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ABSTRACT

Prostate cancer diagnosis and treatment continues to be a major public health
challenge. The heterogeneity of the disease is one of the major factors leading to
imprecise diagnosis and suboptimal disease management. The improved resolution of
functional multi-parametric magnetic resonance imaging (mpMRI) has shown promise
to improve detection and characterization of the disease. Regions that subdivide the
tumor based on Dynamic Contrast Enhancement (DCE) of mpMRI are referred to as
DCE-Habitats in this study. The DCE defined perfusion curve patterns on the identified
tumor habitat region are used to assess clinical significance. These perfusion curves
were systematically quantified using seven features in association with the patient
biopsy outcome and classifier models were built to find the best discriminating
characteristics between clinically significant and insignificant prostate lesions defined
by Gleason score (GS). Multivariable analysis was performed independently on one
institution and validated on the other, using a multi-parametric feature model, based
on DCE characteristics and ADC features. The models had an intra institution Area
under the Receiver Operating Characteristic (AUC) of 0.82. Trained on Institution I
and validated on the cohort from Institution II, the AUC was also 0.82 (sensitivity
0.68, specificity 0.95).

INTRODUCTION some of which is attributed to the traditional screening
procedures, including prostate specific antigen (PSA)

Prostate cancer is the second largest cause for [2-4]. mpMRI has improved the detection of clinically
cancer deaths among men in the US with an estimated significant lesions [5] impacting the staging, diagnosis and
21% of newly diagnosed cancers [1]. Over-diagnosis and follow-up of patients with prostate cancer [6]. Dynamic
resulting overtreatment of the disease is a major concern, Contrast Enhancement (DCE) imaging is routinely
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included in prostate MRI exams along with T2-weighted
imaging (T2W), and diffusion-weighted imaging (DWI).
DCE imaging shows the dynamics of the administered
contrast agent, while Apparent Diffusion Coefficient
(ADC) qualifies tissue density by measuring diffusion
of water molecules. Clinical assessment of lesions on
MRI is guided by the Prostate Imaging Reporting and
Data System, version 2 (PIRADSv2) standard [7]. The
standard reporting restricts use of DCE to peripheral
zone (PZ) when clinical significance of the lesion in
DWI is equivocal (DWI PIRADSv2 score of three).
DCE analysis can be broadly divided in two approaches:
Quantitative, where a model is used to determine the rate
of contrast transfer from blood into tissue, and semi-
quantitative, where the analysis uses time activity curve
characteristics to describe different contrast absorption
patterns. The difficulty in establishing consistent features
from the DCE curves, as well as the high inter-observer
variability affects the use of DCE in a quantitative
fashion. Even though semi-quantitative DCE analysis
lacks a formal modeling of contrast uptake, it provides a
more general characterization of the activity curves. This
characterization has been used in the automatic detection
and quantitative scoring of prostate cancer aggressiveness
[8-10]. Quantitative models study the pharmacokinetics
of the contrast agent in the prostate, especially with
the use of arterial input function (AIF) [11]. The model
proposed by Tofts et al [12] provides an elegant model to
characterize contrast absorption. It has been shown that the
pharmacokinetic analysis parameters correlate with lesion
aggressiveness but with high inter-institution variability
[13]. Major constraint in the identification of a region to
derive a reference AIF has prevented these features from
being used in practice [14].

In this study, we examine the utility of DCE derived
quantitative characteristics on a habitat region co-localized
by ADC to discriminate clinically significant prostate
cancer. We also show ways to improve discriminatory
ability by adding radiomics features derived on an
ADC region. The identified model was validated in an
independent cohort obtained from a different institution.

RESULTS

Data set from Institution I consisted of 173 positive
for cancer biopsies from 57 patients; data set from
Institution II consisted of 51 biopsies from 39 patients.
Biopsies without assigned Gleason Score (GS) were
discarded, such as those labeled by the clinical pathologist
as benign prostatic tissue, or as benign prostatic
hyperplasia. Biopsies with an assigned GS sum of 6 or
above were included for analysis. The average interval
between imaging and biopsy sampling was 12 days for
Institution I and 27 days for Institution II. The data
from Institution I consisted of 116 clinically insignificant
and 57 clinically significant biopsies. The data from

