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ABSTRACT

Background: Lymph node metastasis (NM) in breast cancer is a clinical predictor 
of patient outcomes, but how its genetic underpinnings contribute to aggressive 
phenotypes is unclear. Our objective was to create the first landscape analysis of CNV-
associated NM in ductal breast cancer. To assess the role of copy number variations 
(CNVs) in NM, we compared CNVs and/or associated mRNA expression in primary 
tumors of patients with NM to those without metastasis. 

Results: We found CNV loss in chromosomes 1, 3, 9, 18, and 19 and gains in 
chromosomes 5, 8, 12, 14, 16-17, and 20 that were associated with NM and replicated 
in both databases. In primary tumors, per-gene CNVs associated with NM were ten 
times more frequent than mRNA expression; however, there were few CNV-driven 
changes in mRNA expression that differed by nodal status. Overlapping regions of CNV 
changes and mRNA expression were evident for the CTAGE5 gene. In 8q12, 11q13-
14, 20q1, and 17q14-24 regions, there were gene-specific gains in CNV-driven mRNA 
expression associated with NM. 

Methods: Data on CNV and mRNA expression from the TCGA and the METABRIC 
consortium of breast ductal carcinoma were utilized to identify CNV-based features 
associated with NM. Within each dataset, associations were compared across omic 
platforms to identify CNV-driven variations in gene expression. Only replications 
across both datasets were considered as determinants of NM.

Conclusions: Gains in CTAGE5, NDUFC2, EIF4EBP1, and PSCA genes and their 
expression may aid in early diagnosis of metastatic breast carcinoma and have 
potential as therapeutic targets.
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INTRODUCTION

In most metastatic carcinomas, the lymph nodes are 
the first distant organs to be affected. [1]. Approximately 
half of the 246,000 annual U.S. cases of breast cancer 
involve women with nodal metastasis (NM) upon 
diagnosis. Of those without NM at diagnosis, another 
half will develop distant recurrence and/or relapse [2]. 
The presence of NM is also a concern in therapeutic and 
surgical decision making [3]. Yet, in the understanding 
of metastatic behavior, many of the molecular and 
genomic changes that occur during the transmission of 
primary tumor cells to distant sites of propagation remain 
undiscovered. Metastasis-focused research generally pairs 
primary-to-distant tumor samples or conflates metastasis, 
relapse, and death as one outcome in time-to-event studies. 
We propose that using NM as an alternative endpoint for 
tumor propagation offers both a point of observation in the 
metastatic process and a novel method for discovering the 
genetic underpinnings of NM. 

The genomic characteristics of a primary tumor hold 
structural and functional clues to the behavior of tumor-
originating cells in distant organs. There is extensive 
literature of use of gene expression for the profiling of 
primary breast tumors in the prediction of metastasis 
and outcomes [4–12]. Paired primary-to-distant research 
suggests that the capacity for metastasis is established 
early in primary tumor growth [13–16] and that distant 
metastases (nodal and otherwise) show molecular 
similarities to their primary tumors in both copy number 
variation (CNV) and mRNA transcription [15, 17–20]. 
The primary tumors of relapsed NM-negative patients 
have a higher total CNV burden as compared to relapse-
free, NM-negative patients [21]. In NM-free patients, 
regions of CNV gains associated with a poor prognosis are 
chromosomes 8 (8p11-12), 11 (11q13-14), and 20 (20q13 
33). In NM-positive primary tumors, survival-relevant 
regions of CNV loss are at 4p, 8p, 9p, 11q, 16q, 17p, 
and 18p, and areas of gains are at 1q, 8q, 16p, 17q, 19p, 
and 20q [21–27]. Yet, the findings are limited either by 
small sample size or by unknown reproducibility in other 
populations. Our study identifies features in both CNV 
and transcription platforms, validates findings in a second 
large dataset, and examines how the two measures interact 
in ways that are meaningful to NM.

