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INTRODUCTION

The concept of synthetic lethality describes a 
relationship between two genes, wherein loss of one gene 
can be compensated, but simultaneous loss-of-function 
of both genes results in a non-viable phenotype [1]. For 
synthetic lethal interactions identified in S. cerevisiae, C. 
elegans or Drosophila spp., potential conservation in the 
human genome was suggested and further proposed as 
suitable targets for precision cancer therapy [2–4].

The first predicted human synthetic lethality gene 
interactions that led to the development of approved 
therapeutics were those of Breast Cancer genes 1 and 
2 (BRCA 1/2) and poly (ADP–ribose) polymerase 1 
(PARP1). Tumor cells deficient in either BRCA gene were 
highly susceptible to PARP inhibition, whilst this was 

not the case for BRCA wildtype cells [5, 6]. Whether by 
inhibiting PARP1-supported single-strand repair (SSR) or 
by trapping PARP at the DNA damage site, PARP inhibitors 
induce DNA lesions that require homology directed repair 
(HDR) [7–9]. Since both BRCA genes play essential roles 
in HDR pathways in humans [8], loss-of-function of either 
BRCA1 or 2 sensitizes cells to PARP inhibitors.

During recent years, successful efforts have been 
undertaken to discover further, novel and clinically 
significant synthetic lethal gene combinations, by 
using molecular biology approaches such as genetic 
RNA interference or CRISPR/Cas libraries [10–12]. 
Furthermore, in silico approaches using machine learning 
and network properties were shown to be valuable tools 
in identifying novel genetic as well as chemico-genetic 
interactions causing synthetic lethality [13, 14]. 
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ABSTRACT

In recent years, the concept of synthetic lethality, describing a cellular state 
where loss of two genes leads to a non-viable phenotype while loss of one gene 
can be compensated, has emerged as a novel strategy for cancer therapy. Various 
compounds targeting synthetic lethal pathways are either under clinical investigation 
or are already routinely used in multiple cancer entities such as breast cancer. Most of 
them target the well-described synthetic lethal interplay between PARP1 and BRCA1/2. 
In our study, we investigated, using an in silico methodological approach, clinically 
utilized drug combinations for breast cancer treatment, by correlating their known 
molecular targets with known homologous interaction partners that cause synthetic 
lethality in yeast. Further, by creating a machine-learning algorithm, we were able to 
suggest novel synthetic lethal drug combinations of low-toxicity drugs in breast cancer 
and showed their negative effects on cancer cell viability in vitro. Our findings foster 
the understanding of evolutionarily conserved synthetic lethality in breast cancer cells 
and might lead to new drug combinations with favorable toxicity profile in this entity.
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In this study, we used known negative genetic 
interactions in yeast to create a machine learning-based 
synthetic lethality predictor for human cancer cells. Based 
on novel synergies predicted in silico by our model, we were 
then able to verify the efficacy of the corresponding low-
toxicity treatment combinations for breast cancer in vitro.

RESULTS

Creation of a systematic database of drug 
combinations in cancer therapy

Exploring the website “http://clinicaltrials.gov” 
for “cancer” and limiting results for trials in phase III 
or IV created a set of 6,665 trials, of which 643 met our 
requirements of oncologic indication and pharmacological 
intervention. These trials contained 790 different drug 
combinations. An additional 121 combinations were 
found in clinical practice. Taken together, a total of 911 
different drug combinations spanning 119 indications 
were found (Supplementary Figure 2). 150 individual 
drugs were identified, targeting 285 different genes. The 
excess of targets compared to drugs was due to certain 
drugs targeting multiple proteins. Most frequently 
occurring drugs were cyclophosphamide, etoposide, and 
doxorubicin. Summarized in classes, half of the drugs 
were found to be antimetabolites, alkylating agents, 
antimicrotubule agents or anthracyclines (data not shown). 

Among the 119 different oncology treatment 
indications, breast cancer was the most frequent. 
As expected, this indication included the most drug 
combinations as well as the highest number of individual 
drugs (Table 1). The drug classes most abundant for breast 
cancer were antimicrotubule agents, antimetabolites, 
alkylating agents and anthracyclines (Figure 1A). A map 
showing drug combinations in breast cancer clinical trials 
was created and is illustrated in Figure 1B. 

