, large intestine, muscle, pancreas, spleen, liver, and kidney. Green arrow indicates tumor.

Figure 5: (A) In vivo uptake of the BOEPL-L3-S0456 dye conjugate in OVCAR-3 tumor xenografts. Mice were treated 
intravenously with the dye conjugate either in the presence (Competition) or absence (Dye) of 100-fold excess of the unlabeled conjugates. 
(B) Uptake of BOEPL-L3-S0456 by various organs. All the images were acquired 2 h post injection. List of organs from top to bottom: 
Tumor, heart, lungs, spleen, pancreas, muscle, stomach, small intestine, large intestine, liver, and kidneys. Green arrow indicates tumor.



Oncotarget156www.oncotarget.com

Even after 12 h post injection, the fluorescence intensity 
of the tumor was found to be high and only a very slight 
decrease in the intensity was observed when compared 
to the image taken 2 h post injection. In summary, we 
have been able to synthesize and optimize an LHRH-R 
targeted fluorescence dye conjugate which not only 
demonstrates receptor-mediated uptake in the tumor but 
also shows good tumor retention for at least 12 h post 
injection.

DISCUSSION

Complete surgical resection of a tumor is the most 
effective way to treat cancers and increase the effectiveness 
of any necessary adjuvant radio- or chemotherapy. 
Inefficient surgical resection of tumor can leave behind 
cancer cells that cause recurrence of the primary tumor and 
may even lead to metastasis. One of the primary reasons 
for failure to resect all diseased tissue is the inability of the 

Figure 6: (A) In vivo uptake of the BOEPL-L3-S0456 dye conjugate in HEC-1B tumor xenografts. Mice were treated 
intravenously with the dye conjugate either in the presence (Competition) or absence (Dye) of 100-fold excess of the unlabeled conjugates. 
(B) Uptake of BOEPL-L3-S0456 by various organs. All the images were acquired 2 h post injection. List of organs from top to bottom: 
Tumor, heart, lungs, spleen, pancreas, muscle, stomach, small intestine, large intestine, liver and kidney. Green arrow indicates tumor. 

Figure 7: Time course imaging of MDA-MB-231 tumor with BOEPL-L3-S0456. The images were taken at 2 h, 8h, and 12 h post injection 
to study the tumor retention of the dye conjugate. Whole body imaging is shown in panels (A–C). Uptake of BOEPL-L3-S0456 by various 
organs was observed at various time points (D–F). List of organs from top to bottom: Tumor, brain, heart, lungs, stomach, small intestine, 
large intestine, spleen, pancreas, muscle, skin, and liver. Green arrow indicates tumor.
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surgeon to visually or tactilely differentiate cancer cells 
from the healthy cells. Fluorescence-guided surgery is an 
effective way to improve the surgical outcome and patient 
survival. Currently, there are multiple NIR dye conjugates 
targeted to various receptors such as the folate receptor, 
[33, 34] PSMA, [35] CAIX, [36–38] CCK2R, [39–41] and 
NK1R [42] etc. Despite the availability of these targeted 
NIR dye conjugates, many cancers cannot be imaged 
either due to the complete absence of or presence of only 
very low number of these receptors. Thus, there is an 
urgent need to develop more targeted NIR dye conjugates 
so that more cancers can be imaged using them. Since high 
levels of LHRH-R are found in cancers of the breast [7, 8], 
ovary [12, 14], prostate [9-11], and endometrium [12, 13] 
we anticipate that LHRH-R targeted NIR conjugates will 
be beneficial for surgical resection of these tumors by 
fluorescence-guided surgery.