This study presents a validated, gene-level 
landscape of genomic and intergenic regions associated 
to NM. We characterized the genomic regions at two 
levels, cancer-specific CNVs and mRNA expression. 
Later, we characterized CNV driven changes in mRNA 
unique to patients with NM. The molecular and genomic 
features of NM-positive samples were compared to control 
tumor samples which were MN-negative. To reduce false 
positives we described this landscape using concordant 
CNV to mRNA and validated analysis in two large breast 
cancer cohorts considering potential confounders. 

RESULTS

Clinical associations to NM

Clinical covariates associations to NM showed 
a significant relationship between tumor size and NM. 
In METABRIC, half of the patients without NM had 
a tumor size ≤20 mm. In TCGA samples, the TNBC 
molecular subtype was also associated with a decreased 
instance of NM. Similarly, in the TCGA data, a higher 
proportion of women with NM were pre-menopausal and 
slightly younger than their non-NM counterparts. Table 1 
shows the association of all covariates with NM in both 
METABRIC and TCGA. 

Replicated CNV regions of interest (step 1: 
genomic landscape for NM)

Among all participants, 450 CNV genes of interest 
were associated with NM (as determined with a nominal 
p-value α ≤ 0.05) and replicated in both METABRIC and 
TCGA CNV losses in 314 genes had an association with 
NM. Specific regions of interest (regions having a density 
of significantly associated CNVs) were found in large 
areas of chromosomes 1 (1p32-1p36, 1q21-1q24, and 
1q42), 3 (3q11, 3q22-3q26), 9 (9p24), 18 (18q11-18q12), 
and 19 (19p13 and 19q12). Genes in 1p34 with lowest 
odds of NM were AKIRIN1 (ORMETABRIC = 0.27, 95% CI 
0.10–0.70, ORTCGA = 0.27, 95% CI 0.1–0.59), NDUFS5 
(ORMETABRIC = 0.18, 95% CI 0.06–0.53, ORTCGA = 0.28, 95% 
CI 0.13–0.62), and RRAGC (ORMETABRIC = 0.18, 95% CI 
0.05–0.68, ORTCGA = 0.29, 95% CI 0.13–0.62), (odds ratios 
are presented in Supplementary Table 1). In 136 genes, 
per-gene copy gains in CNV measures were associated 
with NM. There were regions of interest in chromosomes 
5 (5q33-5q35), 12 (12q21 & 12q23), 14 (14q11-14q13, 
14q21-14q23), and 15 (15q13-15q14, 15q21). Genes with 
the highest odds of NM were located on chromosome 5 
(5q33.1d; ZNF300, CCDC69, SLC36A1, and SLC36A2) 
and 14 (14q 11: in gene SLC7A8; 14q13: gene AKAP6; and 
14q2: gene CLEC14A). See Figure 1 and Supplementary 
Tables 1 and 2. After FDR adjustment for multiple testing, 
no single gene-level CNV had a significant and replicated 
association with NM. 

Replicated significant mRNA regions of interest 
(step 1)

In both TCGA and METABRIC data, 48 genes 
overlapped with a concordant direction of association to 
NM. Regions of interest with replicated mRNA losses 
were found in 23 genes located at chromosomes 1 (1p32-
1p36, 1q21, and 1q25), 3 (3q11, 3q22-3q24), 4 (4p32), 5 
(5p15), 6 (6q22-6q23), 8 (8q24), 10 (10q23), 11 (11q13), 
13 (13q33), 16 (16p11), 19 (19p13 and 19q13), 20 (20q11), 
and 22 (22q12). The largest decreases in mRNA log-fold 
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Table 1: Association of nodal metastasis and patient features by data source