The drugs were then rearranged to form novel 
combinations, targeting synthetic lethal gene pairs as 
suggested by our in silico predictor based on a machine-
learning algorithm. After filtering the resulting list for low 
toxicity combinations, the drug pairs celecoxib/zoledronic 
acid (ZOL/CEL) and olaparib/zoledronic acid (ZOL/OLA) 
were selected for further in vitro evaluation (Figure 2).

Predicted synthetic lethality in breast cancer 
confirms highly efficient drug combinations 
already used in clinical routine

Among drugs already used in clinical practice, 
the predictor identified six drug pairs potentially 
targeting gene pairs in a synthetic lethal manner. These 
six combinations consisted of bevacizumab, docetaxel, 
gemcitabine, paclitaxel, and trastuzumab (Table 2 and 
Figure 3). 

Predicted drug combinations significantly reduce 
viability of breast cancer cells in vitro

When treated with the drug combinations suggested 
by our synthetic lethality predictor, breast cancer cell 
lines MDA-MB-468 and SKBR-3 exhibited decreased 
viability in a significant and synergistic manner. Both 
drug combinations showed a significant reduction in cell 
viability compared to single agent treatment in both cell 
lines (Figure 4). Surprisingly, the observed synergy was 
most pronounced at lowest concentrations used. Most 
noteably, the combination of olaparib and zoledronic 
acid showed a favourable combinational index at all 
concentrations and in both cancer cell lines studied. 

In MCF12A cells derived from benign mammary 
epithelium, on the other hand, combination treatment with 
either ZOL/CEL or ZOL/OLA did not cause synergistic 
declines in cell viability, indicating cancer-specificity of 
the effects observed  (Supplementary Figure 4C).

Compatible with our findings on cell viability, 
immunoblotting analyses substantiate the suggested 
disruption of antiapoptotic and proliferative signaling 
through Akt and Erk in breast cancer cells upon treatment 
with ZOL/CEL and ZOL/OLA (Figure 5B). Further, 
reductions in cell viability observed were shown to 
be caused in part by induction of apoptosis using 
AnnexinV/7-AAD stainings in both MDA-MB-468 and 
SKBR-3 cells (Supplementary Figure 3). 

Triple-negative breast cancer cells are highly 
susceptible to zoledronic acid treatment

We observed a more than 100-fold difference of 
zoledronic acid-related cytotoxicity between the two cell 
lines studied, which lasted in repetition (Figure 4A). The 
MDA-MB-468 cell line derives from triple-negative breast 
cancer (TNBC) and strongly responded to zoledronic 
acid treatment, while Her2/neu overexpressing SKBR-3 
cells did not respond in a similar manner. We were able 
to further confirm TNBC sensitivity towards zoledronic 
acid treatment using the HTB-26 cell line (Supplementary 
Figure 4A, 4B). To our knowledge, the observed effect 
of zoledronic acid on TNBC cell viability has not been 
described before in such significance. 

DISCUSSION

In our work, we identified novel and targetable 
synthetic lethality partner genes in breast cancer using 
an in silico approach based on gene interactions in yeast 
and known molecular drug targets for human cancer. The 
advantage of such cross-species methodologies, which 
have led to discovery of various synthetic lethal partner 
genes [15, 16], lies in their reliability as well as cost-
efficiency, when compared to large-scale genetic knockout 
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or knockdown experiments [13, 17–19]. However, due to 
evolutionary conservation, the found gene interactions 
might cause higher side effects when targeted, which 
could be seen as a disadvantage compared to large-
computational cancer-specific efforts [20]. Because of 
this excess toxicity concern, this study focused on drug 
combinations comprising of relatively non-cytotoxic 
treatment partners, such as celecoxib and zoledronic acid, 
and evaluated their biological activity when tested in vitro.

