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ABSTRACT

Aim: The purpose of this study is to evaluate the role of pre-miR34a rs72631823 
as potential risk factor and/or prognostic marker in patients with triple negative breast 
cancer. 

Methods: 114 samples of DNA from paraffin embedded breast normal tissues of 
patients with triple negative breast cancer and 124 samples of healthy controls were 
collected and analyzed for pre-miR34a rs72631823 polymorphism. 

Results: Pre-miR34a rs72631823 A allele was associated with increased TNBC risk 
both in univariate and multivariate analysis. The number of pre-miR34a rs72631823 
AA subjects was very small and the association did not reach significance (p = 0.176, 
Fisher’s exact test). The examined polymorphism was not associated with overall 
survival at the univariate or multivariate Cox regression analysis (adjusted HR = 1.60, 
95%CI: 0.64–3.96 for miR34 rs72631823 GA/AA vs. GG). 

Conclusion: Our case-control study suggests that pre-miR34a rs72631823 A allele 
is associated with increased triple negative breast cancer risk.
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INTRODUCTION

Triple negative breast cancer (TNBC) represents 
15–20% of all invasive breast cancers and is characterized 
by high biological heterogeneity with increased levels of 
distal recurrence and poor survival, besides high response 
rate to chemotherapy that constitutes the only standard of 
treatment [1]. The discovery of new biomarkers related to 
TNBC can lead to a better understanding of the disease 
and to the design of new targeted therapies with the aim 
to improve the outcome of this malignancy [2, 3]. Single 
nucleotide polymorphisms (SNPs) have been implicated 
in cancer development, prognosis and drug-resistance, 
often interacting with other factors [4]. Regarding TNBC, 
several SNPs in extensively studied genes, such as BRCA1 

[5], PARP1 [6], ERCC2 [7], TNFa [8], TMPRSS6 [9], 
GLCE [10], have been associated with the disease across 
different geographic regions and races. 

MicroRNAs are small, endogenous, non-coding 
RNAs of approximately 22 nucleotides that could 
regulate gene expression at post-transcriptional level by 
binding with mRNAs. Depending on the complementarity 
between the seed sequence of a microRNA (region of 
6-8 nucleotides in the 5’ end of microRNA) and mainly 
the 3’untranslated region of the target mRNA molecule, 
microRNAs could induce degradation or translational 
repression of their targets [11, 12]. Through this action, 
microRNAs play a pivotal role in key cellular processes, 
such as proliferation, differentiation, epithelial-
mesenchymal-transition, embryogenesis, angiogenesis, 
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invasion and apoptosis [13, 14].  MicroRNAs were first 
described in the literature by Lee et al [15], and increasing 
evidence has shown that expression of microRNAs is 
deregulated in multiple cancers (lung, ovarian, colorectal, 
breast cancer etc.) [14, 16–18]. Depending on their 
target, microRNAs may function as oncogenes or tumor 
suppressor genes [19], and are associated with cancer 
development, progression, metastatic index and drug 
resistance [17, 20].

Sequence alterations in pre-miRNA molecules 
seem to affect the levels of the mature microRNA [21]. 
Pre-miR-34a rs72631823 polymorphism is observed in the 
terminal loop of the pre-miR-34a. The presence of the A 
allele (rather than the G allele) correlates with increased 
pre-miR-34 sensitivity to processing by Drosha and Dicer, 
resulting in increased levels of miR34a in the cytoplasm. 
This observation was reported by Locke JM et al [22] in 
a cell line of pancreatic beta cells, where the presence of 
pre-miR-34a rs72631823 A allele was associated with 
increased levels of miR-34a.

This study was designed in order to investigate 
the role of pre-miR-34a rs72631823 polymorphism as a 
potential risk factor and/or a prognostic marker in patients 
with TNBC who have received chemotherapy, via a case-
control study of 114 patients with triple negative breast 
cancer and 124 controls.

RESULTS

Table 1 presents descriptive statistics regarding 
demographic lifestyle and reproductive parameters, in 
cases and controls. Cases were younger at menarche  
(p = 0.023, MWW) and consumed alcohol more frequently 
(p = 0.046, Chi-square test), compared to controls. No 
significant differences were documented in education, 
menopausal status, smoking rates between cases and 
controls. The majority of TNBC cases were T2 (61.4%), 
node-negative (63.2%), grade 3 (86.9%) carcinomas.