 METABRIC TCGA  
Nodal metastasis present    No Yes p-value No Yes p-value
 (N = 389) (N = 383)  (N = 293) (N = 357)  
Race   0.021   0.678
  - Asian 1 (0.3%) 2 (0.5%)  20 (6.8%) 26 (7.3%)  
  - Black 0 (0.0%) 0 (0.0%)  40 (13.7%) 45 (12.6%)  
  - missing 225 (57.8%) 179 (46.7%)  22 (7.5%) 36 (10.1%)  
  - Other 3 (0.8%) 4 (1.0%)  0 (0.0%) 1 (0.3%)  
  - White 160 (41.1%) 198 (51.7%)  211 (72.0%) 249 (69.7%)  
Age at diagnosis (± SD) 59.1 ± 12.2 60.8 ± 14.4 0.088 58.0 ± 12.4 56.1 ± 13.1  
Receptor subtype   0.572   0.043
  - missing 0 (0.0%) 0 (0.0%)  29 (9.9%) 23 (6.4%)  
  - HER2 28 (7.2%) 34 (8.9%)  9 (3.1%) 21 (5.9%)  
  - Luminal 285 (73.3%) 282 (73.6%)  212 (72.4%) 276 (77.3%)  
  - TNBC 76 (19.5%) 67 (17.5%)  43 (14.7%) 37 (10.4%)  
ER status   0.708   0.102
  - missing 0 (0.0%) 0 (0.0%)  17 (5.8%) 16 (4.5%)  
  - negative 104 (26.7%) 108 (28.2%)  88 (30.0%) 84 (23.5%)  
  - positive 285 (73.3%) 275 (71.8%)  188 (64.2%) 257 (72.0%)  
PR status   0.171   0.324
  - missing 0 (0.0%) 0 (0.0%)  19 (6.5%) 17 (4.8%)  
  - negative 184 (47.3%) 200 (52.2%)  110 (37.5%) 121 (33.9%)  
  - positive 205 (52.7%) 183 (47.8%)  164 (56.0%) 219 (61.3%)  
HER2 status   0.138   0.591
  - missing 0 (0.0%) 0 (0.0%)  96 (32.8%) 114 (31.9%)  
  - negative 336 (86.4%) 316 (82.5%)  154 (52.6%) 180 (50.4%)  
  - positive 53 (13.6%) 67 (17.5%)  43 (14.7%) 63 (17.6%)  
Menopause status   0.579   0.027
  - missing 0 (0.0%) 1 (0.3%)  18 (6.1%) 39 (10.9%)  
  - post 293 (75.3%) 291 (76.0%)  213 (72.7%) 228 (63.9%)  
  - pre 96 (24.7%) 91 (23.8%)  62 (21.2%) 90 (25.2%)  
Tumor size   <0.0001   <0.0001
  - T1 (<20 mm) 230 (59.1%) 126 (32.9%)  115 (39.3%) 72 (20.2%)  
  - T2 (>20 <50mm) 157 (40.4%) 234 (61.1%)  160 (54.7%) 229 (64.1%)  
  - T3&4 (>50 mm) 2 (0.5%) 23 (6.0%)  17 (5.9%) 56 (15.7%)  
AJCC Stage   <0.0001   <0.0001
  - I 251 (64.5%) 3 (0.8%)  115 (39.2%) 8 (2.2%)  
  - II 132 (33.9%) 311 (81.2%)  173 (59.0%) 203 (56.9%)  
  - III&IV 6 (1.5%) 69 (18.0%)  3 (1.0%) 129 (36.1%)  
  - missing 0 (0.0%) 0 (0.0%)  2 (0.7%) 17 (4.8%)  

Abbreviations: HER2, human epidermal growth factor receptor 2; TNBC, triple negative/basal breast subtype; ER, estrogen 
receptor; PR, progesterone receptor.
*Tumor size is AJCC TNM staging.
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change values in both data sets were found in CP (3q24), 
HS3ST5 (6q22), BAI1 (8q24), and CYP2C8 (10q23). 
Statistically significant gene-effect changes associated 
with cases of NM were found for 25 genes across datasets. 
Regions of interest were in chromosomes 1 (1p13, 1q23), 
2 (2q31), 3 (3q26), 4 (4p14), 6 (6q24), 8 (8q21), 9 (9p21), 
11 (11p15), 12 (12q24), 14 (14q12-14q13, 14q21), 15 
(15q15, 15q21), 16 (16q22), 17 (17p13), 19 (19p13, 