An ideal NIR dye conjugate should possess high 
binding affinity and specificity, high tumor to background 
ratio, high quantum yield and rapid clearance from the 
receptor negative tissues. in vitro, BOEPL-L3-S0456 
exhibited low nanomolar binding affinity and specificity 
for LHRH-R. In mouse xenografts, the dye conjugate 
showed receptor mediated uptake in the tumor, whereas 
the uptake in the kidney was non-specific and was due 
to excretion of the conjugate via renal route. The deeper 
tissue penetration of the NIR light should also facilitate 
effective resection of malignant tissues buried deeper in 
healthy tissues. Overall the in vivo results in the mouse 
models indicate BOEPL-L3-S0456 is a better candidate 
for optical imaging compared to BOEPL-L2-S0456, and 
as a consequence displays better potential for eventual 
use in fluorescence-guided surgery of tumors expressing 
LHRH-R. To conclude we have been able to demonstrate 
that a non-peptidic small molecule ligand of LHRH-R 
can be used to successfully deliver a fluorescent payload 
specifically to the LHRH-R positive tumors while reducing 
the uptake amount/retention duration in liver or kidneys.

MATERIALS AND METHODS

Materials:  Benzotriazol-1- yl-oxytripyrrolidinophos-
phonium hexafluorophosphate (PyBop), N,N-
dimethylformamide (DMF), N-ethyl-N-isopropylpropan-2-
amine (DIPEA), isopropyl alcohol (IPA,) dichloromethane 
(DCM), trifluoroacetic acid (TFA), 1,2-ethanedithiol, 
triisopropylsilane (TIPS), and all other chemical reagents 
were purchased from Sigma-Aldrich. Cell culture reagents 
such as Rosswell Park Memorial Institute medium 1640 
(RPMI 1640) were purchased from GIBCO, and fetal 
bovine serum (FBS), 1% penicillin-streptomycin, 2mM 
glutamine were purchased from Life Technologies.

Syntheses

Synthesis of BOEPL-L2: In each of the syntheses 
below, modified version of LHRH-R antagonist 

(NBI42902 [32]) was used as a targeting ligand because 
NBI42902 lacked a functional group that could be readily 
used for further conjugation. We named the modified 
ligand as BOEPL (Breast, Ovarian, Endometrial, 
and Prostate Cancer Ligand). Careful observation of 
structure activity relationship [30] revealed that the ether 
functionality on the fluorinated aromatic ring of NBI42902 
could be substituted without significantly impacting its 
specificity and affinity for LHRH-R (Figure 1). For the 
simplicity of conjugation, the ether group was replaced 
with carboxylic acid and further conjugated to a different 
linker (L2, or L3) to generate a construct for subsequent 
conjugation to the near infrared (NIR) fluorescent dye, 
S0456. The LHRH-R targeting ligand (NBI42902) was 
synthesized according to published procedures [30], 
except the ether group on the antagonist was converted to 
a carboxylic acid for ease of conjugation to a linker.

The modified antagonist, termed BOEPL, was 
then coupled to a polyethyleneglycol based linker (L2) 
by solid phase peptide synthesis (Supplementary Figure 
1) using standard solid phase chemistry. The final 
product was cleaved from the resin using a solution 
of TFA:water:TIPS:ethanedithiol (95%: 2.5%: 2.5%: 
2.5%). Crude BOEPL-L2 was purified by reverse phase-
HPLC [A=2 mM ammonium acetate buffer (pH 5.0), B= 
acetonitrile, solvent gradient 0% B to 80% B in 35 min] to 
yield the desired product. LRMS-LC/MS (m/z): [M+H]+ 
calcd for C47H61F2N5O12S, 958.08; found 959.

Synthesis of BOEPL-L3: The highly hydrophilic but 
uncharged peptidoglycan linker, L3, was synthesized from 
saccharopeptide subunits described elsewhere [43] using 
standard solid phase peptide synthesis (Supplementary 
Figure 2). BOEPL was coupled to the linker on solid 
phase, and the final product was cleaved from the resin 
and purified using the methods described above. LRMS-
LC/MS (m/z): [M+H]+ calcd for C67H94F2N10O23S, 1477; 
found 1478.