Genotype frequencies, unadjusted and adjusted 
ORs for the examined polymorphisms are provided 
in Table 2. At the univariate analysis, Pre-miR34a 
rs72631823 A allele was associated with increased TNBC 
risk (crude OR = 3.13, 95%CI: 1.67–5.87 in the allele 
dose-response model and crude OR = 2.98, 95%CI: 
1.56–5.70 for the GA vs. AA comparison). The number of  
pre-miR34a rs72631823 AA subjects was very small and 
the association did not reach significance (p = 0.176, 
Fisher’s exact test). The multivariate analysis, adjusting 
for age, smoking, alcohol consumption, menopausal 
status, age at menarche and education, confirmed that Pre-
miR34a rs72631823 A allele was associated with increased 
TNBC risk (adjusted OR = 2.89, 95%CI: 1.53–5.47 in the 
allele dose-response model; adjusted OR = 2.56, 95%CI: 
1.30–5.03 for the GA vs. AA comparison).

Subgroup analyses by menopausal status reproduced 
the findings of the overall analysis. In premenopausal 

women, the adjusted OR for the allele dose-response 
model was 5.15 (95%CI: 1.22–21.68). Accordingly, in 
postmenopausal women the adjusted OR for the allele 
dose-response model was 2.49 (95%CI: 1.20–5.16). 

No significant deviation from HWE was 
documented for the examined polymorphism (Pearson’s 
chi2(1) = 0.67, p = 0.413).

The results of the nested prospective study in cases 
are shown in Table 3. The median follow-up was equal to 
9.3 years; the examined polymorphism was not associated 
with overall survival at the univariate or multivariate Cox 
regression analysis (adjusted HR = 1.60, 95%CI: 0.64–
3.96 for miR34 rs72631823 GA/AA vs. GG; Table 3). 
Figure 1 presents Kaplan–Meier overall survival curves 
for the studied polymorphism.

DISCUSSION

This study is the first to highlight that pre-
miR34a rs72631823 A allele is associated with nearly 
3-fold increased risk of TNBC. The association was 
evident in premenopausal as well as postmenopausal 
women and persisted after adjustment for various 
potential confounders, including age, smoking, alcohol 
consumption, age at menarche and education. On the other 
hand, pre-miR34a rs72631823 A allele did not seem to 
alter the overall survival of TNBC. 

This is the first study that evaluates the role of pre-
mir34a rs72631823 polymorphism as a potential risk factor 
or/and prognostic factor in TNBC. Since the examined 
polymorphism has been previously investigated only once 
in a line of pancreatic beta cells, and not in cancer, based 
on current knowledge our results cannot be compared to 
other studies. However, these findings seem to agree with 
previous studies stating that alterations in pre-miRNAs 
could affect the expression levels of genes involved in 
oncogenesis. The association trend between pre-mir34a 
rs72631823 and TNBC is in accordance with the studies 
of Morales S et al [25] and Li M et al [26] that present 
the association of single nucleotide polymorphisms in 
pre-miRNAs with breast cancer in a South American 
population and gastric cancer in a Chinese population. 
Pre-miRNA polymorphisms seem to affect oncogenesis 
by modifying the cellular levels of mature miRNA, as it 
is mentioned in the study of Lv H and his colleges [21]. 

Since 2005, when Iorio et al [16] presented 
the first miRNA signature in breast cancer, several 
miRNAs including miR-200, miR-21, miR-34, miR-
31, miR-146 have been implicated in important cellular 
processes such as migration, proliferation, EMT and 
apoptosis both in luminal and basal phenotype [27–30]. 
MicroRNAs could serve as excellent biomarkers, since 
they have great stability in tissues and human fluid 
and they could be easily detected in tumor biopsies  
[21, 31–34]. MiRNA 34 constitutes of a highly conserved 
family of 3 miRNAs through evolution; miRNA34a that 
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Table 1: Distribution of the 114 TNBC cases and the 124 age-matched controls by demographic, lifestyle and 
reproductive variables 

Variable Cases Controls
Continuous variables Mean (SD) Mean (SD) p-value
Age (years) 56.1 (14.3) 56.6 (13.9) matched variable
Age at menarche (years) 12.9 (1.8) 13.4 (1.6) 0.023MWW

Categorical and ordinal variables N (%) N (%)
Education 0.103C

Uneducated / Primary 10 (8.8) 17 (13.7)
Secondary 14 (12.3) 27 (21.8)
High School 59 (51.7) 54 (43.6)
College / University 31 (27.2) 26 (21.0)

Menopausal status 0.404C

Premenopausal 34 (29.8) 31 (25.0)
Postmenopausal 80 (70.2) 93 (75.0)

Ever smoking 0.399C

Yes 36 (31.6) 33 (26.6)
No 78 (68.4) 91 (73.4)

Alcohol consumption 0.046C

< 1 glasses/week 75 (65.8) 96 (77.4)
≥ 1 glasses/week 39 (34.2) 28 (22.6)