19q13), 20 (20p11), 21 (21q22), and X (Xp11). RNA 
transcripts with the highest log-fold change across datasets 
were DLX1 (2q31), TMEM156 (4p14), NOVA1 (14q12), 
and SHC4 (15q21). The lowest nominal p-value for log 
fold change was for NOVA1, 0.015 in METABRIC and 
0.002 in TCGA. See Supplementary Tables 3 and 4 for 
details. While coding regions were not significant after 
FDR correction and validated across data sets, non-coding 

Figure 1: Genome-wide landscape of NM-associated CNV and mRNA: Layers, starting from outermost are (1) 
chromosome number and mega base scale; (2) ideogram of each chromosome (centromeres in red); (3) genome-wide 
model coefficient estimates of odds of NM for each gene (METABRIC = blue, TCGA = red); (4) replicated CNV genes 
associated with NM (grey dots); (5) genome-wide log-fold change between case and control mRNA (METABRIC = 
blue, TCGA = red); (6) replicated mRNA genes associated with NM (dark grey dots). Highlighted chromosomes bring 
attention to omic regions of interest (ROIs): orange = consistent CNV/RNA losses in ROIs (chromosomes 1 & 19), white = inconsistent 
CNV/mRNA measures in replicated ROIs (chromosome 9), green = consistent CNV/mRNA gains in replicated ROIs (chromosome 14).
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analysis in TCGA data found three regions significant at 
FDR 0.1; 6q24.1-6q23.3, 11q13.1, and 15q15.3 - 15q21.1. 

Confirmed links between copy number and 
transcription (step 2: CNV to mRNA analysis)

A validated association between CNV and RNA was 
discovered in CTAGE5. For this gene, CNV copy gains 
and increased RNA were associated with NM-positive 
patients (Figure 2). CNV-driven loss of expression was 
found in the CRELD1 gene (Supplementary Table 5, 
Supplementary Figure 4). CNV-driven mRNA gains 
were present in chromosomes 8, 11, 17, and 20. CNV-
based upregulation of several genes in chromosome 
8 in region 8q23-24: PSCA, SLC30A8, and ZFPM2 
were evident in approximately 6% of all METABRIC 
NM-positive patients and in 41% of all TCGA cases 
(Supplementary Table 6 and Supplementary Figure 
5). In cases of NM, multiple genes in the chromosome 
17q12-q21 region (CDC6, PSMD3, and STARD3 among 
them) showed a significant relationship of concordant 
CNV to RNA changes (Supplementary Figures 6–8). 
In both METABRIC and TCGA data, 20–25% of all 
women with NM had CNV copy gains or losses that 
were associated with same-direction RNA changes for 
this region. A similar result was found for EIF4EBP1 
(8p12) and NDUFC2 (11q14) (Supplementary Table 7 and 
Supplementary Figures 9, 10).

Additional validation measures

Using only TCGA data and the results list from 
CNV-to-mRNA association in step 2, we performed a 
preliminary validation of CNV-driven results with two 
additional omics of protein and methylation. In general, 
genes with increased CNV-to-mRNA had an inverse 
relationship with CNV-to-methylation levels (HM450), 
and a positive correlation with CNV-to-protein levels. 
Additional omic information was available for four 
genes; CRELD1, EIF4EBP1, PSMD3, and STARD3. Only 
CRELD1 and EIF4EBP1 had significant changes in both 
protein and methylation which were unique to NM status. 
For both CRELD1 and EIF4EBP1, NM positive women 
had CNV-correlated protein increases (Pearson p-value 
of < 0.001 for both). In the same genes, methylation was 
inversely correlated to CNV (Pearson p-value of 0.02 and 
0.02 respectively) (See Supplementary Table 8). In the 
top results from validated CNV-driven mRNA changes, 
we found the choline metabolism pathway in KEGG 
cell signaling (hsa05231), to be enriched in NM positive 
patients. 