Institution II consisted of 22 clinically insignificant and
29 clinically significant biopsies. Patients with temporal
resolution larger than or equal to 15 sec were excluded
(Institution I, n=14; Institution II, n=6). Patients with
DCE motion artifacts were also excluded (Institution
1, n=5; Institution II, n=3). The final analysis included
38 patients (99 biopsies; 84 clinically insignificant,
15 clinically significant: nine with GS 3+4, four with
GS 443, and two with GS 5+3) for Institution I and
30 patients (42 biopsies; 17 clinically insignificant, 25
clinically significant: sixteen with GS 3+4, six with GS
4+3, two with GS 4+4 and one GS 4+5) for Institution
II. Prior preliminary study had shown detrimental
effects of using low temporal resolution on the estimated
curve characteristics [15]. The intra-modality temporal
alignment of DCE was measured as the percentage
difference between the mean prostate time activity
curve and its fitted model. Before registration, the mean
difference was 11.17% (standard deviation, 7.64%). After
registration the mean difference was 7.77% (standard
deviation, 2.58%).

In this study, classifier models using features on
the perfusion characteristics were used to discriminate
between clinically insignificant and significant prostate
cancer (see Table 1). The highest predictive DCE and
ADC features were used to develop a multivariable
predictor model. The wash-in slope habitat and the
radiologist contours had a Dice score of 0.21 suggesting
that this habitat was exploring the peritumoral region,
adding information from the surrounding environment
to the model. Intra-institution analysis of DCE features
(diagonal, Table 2) showed that the AUC for Institution
I was in the range 0.58 to 0.70 and for Institution II it
was in the range 0.37 to 0.71. For both institutions, the top
feature based predictors were slope product and final AUC.
Pairwise analysis of DCE features (off diagonal, Table 2)
showed that for Institution I, the AUC increased for the
pair of features (wash-in slope, initial AUC) to 0.77, with
sensitivity of 0.68 and specificity of 0.85. For Institution
II, the AUC increased for the pair of features (time-to-
peak, final AUC) to 0.82, with sensitivity of 0.84 and
specificity of 0.79.

Statistical analysis showed that for Institution I,
the feature with the largest number of naive pair-wise
significantly different AUC (Supplementary Table 1,
Feature 27) was the pair (final AUC, slope product).
After correcting for multiple comparisons, the significance
level was adjusted to 0.0137 and only 11 out of 27
experiments had significantly different AUC (Table 3).
For Institution II, the best pair (Supplementary Table
2, Feature 12) was the pair (time-to-peak, final AUC).
The significance level was corrected to 0.0321, resulting
in 22 out of 27 significantly different AUC curves. The
remaining 5 feature tuples included either final AUC or
slope product. Additionally, they correspond to the top-
performing AUC in Table 2, outlining a cluster of well-
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Table 1: List of DCE features analyzed in this paper

# Feature ID Feature Description

1 s, peak enhancement, s -s,
2 tau time-to-peak

3 wi wash-in slope

4 wo wash-out slope

5 AUCi initial AUC, AUC ..,
6 AUCS final AUC, AUC, ., 0:270
7 m, slope product, wi'wo

io

Each DCE feature generates a 3D map that is thresholded to converge to a 3D DCE volume. For each feature, it is shown
the 2D Dice coefficient between each converged volume and the manual radiologist contour of the finding, for the slice
with the largest manual volume.

Table 2: Intra-institution evaluation of pairs of DCE features

Institution I Institution IT

Sensit. S, tau wi  wo AUCi AUCf m, Sensit. s, tau wi wo AUCi AUCf m,
s, 0.59 0.63 0.66 0.64 0.66 0.67 0.71 s, 0.58 0.37 047 0.63 0.53 0.53 047
tau 0.63 0.78 0.71 0.66 0.74 0.67 tau 0.37 053 0.53 047 0.84 0.74
wi 0.58 0.68 0.68 0.68 0.71 wi 0.53 0.58 0.58 0.53 0.79
wo 0.51 0.59 0.71 0.60 wo 047 0.63 0.74 0.63
AUCi 0.63 0.73 0.71 AUCi 0.68 0.74 0.53
AUCS 0.68 0.75 AUCS 0.79 0.58
m, 0.67 m, 0.63
Specif. s, tau wi  wo AUCi AUCf m, Specif. s, tau  wi  wo AUCI AUCS m,,
s, 0.56 0.75 0.60 0.74 0.60 0.77 0.67 s, 042 042 0.53 0.58 042 0.53 047
tau 0.64 0.67 0.68 0.82 0.73 0.70 tau 0.37 037 0.58 042 0.79 0.68
wi 0.60 0.67 0.85 0.68 0.70 wi 037 0.63 037 0.63 0.74
wo 0.67 0.68 0.73 0.73 wo 0.74 058 0.63 0.58
AUCi 0.63 0.77 0.74 AUCi 0.58 0.53 0.37
AUCS 0.70 0.75 AUCS 0.63 0.58
m, 0.73 m, 0.79
AUC s, tau wi  wo AUCi AUCf m, AUC s, tau  wi  wo AUCi AU cf m,
s, 0.58 0.69 0.63 0.69 0.63 0.72 0.69 s, 0.50 0.39 0.50 0.61 047 0.53 047
tau 0.64 0.73 0.70 0.74 0.73 0.68 tau 0.37 045 055 045 0.82 0.71
wi 0.59 0.68 0.77 0.68 0.71 wi 045 0.61 047 0.58 0.76
wo 0.59 0.64 0.72 0.66 wo 0.61 0.61 0.68 0.61
AUCi 0.63 0.75 0.73 AUCi 0.63 0.63 045
AUCS 0.69 0.75 AUCS 0.71 0.58
m, 0.70 m, 0.71