Tumor size
T1 32 (28.1)
T2 70 (61.4)
T3 8 (7.0)
T4 4 (3.5)

Nodal status
N0 72 (63.2)
N1 13 (11.4)
N2 9 (7.9)
N3 20 (17.5)

Grade
G1 3 (2.6)
G2 12 (10.5)
G3 99 (86.9)

Histology
Ductal 87 (76.3)
Lobular 10 (8.8)
Other 17 (14.9)

MWW: p-value derived from Mann-Whitney-Wilcoxon test for independent samples; C: p-value derived from Chi-square test
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is encoding from a transcriptional unit on chromosome 
1p36 and miRNAs34b/c that are encoding from the 
same transcriptional unit on chromosome 11q23 [35]. 
MiRNA34a, the most extensively studied miRNA of this 
family, is a tumor suppressor as it has been found to be 
down-regulated in multiple tumors [36, 37]. In 2007, 
several studies indicated the role of mir-34a in inducing 
apoptosis and cell-cycle arrest though its regulation of the 
p53 protein [35, 38–42]. In the next few years, more studies 
established mir-34a’s association with key processes in 

carcinogenesis such us inhibition of proliferation, colony 
formation, migration and drug resistance, as well as the 
enhancement of cell-cycle arrest, senescence and apoptosis 
[36, 43] in hematologic malignancies [44], lung cancer 
[45], brain tumor [46], HHC [47, 48], ovarian cancer 
[49] and in other solid tumors [50–52]. Regarding breast 
cancer, mir-34a has already been proven to regulate cell 
proliferation, differentiation, epithelial-mesenchymal-
transition, apoptosis, cell cycle arrest and to reverse drug 
resistance, after interaction with significant signaling 

Table 2: Genotype frequencies and odds ratios regarding the association between Pre-miR34 rs72631823 
polymorphism and TNBC risk

Genotype Cases Controls OR (95% CI)a OR (95% CI)b

 N (%) N (%)

Total study

GG 76 (66.7) 107 (86.3) 1.00 (Ref.) 1.00 (Ref.)

GA 36 (31.6) 17 (13.7) 2.98 (1.56–5.70) 2.56 (1.30–5.03)

AA 2 (1.7) 0 (0.0) Not estimable due to 
zero controls§

Not estimable due to 
zero controls

Allele dose-response 3.13 (1.67–5.87) 2.89 (1.53–5.47)

Premenopausal women OR (95% CI)a OR (95% CI)c

GG 22 (64.7) 28 (90.3) 1.00 (Ref.) 1.00 (Ref.)

GA 11 (32.4) 3 (9.7) 4.67 (1.16–18.80) 4.03 (0.83-19.52)

AA 1 (2.9) 0 (0.0) Not estimable due to 
zero controls

Not estimable due to 
zero controls

Allele dose-response 4.89 (1.27–18.93) 5.15 (1.22–21.68)

Postmenopausal women OR (95% CI)a OR (95% CI)c

GG 54 (67.5) 79 (85.0) 1.00 (Ref.) 1.00 (Ref.)

GA 25 (31.3) 14 (15.0) 2.61 (1.25–5.48) 2.27 (1.06–4.88)

AA 1 (1.2) 0 (0.0) Not estimable due to 
zero controls

Not estimable due to 
zero controls

Allele dose-response 2.73 (1.33–5.60) 2.49 (1.20–5.16)

§p = 0.176 for the association, Fisher’s exact test; a: unadjusted OR; b: OR adjusted for age, smoking, alcohol consumption, 
menopausal status, age at menarche and education; c: OR adjusted for age, smoking, alcohol consumption, age at menarche 
and education.  
Bold cells denote statistically significant associations.

Table 3: Results of the univariate and multivariate Cox regression analysis examining the associations between  
Pre-miR34 rs72631823 polymorphism and overall survival in women with TNBC

Genotype Cases Univariate HR (95% CI) Multivariate HR (95% CI)§

 N (%)
miR34 rs72631823
GG 76 (66.7) 1.00 (Ref.) 1.00 (Ref.)
GA/AA 38 (33.3) 1.28 (0.55–2.96) 1.60 (0.64–3.96)

§adjusted for age, grade and stage
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pathways such as MET, p53, NOTCH, TGF-β, PRKD1 
and BCL-2 pathways [53–56]. Furthermore, there are 
indications that mir-34a is associated with histologic grade, 
while there has been no correlation with clinicopathology 
features in breast cancer up until now [57, 58].