DISCUSSION

This investigation utilized TCGA and METABRIC 
data to identify and replicate genomic and transcriptional 
features in association with NM in ductal breast tumors. 

Figure 2: CNV to mRNA relationship in CTAGE5 across both datasets, including adjusted odds of NM and log-fold 
change between NM-positive and NM-negative samples. Black points are NM-negative; red and blue points are NM-positive.
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While we proposed NM as a proxy for metastatic behavior 
in general, the main objective of this paper is the creation 
of a descriptive landscape of omics in primary tumors 
with metastatic behavior. NM however is limited when 
considered as the outcome. While the overall objective 
of treatment is to achieve metastasis-free survival, 
rather than preventing nodal metastasis, NM has several 
advantages for the analysis, e.g., NM is cross-sectional 
and does not need follow up. Identified genes or other 
non-coding genomic regions will contribute to the 
understanding of the metastatic process. The genome-
wide CNV association study revealed more than 400 
gene-level areas of amplification and deletion that were 
replicated in both sets of data. Similar mRNA association 
testing gave a set of 48 gene-level transcripts consistently 
associated with NM status. Both sets of results were 
obtained without correction for multiple testing in order 
to be lax and reduce the number of false negatives. Genes 
were prioritized for discussion using the top results from 
statistical analysis in step 1(integrated CNV and mRNA 
landscape); significant genes (nominal p-value α ≤ 0.05) 
were then tested in step 2, CNV-to-mRNA genome-wide 
association testing. From these results, per-gene gains 
in CNV measurement had translational effects in the 
8q12, 11q13-14, 14q, 20q1, and 17q14-24 regions. There 
were transcriptional corollaries across areas of CNV 
copy loss in chromosomes 1p and 1q and in 19p13. In 
chromosome 3 (3p25), there was a slight CNV-driven loss 
of transcription linked to CRELD1. 

Chromosome 14 was of interest in regard to 
replicated CNV gains in the CTAGE5 gene (14q21). This 
gene is a member of the CTAGE family, and a variety of 
tumors, including those of the breast, express CTAGE5 
exclusively [28]. The protein for this gene is involved 
in collagen VII transport in the endoplasmic reticulum 
[29]. The relationship between collagen density and 
tumorigenesis in mouse primary tumors and lymph nodes 
has been examined [30–32]. Although most research has 
focused on collagen I, collagen VII has been associated 
with in situ tumors in some cases of breast cancer [33]. An 
additional quality of CTAGE 5 is tumor-specific splicing 
[34], with an example of gene fusion in prostate cancer 
[35]. CTAGE5, as an antigen specific to tumors, has 
promise as a therapeutic target. 

The gene for prostate stem cell antigen (PSCA) on 
chromosome 8 (8q24) had significantly associated CNV-
to-mRNA expression only in cases of NM. For various 
tumor types, there was increased expression of this gene. 
For pancreatic and bladder cancers, both expression and 
copy number increase with metastases [36, 37]. For Asian 
populations, mutations in PSCA are linked to an increase 
in breast cancer risk, with an increased risk of NM. 
[38, 39] The genes NDUFC2 and EIF4EBP1 in 11q14 
and 8q12 are amplified driver genes in several cancers 
[40–42], yet their link to NM in breast cancer is novel 
(Supplementary Figures 9, 10).