Zoledronic acid is known to inhibit bone 
degradation in osteoporosis and to prevent bone 
metastasis in breast cancer patients [21, 22]. It has 
also been shown to prolong survival in premenopausal 
women with endocrine-responsive early breast cancer 
[23, 24]. Zoledronic acid belongs to the chemical group 
of nitrogenous bisphosphonates. One trait to this class 
of molecules is the blockade of the mevalonate pathway, 
which has been shown to be essential for prenylation 
and hence anchoring and activation of Ras at the cell 
membrane [25, 26]. Consistent with this mechanism, 
nitrogen-containing bisphosphonates were shown to 
exhibit anti-tumor activity in vitro by inducing apoptosis 
or blocking invasion and spreading [27, 28]. Other targets 
of zoledronic acid according to the DrugBank database 
include geranylgeranyl pyrophosphate synthase (GGPS1) 
and hydroxylapatite [29, 30]. Zoledronic acid was further 
shown to reverse epithelial-to-mesenchymal transition 
(EMT) and inhibit self-renewal in TNBC [31]. Differential 
activity of zoledronic acid in the two cell lines studied 
may be explained through pathway addiction to EGFR 
and hence Ras activity in triple-negative breast cancer 
[32]. The potential beneficial effects are also reflected in a 

recent meta-analysis showing a trend for improved patient 
outcomes in women suffering from TNBC who had been 
treated with zoledronic acid [33].

Celecoxib targets cyclooxygenase 2 (COX-2), but 
– according to the DrugBank database used for creation 
our model – further affects six other targets such as 
3-phosphoinositide-dependent kinase-1 (PDPK1), a 
known activator of Akt [34–36]. Besides, cytostatic effects 
of celecoxib combined with sorafenib have been observed 
in vitro in various cancer cell lines [37, 38]. Additionally, 
celecoxib was shown to benefit patients with familiar 
adenomatous polyposis (FAP) by significantly reducing 
numbers of colorectal polyps [39]. 

Olaparib is a PARP1 inhibitor, a drug class whose 
discovery and use is based on synthetic lethality [5, 6, 
40–42]. PARP1 detects and binds to DNA lesions, then 
produces poly(ADP-ribose) (PAR) chains, which function 
as a scaffold for the cellular DNA repair machinery [41]. 
Its inhibition has been shown to either cause deficient 
repair of single-strand breaks or to trap PARP at the 
damage site, thus creating an obstacle during the creation 
of the replication fork [7, 9, 43]. 

We reason that the synthetic lethal synergisms 
predicted by our yeast-based in silico approach and tested 
in vitro, are caused by simultaneous disruption of two 
interdependent pathways: Zoledronic acid interferes with 
the activation of Ras by inhibiting its prenylation while 
celecoxib blocks activation of Akt by inhibiting PDPK1. 
As generally accepted in the scientific community, both 
Ras and Akt pose crucial proliferative and antiapoptotic 
stimuli that cause cell death when successfully antagonized 
(Figure 5A). Olaparib, blocking nuclear changes following 

Table 1: Oncologic entities and assigned drug combinations

Disease term Drug
combinations

Individual
drugs

Drug
targets

Breast Neoplasms 145 64 70
Carcinoma, Non-Small-Cell Lung 98 58 84
Leukemia, Myeloid, Acute 76 43 83
Lymphoma, Non-Hodgkin 58 42 45
Multiple Myeloma 49 33 44
Leukemia, Lymphocytic, Acute 48 38 45
Colorectal Neoplasms 47 38 86
Ovarian Neoplasms 33 25 36
Stomach Neoplasms 29 26 37
Pancreatic Neoplasms 25 31 69
Prostatic Neoplasms 25 29 68
Hodgkin Disease 24 28 36
Leukemia, Lymphocytic, Chronic 17 16 29
Melanoma 17 23 30
Esophageal Neoplasms 17 18 25
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Figure 1: Drugs found in clinical practice and clinical trials for breast cancer. (A) Pie chart representing drugs found in 
clinical practice for breast cancer clustered according to their mechanism of action. (B) Drug-drug combinations extracted from phase III 
and IV breast cancer clinical trials. White background drugs have no specific target protein. Dark lines represent drug combinations also 
used in clinical practice. Line width correlates with frequency in which drugs are combined.
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a proliferative signal, might cause cellular vulnerability in 
case of disruption of a second mitogenic signaling effector, 
such as Ras. In addition, a potential relationship between 
Ras and PARP was suggested by Liu and colleagues, who 
found PARylation of H-Ras to be important for stabilization 
of H-Ras and normal cell cycle progression [44].  