Sensitivity, specificity and AUC for classification between clinically insignificant and significant cancer is shown, based on
MRI-guided biopsies. Decision trees were used as classifiers. Leave-one-out(LOO) cross validation was used. The diagonal
corresponds to the univariate case.
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Table 3: Significant differences in AUC for Institution I

Institution I

pValue s, tau Wi wo AUCi AUCS m,

s, 0.054 0.307 0.008 0.064 0.008 0.012 0.076
Tau 0.000 0.001 0.053 0.058 0.026 0.008
Wi 0.000 0.035 0.009 0.035 0.054
Wo 0.037 0.008 0.575 0.027
AUCi 0.022 0.337 0.182
AUCS 0.014 1.000
m 0.006

io

DeLong test was used between the DCE feature tuple (AUCY, m, ) and all other tuples to establish statistical difference.
Significance level (o) was set to 0.05. False discovery rate (FDR) was used to correct for multiple comparisons, with an

adjusted o (adj o) =0.0137.

performing features (Table 4). The same intra-institution
analysis of DCE features was performed for Institution IT
without image registration (diagonal, Table 5). It showed
that the AUC was in the range 0.44 to 0.59, with the top
predictor being initialAUC. Pairwise analysis of DCE
features (off diagonal, Table 5) showed that for Institution
II, the AUC increased for the pair of features (time-to-
peak, initialAUC) to 0.73, with sensitivity of 0.84 and
specificity of 0.63. ADC features were ranked by the intra
institution AUC and the top five pairs (Table 6, description
of features in Table 7) were considered for inter-institution
analysis. AUC for both Institution I and for Institution I1
were in the range 0.71 to 0.82. The top performing ADC
features were associated with histogram gradient, volume/
intensity fraction difference and habitat volume.

Multivariable analysis was performed by joining
pairs of DCE features (Table 2) with the top five
performing ADC pairs (from Table 6) as predictors and
evaluating their predictive power. The quadruples were
ranked by the cumulative inter institution AUC. The top
performing couples corresponded to the same ADC feature
pair: (MaxHistGrad, MinorAxisL). For intra-institution
analysis (Table 8) the AUC for Institution I was in the
range 0.75 to 0.88, and for Institution II it was in the
range 0.45 to 0.76. For inter-institution analysis (Table 9)
the AUC for Institution I was in the range 0.71 to 0.82,
and for Institution II it was in the range 0.54 to 0.70.

DISCUSSION

DCE features show promise in discriminating
between normal appearing versus tumor tissue: In a
recent study [9], characterization of the prostate region
(radiomics) in MRI showed predictive of cancer tissue,
with an AUC of 0.71 for PZ and of 0.68 for TZ. DCE
features have also shown to be discriminant between
clinically significant and insignificant prostate cancer:

wash-in and wash-out slope were two of the parameters in
a three-variable linear models that showed a classification
AUC of 0.85 for PZ and 0.92 for TZ in an intra-institution
setting using whole-mount histopathology contours
registered unto T2W for lesion characterization [10].
The discriminatory power of DCE shows promise in
this work; only if the procedure could be translated
in clinical practice to obtain better risk stratification
therefore avoiding aggressive treatment in patients with
non-significant cancer. It was already shown that DCE-
based habitats provide significant correlation between
clinically insignificant and significant lesions in [§]
where the AUC for the significant quantitative features
reached 0.88 and 0.95. This previous work supports
the underlying hypothesis for this study: that DCE
features are able to differentiate clinical significance of
identified lesions. It is shown in this paper that DCE
and ADC radiomics features from a wash-in slope
induced habitat differentiate clinically significant vs
insignificant cancer with an AUC of 0.88 and 0.82 for
intra and inter-institution analysis respectively (Tables
5 and 6) showing similar discriminating power than
whole-mount histopathology-based regions of interest
[10].