CNV-based genome-wide analysis of non-coding 
regions revealed three significant results after FDR 
correction. It is difficult to differentiate between protein 
coding and non-coding effects in these regions. In many 
patients the CNVs are large and involve both coding 
and non-coding regions. Loss of heterozygosity (LOH) 
at RAD51 15q14-15 loci and 6q23-24 at SASH1  loci in 
breast cancer has been linked to poor outcomes [43–45]. 
Furthermore,  previous breast cancer research suggests 
that  the consequences of CNV change on noncoding 
RNA seems to be less frequent than in protein coding 
and non-coding regions [46]. CNV-driven mRNA genes 
associated with NM were found to be enriched in the 
choline kinase pathway. Choline kinase has been observed 
as overexpressed in approximately 40% of breast tumors 
[47], and has been evaluated as a promising imaging 
tracer for breast tumors diagnosis [48, 49]. In Prostate 
cancer, choline PET/CT has been used successfully to 
detect recurrence and lymph node staging [50], and recent 
research in breast cancer has suggested a similar choline-
based diagnosis strategy as promising [51, 52]. However, 
the relationship between choline and NM, as well as its 
association with CNV, presents novel topics of further 
research. 

Relative to copy number aberrations and their 
mRNA consequences, we found more validation of  
per-gene CNV regions associated with NM than for the 
per-gene mRNA approach or CNV-driven mRNA analysis. 
This can be expected from a per-gene CNV approach, 
since mapping multi-gene segment units of copy number 
to an individual gene gives a distortion in interpreting 
measures of frequency. Empirically, approximates of per-
gene transcription as correlated to CNV in all cancers 
suggest that ~60% [53] of the associated mRNA should 
be based in CNV.  Breast cancer-specific studies of the 
CNV effect upon expression suggest ~12% concordance 
[54]. Our results show ~10% of CNV changes altered 
mRNA in a meaningful way for NM. Rather than 
predicting tumor versus normal, we examined NM within 
the situation of cancer. Therefore, expected proportions 
may not apply. It is important to note that the two steps 
of the analysis will not necessarily yield overlapping 
results, as they are geared towards different measures; 
The first step constructs a landscape of gene-level odds 
of NM for both CNV and mRNA measures while the 
second step identifies CNV-driven changes in mRNA 
unique to patients with NM. The strength of the second 
stage of the analysis (step 2) is built around the ability to 
validate gene-level, CNV-associated changes in mRNA. 
Differing approaches to CNV calls between sets of data 
may limit the effectiveness of our validation approach. A 
low rate of validation is expected; residual influences on 
validity, such as measurement errors, selection bias, and 
target population, would lead to spurious findings unique 
to both METABRIC and TCGA. Under the null hypothesis 
(i.e., if the gene has no effect on nodal metastasis), there 



Oncotarget36842www.oncotarget.com

will be at least 5% of false positives just from chance; 
however, the same false positive has a chance to be 
significant again only in the 0.25% of the tests. Finally, 
the limitation of lymph node metastasis as a proxy for 
overall metastatic behavior should be considered. Many 
cancers have alternate routes to distant metastasis, other 
than lymph nodes.

Our analysis found examples of CNV-driven 
relationships to mRNA that were unique to single sets of 
data, but they were not reproduced. In TCGA, the 15q21.1a 
region of chromosome 15 had the strongest statistical 
association with outcome. CNV unit increases in the gene 
SEMA6D had high odds of NM combined with a significant 
mRNA fold change in NM patients. Yet the closest 
significant regions of interest in METABRIC data were 
more than 1,000 kpb away from this result, and there was 
no clear link between CNV and mRNA. Large regions of 
CNV loss in chromosome 1 were validated across both sets 
of data, yet had few transcriptional correlates. Traditionally, 
joint analyses of copy number and expression data are used 
to guide internal validity through the discovery of CNV-
driven mRNA effects [55–58]. 

MATERIALS AND METHODS

Patients and samples

Cancer genome data were obtained from two 
independent cohorts. The Molecular Taxonomy of Breast 
Cancer International Consortium (METABRIC) data  
(N = 772) were acquired from Synapse DREAM7 Breast 
Cancer Prognosis Challenge, already processed according 
to the METABRIC source paper [56]. A second set of data 
(N = 650) came from The Cancer Genome Atlas (TCGA) 
Data Portal [59]. TCGA level 3 data are also open-access 
and pre-processed. Since lobular breast cancer differs 
from ductal cancer in biological characteristics, indolence, 
and metastatic behavior, samples were exclusively from 
invasive ductal carcinomas [60, 61]. All patients were 
female, with no history of a prior malignancy or of 
neoadjuvant treatment. The response variable of NM was 
defined for both datasets using TNM pathologic staging 
[62] for lymph nodes (N). All TNM N values of 0 were 
considered controls (NM 0); N values greater than 0 were 
considered cases. Patient demographics and characteristics 
are described in Table 2 and Supplementary Figure 1.