Both cell lines used in our study are known to 
express wild-type BRCA1, which explains the moderate 
response to olaparib monotherapy as observed in our 
experiments. Given the fact that neither BRCA1/2 nor 
PARP1 exist as homologues in yeast [45, 46], we argue 
that our in silico prediction points not to vulnerability of 
DNA repair pathways and PARP, but rather to a not yet 
fully understood mechanism of PARP in regulating cellular 
growth and mitosis, ultimately targeting proliferative 
pathways such as PI3K and ERK by involvement 
in nuclear changes during mitosis, like loosening of 
chromatin or mitotic spindle assembly [47, 48]. The 
surprising combinatory effect seen when combined with 
zoledronic acid should hence encourage the community to 
evaluate olaparib use in indications aside from DNA-repair 
deficient tumors.

The synthetic lethal drug combinations identified 
by our predictor among drugs used in clinical practice 
all centered about interactions with BCL2 (Table 2). 
Docetaxel and paclitaxel, primarily targeting tubulin, 
induce off-target Bcl-2 inhibition by causing permanent 
Bcl-2 phosphorylation during mitotic arrest [49, 50].

Vascular Endothelial Growth Factor (VEGF) has 
been shown to induce Bcl-2 expression and anti-apoptotic 
signaling [51–53]. Her2 overexpression has also been found 
to cause Bcl-2 overexpression and consequent resistance to 

apoptosis [54, 55]. In vitro experiments have demonstrated 
that Bcl-2 expression and stability is regulated by the M2 
subunit of the ribonucleotide reductase 1 (RRM1) [56].

Taken together, the synergistic drug combinations 
found in clinical practice all hint at simultaneous 
disruptions of interdependent pathways. Among drug 
combinations found in clinical practice, our predictor 
identified 23 drug pairs as well as 17 different gene pairs 
targeting BCL2. The recent success of the Bcl-2 inhibitor 
venetoclax in lymphoid and myeloid malignancies 
illustrates how found combinations may be of interest for 
future experiments [57, 58].

Although we did not observe full lethality for cells 
treated within our experiments as might be expected from 
the concept of synthetic lethality, we propose that the 
significant reduction of cell viability seen was caused by 
activation of synthetic lethal pathways. The lack of fully 
lethal effects in our study may be caused by insufficient 
pharmacological blockade of the pharmacological targets 
examined. Furthermore, an effect described as “synthetic 
sickness”, where joint deletion of two genes would lead to 
a less fit but viable phenotype, might be the mammalian 
equivalent phenomenon to synthetic lethality in the 
genetically less complex yeast species [13, 59]. 

A potential bias inherit to the design of our study is 
that drug selection for combination treatments relied on 
one specific target as listed by DrugBank. In other words, 
multiple targets exist for most compounds, and the target 
inhibition driving the effects observed in our study cannot 
be distinguished with absolute certainty. As an example, 
dependent on the concentration used and according to the 
DrugBank database, celecoxib will not just inhibit PDPK1 

Figure 2: Predicting new drug combinations based on current breast cancer therapy regimens. (A) Of 243 drug pairs 
covering 166 gene pairs, only 5 drug pairs were found to be non-cytostatic, low-toxicity profile drugs and were further selected for in vitro 
analysis. (B) In this example, combination #390 contained the lethal pair docetaxel and zoledronic acid (targeting TUBB and FDPS), while 
combination #388 held iniparib and gemcitabine (targeting PARP1 and both RRM1 and TYMS; only predicted drug targets relevant for 
this figure are depicted for combinations #388 and #390). Although not analyzed together in either trial, the combination of iniparib and 
zoledronic acid was suggested to target a synthetic lethal pair. A list of each drug and gene pair can be found in a Supplementary Dataset 1.
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but also six other molecular targets, amongst them the 
primary target COX-2 (PTGS2) [29, 30]. Although we 
see the experimental data presented in this article as a 
proof-of principle of the in silico drug selection approach 
for synthetic lethal target inhibition, our results might 
be confounded by such positive molecular “off-target” 
effects by the compounds themselves, which might only 

occur upon their combination in vitro. This concern is 
further augmented by the use of supraphysiological drug 
concentrations in our study, which are needed to observe 
meaningful toxicity in vitro. Therefore, we highlight 
the need for additional experiments with combined 
gene knockouts of the molecular targets predicted, as 
well as additional in vivo and clinical studies, to further 

Table 2: Breast cancer drug combinations used in clinical practice with their supposed synthetic lethal targets
Drug combination Target combination

Drug A Drug B Target A Target B
Bevacizumab Docetaxel VEGFA BCL2
Bevacizumab Paclitaxel VEGFA BCL2
Gemcitabine Docetaxel RRM1 BCL2
Gemcitabine Paclitaxel RRM1 BCL2
Trastuzumab Docetaxel ERBB2 BCL2
Trastuzumab Paclitaxel ERBB2 BCL2

Abbreviations: VEGFA: vascular endothelial factor a; BCL2: b-cell lymphoma 2; RRM1: ribonucleotide reductase m1; 
ERBB22 or Her2, EGFR family receptor 2.