The intent of this paper is to show utility of DCE
habitats accurate predict cancer status and to show adding
multiple modality information (ADC metrics) shown
improvement in the predictability. The analysis presented
here did not break down the tumors by prostatic zone
because of the small sample size for clinically significant
lesions, but the segmentation step was aware of the
prostate zone containing the largest percentage of the
lesion.

Although DCE plays a minimal role in PIRADSv2,
finer quantification of perfusion characteristics may
have a greater role. As shown in this study, pairs of DCE
features had an AUC of 0.71 for Institution I, and 0.82
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Table 4: Significant differences in AUC for Institution II

Institution II

pValue s, tau wi wo AUCi AUCS m,

s, 0.005 0.032 0.001 0.017 0.010 0.002 0.014
Tau 0.032 0.013 0.007 0.009 1.000 0.258
Wi 0.013 0.031 0.008 0.022 0.471
Wo 0.024 0.017 0.084 0.017
AUCi 0.021 0.009 0.013
AUCS 0.369 0.027
m 0.290

io

DeLong test was used between the DCE feature tuple (fau, AUCY) and all other tuples to establish statistical difference.
Significance level (o) was set to 0.05. False discovery rate (FDR) was used to correct for multiple comparisons, with an

adjusted o (adj o) =0.0321.

for Institution II, for intra-institution analysis. For inter-
institution analysis (Table 6), it can be seen that training
on Institution I had better performance than training
on Institution II. This might be due to the difference
in training size (99 and 42 biopsies, respectively)
suggesting than the radiomics approach requires a
larger training set. The best performing features in
this inter-institution analysis (Table 6) for training on
Institution I were the tuple (4UCi, wo, MaxHistGrad,
MinorAxisL) with an AUC of 0.82. This tuple had both
features from early uptake (4UCi) and late uptake (wo)
suggesting that including descriptors for the whole
DCE curve improves performance. The ADC features
suggest that abrupt intensity changes and the volume
of the ADC habitat play an important role in improving
classification. Perfusion characteristics associated with
early enhancement (peak enhancement, time-to-peak,
start of enhancement) continued to be some of the top
predictors of clinical significance. In addition, it was
found that the rate of contrast activity at early and late
absorption (wash-in slope, wash-out slope, and slope
product) were consistently top candidates related to
Gleason tumor grades. A meta-analysis of various DCE
publications in prostate cancer [16] showed that the
forward volume transfer (Ktrans) and reverse reflux
(Kep) are consistently related to tumor aggressiveness
and these measures were valuable for differential
diagnosis of prostate cancer. This study found that feature
descriptors related to perfusion peak, rate and wash-out
characteristics were predictive of clinical significance.
Multicenter validation studies in breast cancer finds
variation in concordance between participants estimate
of Ktrans, ranging from 0.047 to 0.92 [17].

There are a few studies using quantitative imaging
in prostate cancer relating features to aggressiveness.
Some top features correspond to gradients, Gabor filters,
etc [18]. The predictors showed high specificity (>95%)

but a low level of sensitivity (< 42%). In a recent review
on prostate cancer, the concern of over-diagnosis was
addressed by a suggestion to exploit quantitative imaging
metrics to offset the need for invasive biopsies [19]. A
quantitative imaging approach such as the one presented in
this current study has the potential to significantly reduce
the number of biopsies and associated morbidity. The
presented approach of using a sphere around the lesion
to find an appropriate habitat can easily be adapted to a
deep-learning framework to identify DCE habitats in a
data-driven fashion that shows promising in imaging
but requires larger data sets. Center of mass of manually
drawn contour was used, to co-localized ADC map to
converge on DCE habitats. Small changes in lesion
contours will have minimal impact on the habitat region.

The need for registration between different
modalities of medical imaging has been well documented
[20]. The measurement of registration accuracy is still
challenging for 4D DCE data. DCE intensity variances
over time have been used as a similarity measure
in registration of DCE data [21]. We used MIM
PACS registration modules (FDA approved package)
accessed iteratively using custom routines to minimize
discrepancy in mpMRI modality alignment. Based on our
preliminary analysis to study the influence of modality
alignment to downstream analysis, we find time-to-
peak and initial AUC are early enhancement features,
that are probably not affected by patient movement
which predominantly happens during the later parts of
the scan. The aim of the work presented here is not to
identify nor delineate suspicious regions in the prostate.
Our goal is to provide the radiologists and oncologists
with an accurate prediction of the clinical significance of
identified lesions.