Copy number and transcriptome data

METABRIC and TCGA used Affymetrix Genome-
Wide SNP array 6.0 to derive somatic copy number 
variations (CNVs). METABRIC preprocessing identified 
somatic CNV segments in tumors using the HMM-
Dosage method [63]. A similar patient-by-gene matrix was 
created with TCGA data using normalized circular binary 
segmentation [64] files for each patient. A mean log2 ratio 

per segment was assigned to each genic and intergenic 
region within the segment according to METABRIC 
annotation. METABRIC used the Illumina HT-12v3 
platform in gene expression analysis. Pre-processing 
included spatial artifact correction, summarization, and 
normalization of log2 intensities with bead-array and 
BASH R packages [65, 66]. In TCGA, normalized mRNA 
expression counts were derived from the TCGA Level 3 
RNAseqV2 expression data. Illumina HiSeq 2000 was 
used to create the TCGA transcriptional data.

Association studies and omic integration

This study was performed in two steps (see 
workflow in Supplementary Figure 2). In the first step 
of the analysis, we created genome-wide landscapes 
of NM associated CNV and mRNA in both TCGA and 
METABRIC, and then integrated both CNV and mRNA 
results. This analysis was done for coding regions in 
TCGA and METABRIC and non-coding regions in TCGA. 
Non-coding analysis was done only in TCGA, since 
data was not available in METABRIC. Genome-wide, 
covariate-adjusted association tests were done at a gene 
level unit of analysis, separately evaluating the association 
between the levels first of CNV, and then mRNA, with the 
response variable yes/no NM. In total, association results 
were produced for five separate sets (see Supplementary 
Figure 3): TCGA protein coding CNV, TCGA mRNA, 
METABRIC protein coding CNV, METABRIC mRNA, 
and TCGA non-coding CNV. Equations for genome wide 
tests are:
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P y
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ij
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1 1

η

Where yi is a dummy variable representing subject’s i-th 
NM status (yes = 1, no = 0), and ηij is a linear predictor 
of the form:

η µ β γij i ijX O= + +�

Where μ is a common intercept, Xi is the i-th row 
of the incidence matrix X representing different sets of 
covariates for each data set (METABRIC and TCGA), β 
is the vector of corresponding effects; Oij is the intensity of 
the j-th feature of the omic O in the i-th subject, and γ the 
corresponding effect. For METABRIC data, the columns 
of X consisted of grade, tumor size, age at the moment 
of diagnosis, and race. For TCGA data, they consisted of 
molecular subtype, tumor size, age at diagnosis, and race.

In the second step of the analysis we regressed a 
CNV to mRNA on a gene-by-gene basis [55, 58]. The 
analysis was conducted to examine the consequence of 
per-gene CNV gain/loss upon mRNA within the same 
sample. To identify the modifying effect of NM upon 
CNV related changes in expression, both datasets were 
stratified by NM status, and the following tests were 
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Table 2: Patient features by data source