Figure 3: Predicted synthetic lethal interactions among drugs currently used in clinical practice or clinical trials for 
breast cancer. Drugs found were grouped into pairs covering synthetic lethal gene pairs according to our in silico prediction. Zoledronic 
acid and docetaxel (as indicated by combination number 22), for instance, may work synergistically by targeting FDPS and TUBB1. 
Combination numbers in circles link drugs used as combination treatment in clinical practice. A detailed list of drugs and their assigned 
targets is listed in Supplementary Table 1.
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Figure 4: Viability assays of breast cancer cells treated with predicted synthetic lethal drug pairs. Dose-response curves 
and IC50 values of single agent treatments (upper panels) and viability assay results of combinational treatments (lower panels) of 
zoledronic acid and olaparib (A, ZOL/OLA) and zoledronic acid and celecoxib (B, ZOL/CEL) in indicated cell lines at increasing drug 
concentrations. Cells were treated for 48 (A) or 72 hours (B). Combinational treatments with both ZOL/OLA and ZOL/CEL significantly 
reduced viability in comparison to either single agent treatment. Combinational indices (CI) below 1 (bottom tables) indicate synergism. 
Bars represent normalized mean values and error bars indicate standard error of the mean (SEM) of three technical replicates. Statistical 
significance of effects of synergistic treatment compared to single treatments was determined as described in “Materials and Methods” 
and is indicated by asterisks using adjusted p-values (*p < 0.05, **p < 0.01 and ***p < 0.001). All experiments were performed at least three 
times, a representative figure is shown.
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evaluate the synthetic lethal effects found through our 
bioinformatical approach. Also, further studies separately 
investigating molecular subtypes of breast cancer using 
a comparable approach are dearly needed to address 
concerns about potential subtype specificity of our 
findings.

MATERIALS AND METHODS

Translation of synthetic lethal gene pairs into 
human orthologues

Genetic interactions for Saccharomyces cerevisiae 
were obtained from DRYGIN, a synthetic genetic array 
covering more than 5 million gene pair interactions 
[60, 61]. For identifying negative genetic interactions 
(i.e. synthetic lethal protein coding gene pairs), the cutoff 
for p-value and genetic interaction score were set to 0.05 
and –0.08, respectively. Human orthologues of yeast 
genes were retrieved utilizing “roundup” [62], “oma 
browser” [63], “ensembl” [64], “inparanoid” [65] and 
“HomoloGene” [66]. 

In silico prediction of synthetic lethality gene 
interactions in human breast cancer

For expanding the set of synthetic lethal interactions 
retrieved from yeast, a computational inference method 
was applied. For building a classifier allowing inference 
of synthetic lethal interactions beyond given orthologue 
information from yeast, data including KEGG and 
PANTHER pathway identifiers [67, 68], Gene Ontology 
assignment according to PIR slim [69], disease association 
according to NCBI Medical Subject Headings (MeSH) 
terms [70] and drug association according to DrugBank 
(target, enzyme, transporter and carrier associations) was 
used (https://www.drugbank.ca) [29, 30]. To parameterize 
synthetic lethal interactions Dice’s coefficients for annotation 
of endpoints, the mean of node-based graph-measures 
and the shortest path between synthetic lethal nodes were 
calculated. Subsequently, a machine learning algorithm 
(random forest model) was created with a training set and 
validated on a test set of gene interactions, as previously 
described by our group [71].  For detailed description of 
predictor generation see Supplementary Figure 1.