The American College of Radiology recommends
use of high DCE temporal resolution (10 seconds or less)
for characterizing prostatic vasculature [22]. In a recent
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Table 5: Evaluation of pairs of DCE features for Institution II, without image registration

Institution II

Sensit.
S
P

tau

wi
wo
AUCi
AUCS

io

AUC

tau

wi

wo
AUCi
AUCS

m.

io

0.80

0.38

0.59

tau
0.64
0.56

tau
0.31
0.31

tau
0.48
0.44

wi
0.84
0.56
0.60

wi
0.44
0.38
0.38

wi
0.64
0.47
0.49

wo
0.64
0.52
0.76
0.60

wo
0.44
0.44
0.38
0.31

wo
0.54
0.48
0.57
0.46

AUCi AUCS

0.72
0.84
0.72
0.88
0.84

0.52
0.72
0.68
0.76
0.68
0.84

AUCi AUCS

0.69
0.63
0.75
0.31
0.44

0.19
0.19
0.31
0.50
0.31
0.25

AUCi AUCS

0.70
0.73
0.74
0.60
0.64

0.35
0.45
0.50
0.63
0.50
0.55

mio
0.68
0.80
0.68
0.68
0.68
0.44
0.44
mio
0.44
0.50
0.38
0.44
0.44
0.19
0.44

mio
0.56
0.65
0.53
0.56
0.56
0.31

0.44

Sensitivity, specificity and AUC for classification between clinically insignificant and significant cancer is shown, based on
MRI-guided biopsies. Decision trees were used as classifiers. Leave-one-out(LOO) cross validation was used. The diagonal
corresponds to the univariate case.

Table 6: Intra-institution evaluation pair-wise, bivariate/variable ADC features

ADC Features Institution I, LOO Institution II, LOO
Sensitivity Specificity AUC  Sensitivity Specificity = AUC
MaxHistGrad MinorAxisL 0.79 0.84 0.82 0.74 0.79 0.76
MaxHistGrad SurfArea 0.82 0.77 0.79 0.63 0.84 0.74
MaxHistGrad MinHistGrad 0.75 0.67 0.71 0.74 0.89 0.82
VolIFractDiff LeastAxisL 0.68 0.73 0.71 0.74 0.89 0.82
IntVFractDiff LeastAxisL 0.84 0.75 0.79 0.58 0.84 0.71

Pairings of 90 ADC features for intensity statistics, histogram and shape were used for classification between clinically
insignificant and significant cancer. Sensitivity, specificity and AUC were computed. The cumulative AUC between
institutions was used for ranking. The top five pairings are shown below. Decision trees were used as classifiers. Leave-one-
out (LOO) cross validation was used for intra-institution evaluation
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Table 7: Description of top performing ADC features

# Feature ID Feature Description

1 MaxHistGrad Maximum Histogram Gradient Grey Level

2 MinHistGrad Minimum Histogram Gradient Grey Level

3 VolIFractDiff Volume at Intensity Fraction Difference

4 IntVFractDiff Intensity at Volume Fraction Difference

5 SurfArea Surface Area (mm?)

6 MinorAxisL Minor Axis Length

7 LeastAxisL Least Axis Length
Table 8: Intra-institution evaluation of pair-wise DCE and ADC features

DCE Features + 2 ADC Features Institution I, LOO Institution II, LOO

(MaxHistGrad, MinorAxisL) Sensitivity Specificity AUC  Sensitivity Specificity ~AUC

Tau AUCS 0.84 0.70 0.77 0.58 0.42 0.50
Wi wo 0.78 0.73 0.75 0.58 0.42 0.50
AUCi m, 0.89 0.86 0.88 0.68 0.84 0.76
AUCi wo 0.88 0.74 0.81 0.68 0.74 0.71
s, m, 0.90 0.79 0.85 0.47 0.42 0.45

Pairings of 7 DCE features (Table 1) combined with the top performing 5 ADC (Table 3). Sensitivity, specificity and AUC
were computed. The cumulative inter-institution AUC was used for ranking. Leave-one-out (LOO) cross validation was
used for decision tree classifiers. All top DCE-ADC tuples had the same ADC pair (MaxHistGrad, MinorAxisL)