Features
METABRIC TCGA

(N = 772) (N = 650)
Nodal metastasis present   
  - No 389 (50.4%) 293 (45.1%)
  - Yes 383 (49.6%) 357 (54.9%)
Race   
  - Asian 3 (0.4%) 46 (7.1%)
  - Black 0 (0.0%) 85 (13.1%)
  - missing 404 (52.3%) 58 (8.9%)
  - Other 7 (0.9%) 1 (0.2%)
  - White 358 (46.4%) 460 (70.8%)
Age at diagnosis (± SD) 59.9 ± 13.4 56.9 ± 12.8
Receptor subtype   
  - missing 0 (0.0%) 52 (8.0%)
  - HER2 62 (8.0%) 30 (4.6%)
  - Luminal 567 (73.4%) 488 (75.1%)
  - TNBC 143 (18.5%) 80 (12.3%)
ER status   
  - missing 0 (0.0%) 33 (5.1%)
  - negative 212 (27.5%) 172 (26.5%)
  - positive 560 (72.5%) 445 (68.5%)
PR status   
  - missing 0 (0.0%) 36 (5.5%)
  - negative 384 (49.7%) 231 (35.5%)
  - positive 388 (50.3%) 383 (58.9%)
HER2 status   
  - missing 0 (0.0%) 210 (32.3%)
  - negative 652 (84.5%) 334 (51.4%)
  - positive 120 (15.5%) 106 (16.3%)
Menopause status   
  - missing 1 (0.1%) 57 (8.8%)
  - post 584 (75.6%) 441 (67.8%)
  - pre 187 (24.2%) 152 (23.4%)
Tumor size*    
  - T1 (<20 mm) 356 (46.1%) 187 (28.9%)
  - T2 (>20 <50 mm) 391 (50.6%) 389 (59.9%)
  - T3&4 (>50 mm) 25 (3.2%) 73 (11.2%)
AJCC Stage   
  - I 254 (32.9%) 123 (18.9%)
  - II 443 (57.4%) 376 (57.8%)
  - III&IV 75 (9.7%) 132 (20.3%)
  - missing 0 (0.0%) 19 (2.9%)

Abbreviations: HER2, human epidermal growth factor receptor 2; TNBC, triple negative/basal breast subtype; ER, estrogen 
receptor; PR, progesterone receptor.
*Tumor size is AJCC TNM staging.
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performed with the iGC Bioconductor package [67]. Gene 
expression driven by CNV was identified first by grouping 
all per-gene CNVs as copy gains (log2 ratio ≥ 0.4), copy 
losses (log2 ratio ≤ −0.4), and between-threshold values 
as diploid/neutral (log2ratio null = 0). Thresholds for log2 
ratio values were chosen at higher amplitudes than greater 
than or less than |0.1| of earlier approaches [68, 69] in 
order to better show gene-level, rather than chromosome-
level, or arm-level, CNV events [70]. The variations in 
gene expression between CNV-gain genes and diploid 
normals and CNV-loss genes and diploid normals were 
tested with an unequal variance Student’s t-test. Filtering 
of results was based on the false discovery rate (FDR) 
adjusted p-value (α = 0.1) and consistent direction of 
CNV-to-RNA association. A relaxed p value threshold 
was selected to avoid losing genes that could be false 
negatives in a stringent testing by the cost of accepting 
more false positives. CNV-driven gene transcripts unique 
to NM status were found for both METABRIC and TCGA. 
Finally, significant genes in both datasets were then 
identified within each NM group. 

Three additional measures of validation were used 
to supplement our findings. We performed an enrichment 
analysis on all significant CNV-driven mRNA genes 
in Enrichr [71]. Using only TCGA data, we checked 
for CNV-driven changes in the added omic measures 
of protein and methylation. In order to account for any 
non-coding CNVs of importance to our outcome, we also 
examined the association of non-coding regions of CNV 
to NM status. However this was done only in TCGA, 
since non-coding data is not available in METABRIC (see 
Statistical analysis section in Supplementary Materials).

CONCLUSIONS

In sum, we have identified, in invasive ductal 
beast carcinomas, CNV-based regions of interest that 
are associated with NM. Genes in regions 14q21, 8p12, 
8q24, 11q14, and various locations on chromosome 1 
and 17 may be associated with the development of NM, 
since the chromosome copy loss/gain happened after the 
development of NM, and the associated expressions of 
these genes were different by NM status, suggesting either 
a role in or a consequence of development of metastases. 
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