An important element of validity of the present 
study is the absence of deviation of allele frequencies in 
controls for pre-mir34a rs72631823 concerning HWE. 
Discrepancies on HWE might indicate incorrect or guided 
sample selection by the research team, genotyping errors or 
incongruity of mating. Despite the originality, limitations 
of this case-control study should be reported. First, more 
studies with increased sample size should be performed to 
overcome the obstacle of the small number of homozygous 
pre-mir34a rs72631823 AA subjects. Additionally, in our 
study, the investigated polymorphism was evaluated in 
paraffin embedded normal breast tissue, which however is 
a very common source for DNA extraction in the studies 
regarding microRNAs.

In conclusion, according to our data it seems 
that pre-mir34a rs72631823 A allele is associated with 
increased TNBC risk. Future well designed studies should 
be performed to elucidate the mechanisms underlying the 
effect of this SNP in TNBC, across different races.

MATERIALS AND METHODS

Subjects 

Paraffin embedded breast normal tissues were 
collected from 114 patients with histologically confirmed 
TNBC during the period 2000-2014. Operations were 
conducted at the Gynecology Department, “Alexandra” 
Hospital, Medical School, University of Athens, Greece 
and patients received chemotherapy at the Oncology 

Department, “Alexandra” Hospital, Medical School, 
University of Athens, Greece. The exclusion criteria were 
as follows: metastatic disease at diagnosis, no invasive 
disease, family history of breast cancer (1st degree 
relative with breast cancer, known BRCA1 and BRCA2 
mutations), history of prior malignancy and no signed 
informed consent form. Additional information regarding 
the histology, tumor size, grade, histological stage, lymph 
node infiltration, the expression levels of ki67 and p53, 
disease free survival (DFS) and overall survival (OS) 
were registered in an electronic database according 
to the patients’ medical records. Concerning controls, 
women with negative results for breast cancer on routine 
mammography test were selected. Controls were matched 
on age (+– 2 years) with patients and had no history of 
other malignancy. Cases and controls were Caucasian 
and lived in the same geographical region (greater 
metropolitan area of Athens, Attica). Informed consent 
was obtained from all individual participants included in 
the study. This case-control study has been approved by 
the local Institutional Review Board.

Genotyping of pre-mir-34a rs72631823

DNA from paraffin embedded normal breast tissues 
of patients and DNA from the blood of healthy controls 
was isolated using the Nucleopsin Tissue kit (Macherey 
Nigel, Germany). Amplification of the selected sequences 
was performed with allele-specific PCR (polymerase chain 
reaction), using two allele-specific reverse primers: RG, 
5′ CTTGCTGATTGCTTCCTTAC 3′ for the wild type 
allele and RA: 5′ CTTGCTGATTGCTTCCTTAT 3′ for 
the mutant allele, in combination with a common forward 
primer F: 5′ CACATTTCCTTCTTATCAACAG 3′ in two 
separate PCR reactions. The 3′-ends of the reverse primers 

Figure 1: Kaplan–Meier overall survival estimates for Pre-miR-34 rs72631823 GG (blue lines) and GA/AA TNBC cases.
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were able to anneal to the regions that differed between the 
two alleles. The endogenous levels of the corresponding 
gene products were quantified by ELISA. 

Statistical analysis

Data were cross-tabulated by case-control status; 
Mann-Whitney Wilcoxon test (MWW) and Chi-square 
test were used for the comparison of demographic, 
lifestyle and reproductive factors in cases and controls, 
as appropriate. To analyze the associations between the 
examined polymorphisms and the risk of TNBC, three 
separate logistic regression models were evaluated: 
heterozygous vs. wild type (the most frequent homozygous 
genotype was set as “wild type”), homozygous vs. wild 
type and dose-response allele model (0: wild type, 1: 
heterozygous, 2: homozygous subjects). Unconditional 
logistic regression analysis was performed to estimate 
univariate and multivariate odds ratios (ORs) with 95% 
confidence intervals (CIs). The multivariate ORs were 
adjusted for age, smoking, alcohol, menopausal status 
age at menarche and education. In addition, subgroup 
analyses for premenopausal and postmenopausal women 
were conducted. The deviation of allele frequencies in 
controls from the Hardy-Weinberg Equilibrium (HWE) 
was examined with the appropriate goodness-of-fit Chi-
square test, given that the deviation may denote bias [23]. 
Univariate and multivariate Cox regression analysis was 
performed to evaluate the association of polymorphisms 
with overall survival in breast cancer patients; the 
multivariate Cox regression model was adjusted for 
patient age, grade (increment by one in the low=1, 
intermediate=2, high=3 grouping) and stage (increment 
by one in the I-II-III TNM classification) of breast cancer 
[24]. Kaplan–Meier survival curves were estimated to 
graphically represent the results. Censoring date was 
January 31, 2016. Statistical analysis was performed 
using STATA/SE version 13 statistical software (Stata 
Corporation, College Station, TX, USA).
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