—T___‘____
Institution [ X
38 patients DCE : :
99 biopsies DCE curve DCE map Localization of
parametrization generation Tumor habitat
Institution il DCE tumor region characterization
30 p_atiEl'_ﬂ'E [ Faaturs ID - . Fl | |
42 biopsies ADC : A i oM 1]
(z-score) ) ™ L] s 1o ||
4 W e |
L~ s i u|:"- . !
; 2= L a '|||—s!|
. D ¥ w3 gmanen v e

Feature Extraction Classification

Pre-processing

Figure 1: Block diagram of the overall processing. A set of 38 patients from Institution I and 30 from Institution II with available
mpMRI data were included in the analysis. Pre-processing included z-scoring of the ADC data and shifting/scaling of DCE data to the
pre-contrast images. Voxel-wise parametrization of the DCE curves was performed and a DCE amp was generated for each parameter. A
perfusion tumor habitat was localized from the DCE map based volume that was most similar to the radiology contour. Features from this
DCE volume were computed for both DCE and ADC. A bottom-up approach to cluster important features was performed and a final model
including 2 DCE and 2 ADC features is presented. Classification of these features was performed to evaluate prognostic value.
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Table 9: Inter-institution evaluation of pair-wise DCE and ADC features

DCE Features + 2 ADC Features Institution I — Institution II Institution II — Institution I

(MaxHistGrad, MinorAxisL) Sensitivity Specificity AUC  Sensitivity Specificity AUC
Tau AUCS 0.58 0.95 0.76 0.67 0.73 0.70
Wi wo 0.53 0.89 0.71 0.67 0.73 0.70
AUCi m, 0.47 0.95 0.71 0.78 0.58 0.68
AUCi wo 0.68 0.95 0.82 0.38 0.70 0.54
s, m, 0.63 0.95 0.79 0.38 0.74 0.56

The top performing tuples in the intra-institution DCE and ADC feature evaluation (Table 5) are independently tested
between institutions. Sensitivity, specificity and AUC were computed. Decision trees were used as classifiers.

plateau(s,,)
¢ . wesh-out slope
w —
peak %
enhancement| 2 - AUCi AUCf
(s0)
v -
o
wash-in slope
o A
static (sg) © T T T T T T
20 100 150 200 250 300
to T

time
start of enhancement, t,

time-to-peak, t

Figure 2: Quantitative modeling of the DCE-MRI time activity characteristics. A 5-parameter curve is fitted to the DCE-MRI
representative curve from the tumor habitat. The model consists of initial static intensity s, plateau s _, start of enhancement #,, time-to-peak
t, and wash-out slope wo. Peak enhancement s =s -s ; wash-in slope w=s /t. AUC, , is the area under the DCE curve (from red dots)

between times t1 and 2. The AUFC _, is the area under the fitted curve (blue) between times tl and t2.

Figure 3: Definition of the wash-in slope habitat. (A) Anatomical structures: Prostate (cyan), peripheral zone, PZ (yellow), and
radiologist’s lesion contour (blue) along with computed structures: A 3D 15 mm radius sphere (green) located at the center of mass of the
marked lesion, and bounded by the prostate and the lesion’s zone, in this case the transition zone. This bounded sphere is used as search
space to select the region with large wash-in slope. The upper quartile is used to converge to the wash-in slope habitat (red). These structures
are overlapped with the wash-in slope map that is computed by a pixel-wise fitting of the DCE time activity curves within the prostate.
(B) Mean time-activity curves for the radiologist finding contour (blue) and the wash-in slope habitat (red). It can be seen that this habitat
includes intra and peritumoral regions
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study, a sampling resolution of 15 sec and above resulted in
a statistical insignificance compared to higher resolutions
[15]. Due to retrospective nature of the study, data sets with
temporal sampling larger than 15 seconds were removed to
compromise on the sample size between two centers.

MATERIALS AND METHODS

Patient data

This study evaluated the performance of features
using two independent data sets: First cohort was collected
at the University of Miami (Institution I) under approved
Institutional Review Board (IRB) protocol and de-
identified for retrospective analysis. An additional cohort
was collected at H. Lee Moffitt Cancer Center (Institution
II), under protocol approved by the University of South
Florida’s IRB. The patient’s informed consent was waived
for retrospective access of de-identified patient records.
The methods were performed in accordance with the
approved guidelines. Data consisted of histopathology
analysis of prostate biopsies acquired with either template
or targeted biopsy from pre-treatment MRI acquired by
fusing the MRI and real-time ultrasound images using
Uronav (Invivo Corporation, Gainesville, FL), which
allows for accurate measurement of needle location. For
this study, GS values were grouped in two categories:
clinically insignificant cancer (=GS6) and clinically
significant cancer (GS > 7). All statistics were performed
using this grouping.