Coupling of the near infrared fluorescent dye, 
S0456 to BOEPL-L2, and BOEPL-L3: As described in 
Supplementary Figure 1, 1 equivalent each of S0456-
maleimide and BOEPL-L2 were dissolved in anhydrous 
DMSO, followed by addition of 5 equivalents of DIPEA. 
The reaction mixture was stirred under argon for 1h and 
the progress of the reaction was monitored using LC-
MS (Supplementary Figure 3). Crude BOEPL-L2-S0456 
was purified by RP-HPLC [A=2 mM ammonium acetate 
buffer (pH 7.0), B= acetonitrile, solvent gradient 0% 
B to 80% B in 35 min] to yield the requisite product. 
BOEPL-L3-S0456 was synthesized and purified similarly 
(Supplementary Figures 2 and 4). LCMS characterization 
of BOEPL-L2-S0456, and BOEPL-L3-S0456 are as 
follows; LRMS-LC/MS (m/z): [M+H]+ calcd for C100H118
F2N9Na3O28S5, 2161.35; found 2162. LRMS-LC/MS (m/z): 
[M+H]+ calcd for C120H151F2N14Na3O39S5, 2680.85; found 
2682 respectively.

Cell culture: MDA-MB-231 breast cancer cells, 
HEC-1B endometrial cancer cells and OVCAR-3 ovarian 
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cancer cells (purchased from ATCC) were cultured as a 
monolayer in RPMI 1640 medium supplemented with 10 
% fetal bovine serum, 1% of 2 mM glutamine, and 1% 
penicillin-streptomycin at 37°C in a 5% CO2 and 95% 
humidified atmosphere.

Binding assay: 100,000 MDA-MB-231 or cells 
were seeded into 24 well plates and allowed to grow to 
monolayers over 48 h. Spent medium was replaced with 
fresh medium containing various concentrations of the 
dye conjugate (BOEPL-L2-S0456 or BOEPL-L3-S0456). 
After incubation for 1 h at 37°C, the cells were washed 3x 
with fresh medium and dissolved in 0.5% SDS. The cell 
bound fluorescence was measured using a fluorescence 
spectrophotometer.

Animal husbandry and tumor implantation: All 
animal procedures were approved by the Purdue Animal 
Care and Use Committee. Female athymic nu/nu mice, 
5-6 weeks of age, were acquired from Harlan Laboratories 
and maintained on a standard 12 h light-dark cycle with 
unlimited access to normal rodent chow and water. When 
desired, mice were injected subcutaneously in the right 
hind flank with 5 x 106 MDA-MB-231, OVCAR-3, or 
HEC-1B cells, and tumors were allowed to grow to 200-
300 mm3.

In vivo fluorescence imaging and biodistribution: 
Following development of subcutaneous tumor xenografts, 
mice were intravenously injected (via tail vein) with the 
10 nanomoles of fluorescence dye conjugate (BOEPL-
L2-S0456, or BOEPL-L3-S0456) either in the presence or 
absence of a 100-fold excess of the unlabeled conjugates. 
Animals were euthanized at various time points post injection 
by CO2 asphyxiation, and whole-body images were acquired 
using a Caliper IVIS Luminal II. Organs were then harvested 
and imaged to quantitate accumulation of conjugate in desired 
organs. The image acquisition parameters were as follows: i) 
lamp level-high, ii) excitation-745 nm, iii) emission-ICG, iv) 
binning (M) 4M, (v) f-stop- 4, (vi) FOV-12.5, (vii) acquisition  
time, 1 s.

Abbreviations

LHRH-R (Luteinizing Hormone Releasing 
Hormone Receptor), NIR (Near Infrared), BOEPL (Breast, 
Ovarian, Endometrial, and Prostate Cancer Ligand). 
Luteinizing hormone (LH), Follicle stimulating hormone 
(FSH), Benzotriazol-1-yl-oxytripyrrolidinophosphonium 
hexafluorophosphate (PyBop), N,N-dimethylformamide 
(DMF), N-ethyl-N-isopropylpropan-2-amine (DIPEA), 
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