MRI acquisition and pre-processing

Routine clinical mpMRI acquisition includes T2W,
DCE, and diffusion weighted imaging (DWI). DWI
includes an ADC map generated at acquisition time.
Institution I imaging was acquired using multiple
scanners, Siemens (Siemens, Munich, Germany) and GE
(General Electrics, Boston, MA) with 19 and 38 patients,
respectively. Both acquired at 3T with an external pelvic
coil. DWI was acquired using three b-values: 50, 500 and
1000 (n=37) and 50, 500 and 1400 (n=20). For DWI, the
median repetition time (TR) was 9.5 sec (range 6.6-9.87
sec) and the median echo time (TE) was 55.8 msec (range
52.4-93 msec). For DCE, the median TR was 4.05 msec
(range 3.04-5.24 msec), the median TE was 1.78 msec
(range 1.36-2.33 msec), flip angle was 12 deg (n=54) and
10 deg (n=3), temporal resolution was 7 sec (n=43) and
30 sec (n=14). Institution II imaging was also acquired
using multiple scanners, Siemens (Siemens, Munich,
Germany), Philips (Philips, Amsterdam, Netherlands),
and GE (General Electrics, Boston, MA) with 31, 5, and 3
patients, respectively. Acquired using 3T (n=7) and 1.5T
(n=32) with an endorectal coil (eCoil, Medrad, Pittsburgh,
PA). For DWI, the median TR was 7.4 sec (range 3.2-9.5

sec) and the median TE was 95 msec (range 70.5-115
msec). For DCE, the median TR was 4.72 msec (range
2.42-4.72 msec), the median TE was 1.34 msec (range
1.06-2.08 msec), flip angle was 12 deg (n=34) and 10 deg
(n=5), temporal resolution was 11 sec (n=33) and 16.5 sec
(n=0).

All modalities were registered locally to the
prostate using the T2W image as reference. We
used gradient descent of mutual information on the
space spanned by 3D affine transformations, using a
combination of native and custom routines on the MIM
PACS software (MIM Corporation, Cleveland, OH).
Manual contours of the prostate, PZ, and the radiologist
finding in the pre-biopsy MRI were stored as RT-DICOM
structures. The peak-absorption time point S Was
identified in DCE using the AIF signal as reference. All
other DCE time points were registered to S - ADC were
standardized within the prostate, i.e., ADCz = (ADC-
mean(ADC(prostate)))/std(ADC(prostate)), which has
been shown to be used to standardize data variability
[23]. DCE data was normalized using an automatically
segmented arterial contour as described in [24], which
makes the signal proportional to the change in relaxation
rate caused by the contrast agent weighted by the initial
spin-lattice relaxation time [25]. Image analysis was
performed using custom routines written in Matlab
(Mathworks, Natick, MA) which were accessed directly
from the PACS (MIM Corporation, Cleveland, OH,
USA).

Image registration in mpMRI

In order to minimize the effects of patient movement
during the long period of mpMRI scan on the downstream
analysis has motivated to use image registration to
align modalities [20]. The measurement of registration
accuracy is still challenging for 4D DCE data. In prior
studies intensity variances over time have been used as
a similarity measure in registration of DCE data [21].
This variance was quantified by measuring the percentage
difference between the mean prostate time activity curve
and its fitted model. The mean percentage different of
the signal intensity decreased from 11.17% without
any to 7.77% after image registration. The standard
deviation also reduced, from 7.64% to 2.58%, showing
a larger decrease in the distribution of motion artifacts
after registration. It was found that the performance of
DCE features as predictors of accuracy is sensitive to
patient motion artifacts. We evaluated the performance
of single DCE features as predictor with respect to
registration. We find the AUC range shifted from 0.37 to
0.71 (with registration) to the range 0.44 to 0.64 (without
registration). Pairwise analysis showed that the feature
pair (time-to-peak, initialAUC) was not affected by the
registration process.
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Study design

The overall methodology of this study is shown
in Figure 1. A wash-in slope map was generated by
estimating the wash-in slope (Figure 2) of the time activity
curves associated with the voxels within the prostate. The
tumor region that was based on the radiologist finding on
the T2W images was obtained. This region was centered
based on the TRUS biopsy location that was imported
directly from the fused TRUS/MRI system. This lesion
boundary was initialized with a uniform 3D volume
(extended region of fixed diameter) around the biopsy
location and converged automatically into a wash-in slope
habitat based on the upper quartile of the wash-in slope
map (Figure 3A). The habitat’s average absorption at
each DCE time point was analyzed and used to generate
time activity curves that were characterized by computing
quantitative descriptors. These descriptors were then used
in a classifier model to find features that discriminate
clinically significant tumors. Intra-institution classification
was used to select a set of DCE and ADC features that
were analyzed in an inter-institution setting, where the
model was build using the cohort from one institution
and validated on the other institution. Inter-institution
analysis of this subset of features was performed and the
top performing features are shown in Table 5.

Feature extraction

In this study, seven features were extracted from the
DCE time activity curves, which describe both early and
late enhancement (see Table 1). DCE curves were fitted
using a bi-exponential model [26]. This semi-quantitative
model has five parameters: initial static intensity s, plateau
s, start of enhancement 7, time-to-peak tau, and wash-out
slope, wo. Figure 2 shows an example DCE curve along
with these parameters. Peak enhancement 8,558,753 wash-
in slope wi=s, /tau. In addition, we computed two features
that describe the area under the DCE curve between a
time intervals, namely: AUC, , is the area under the bi-
exponential fitted DCE curve between time, t1 and t2.
AUCi = AUC,, ., measures the early wash-in uptake
curve and AUCS= AUC,,, . .,7, measures the late wash-
out curve. The seventh feature computes the multiplicative
effect of wash-in and wash-out slopes and was computed
as m,= wi" wo. On the localized region, a set of 90 ADC
features were computed consisting of intensity statistics,
histogram and volume features. A subset of pairs of ADC
features was obtained from the top performing pair-wise
features selecting those with largest AUC.

Computation of the wash-in slope habitat

The wash-in slope has been useful for cancer
detection and localization [27], as well as in discriminating
aggressive versus non-aggressive lesions [28]. It also
differentiates prostate cancer from non-neoplastic

lesions [29]. In [28] manual contours on whole mount
histopathology after prostatectomy were mapped to T2
and the DCE wash-in slope was significantly different
between these two groups for both the mean and the 75%
percentile within the mapped contour. In recent work [30],
wash-in slope along with time-to-peak induced the highest
sensitivity (0.89 for linear discriminant analysis, and 0.97
for SVM) for ovarian cancer. In this study, the wash-in slope
parameter was used to converge to an intra and peritumoral
region (habitat) around the biopsy location to characterize
the surroundings of the biopsied lesion. This was done by
first forming a sphere (radius » = 15 mm) around the given
biopsy location to account for TRUS/MRI registration error.
This region was bounded by the prostatic zone, either PZ or
transition zone (TZ) allocating the largest lesion volume.
The values for the wash-in slope within the localized sphere
were used to obtain the region defined by the upper quartile.
The corresponding DCE region will be our consensus tumor
habitat region of interest. The mean DCE signal value at
the consensus region at each sampling time was used as a
representative perfusion curve for the patient biopsy. The
definition of the wash-in slope habitat is shown in Figure 3

Statistical analysis

Univariate analysis of the seven DCE features
was performed to evaluate the overall discrimination of
clinically significant to non-significant cancers using
decision trees [31]. Sensitivity, specificity and AUC
were computed on the features (see Table 1). Pair-wise
multivariable analysis was performed by exhaustive
comparison of all possible DCE feature pairs.

The underrepresented GS class was over-sampled
using SMOTE [32], calibrated so that both classes
had exactly the same size. Intra institution classifier
performance was evaluated using /eave-one-out (LOO)
cross validation. For inter institution validation, a training
model was built using the whole balanced data set in one
institution, and tested using the unbalanced data set from
the other institution. Data from different institutions were
not mixed to build the classification models.

Pair-wise comparison of AUC was performed using
DeLong test [33]. False discovery rate [34] (FDR) was
used to correct for multiple comparisons.

Image processing and segmentations were
performed on MIM Imaging PACS workstation (MIM
Corporation, Cleveland, OH, USA). The feature
computations were developed using custom code written
in C++ and Matlab (Mathworks Inc., Natick, MA).
Classifiers were implemented in Matlab. DeLong and
FDR tests were performed in R.

CONCLUSIONS

This paper describes a systematic approach to
quantifying the clinical significance of lesions identified
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by radiology using a DCE-based habitat and evaluating
both DCE and ADC features. Our approach identifies
reproducible features for inter-institution prediction and
can be translated seamlessly into clinical practice to guide
radiologists and oncologists in the assessment of clinically
significant prostate cancer.
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