Figure 5: Suggested mechanism of drug interactions found. (A) In silico prediction of synthetic lethality using a yeast-based 
screen was found for the two drug pairs of zoledronic acid and celcoxib (left) as well as zoledronic acid and olaparib (right). Zoledronic 
acid inhibits Ras activation by interfering with prenylation. Celecoxib blocks phosphoinositide-dependent kinase-1 (PDPK1), causing 
disruption of signaling of the Akt pathway. PARP inhibitors disrupt the coordination of chromatin changes and spindle assembly, leading to 
hindered cell division when combined with zoledronic acid, simultaneously blocking anti-apoptotic signals via Ras inhibition. (B) Western 
Blot analyses showing disruption of Akt and Erk signaling upon combination treatment of ZOL/CEL (left) and ZOL/OLA (right) in SKBR-
3 and MDA-MB-468 cells treated at their respective IC50s for 48 hours. Representative blot of three independent experiments is shown.

https://www.drugbank.ca
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Identification of new synergistic drug 
combinations

To create new and potentially synergistic drug 
combinations, data on current pharmacological cancer 
therapy was collected. Following this step, rearrangement of 
drugs into new combinations targeting at least one synthetic 
lethal gene pair based on in silico prediction was performed. 
Treatment combinations from clinical practice and phase 
III/IV clinical trial information were obtained from clinical 
guidelines and “http://clinicaltrials.gov” [72] in August 
2012 by searching for the term “cancer”. Indications were 
unified according to MeSH [70]. Drugs from eligible 
combinations were listed by indication and assigned to 
their targets using DrugBank. A schematic overview of this 
process can be seen in Supplementary Figure 2.

Cell culture and reagents

Human breast cancer cell lines MDA-MB-468 
(ATCC® HTB 132™) and SKBR-3 (ATCC® HTB-30™) 
as well as the human benign mammary epithelial cell 
line MCF12A (ATCC® CRL-10782™) were purchased 
from the American Type Culture Collection (ATCC) and 
maintained at 37° C in a humidified atmosphere with 5% 
CO2. ATCC® HTB-26™ (MDA-MB-231) cells were kindly 
provided by Walter Berger, Institute of Cancer Research, 
Medical University of Vienna. Cells were cultivated in 
either Dulbecco‘s Modified Eagle Medium or McCoy‘s 
5a Medium Modified (only SKBR-3), supplemented with 
10% fetal bovine serum and 50 units/ml penicillin G,  
and 50 µg/ml streptomycin sulfate. Celecoxib (CEL) 
and zoledronic acid (ZOL) were purchased from Sigma-
Aldrich (Sigma, St. Louis, MO, USA). Olaparib (OLA) 
was provided by AstraZeneca (AstraZeneca, London, 
United Kingdom). Drugs were diluted in DMSO (CEL and 
OLA) or PBS (ZOL) respectively.

Viability assays

IC50 values were determined by performing dose-
response curves by treating cells in a dose escalating manner. 
Cells were treated in a dose escalating manner. 2500 cells 
were plated in 50 µl of culture medium in 96-well plates 
overnight. The next day, 50 µl of medium containing the 
double amount of the desired concentration was added and 
incubated. Cell survival was measured at time points up to 
72 hours by using CellTiter-Blue® (Promega, Madison, WI, 
USA) according to the manufacturers’ protocol. Treatments 
were conducted in triplicates, averaged, and standardized 
to control (DMSO treatment). All statistical computations 
were performed using Prism 6 (GraphPad Software, Inc., 
USA). Multiple group analysis was performed using two-
way analysis of variance (ANOVA) and Dunnetts’ multiple 
comparison test as a post-hoc test. Synergy was quantified 
utilizing CompuSyn and by calculating the combinational 
index [73].

Immunoblotting

200.000 cells were cultivated in a 12-well format 
and treated with IC50 concentrations for single or 
combinational treatment for 48 hours. Proteins were 
isolated using RIPA lysis buffer supplemented with 
cOmplete Protease Inhibitor Cocktail Tablets (Roche 
Diagnostics, Mannheim, Germany) and PhosSTOP 
Phosphatase Inhibitor Cocktail Tablets (Roche 
Diagnostics). Protein concentration was measured using 
Bradford reagent (Sigma-Aldrich, St. Louis, Missouri, 
USA). 30 µg of protein was loaded and separated on a 
10% polyacrylamid gel in a Tris-Glycin-SDS buffer. 
Proteins were then blotted onto nitrocellulose membranes 
using Turboblot (Biorad, Hercules, California, USA). 
Membranes were blocked in 5% bovine serum albumin 
(Sigma-Aldrich) diluted in TBS-T and incubated with 
primary antibodies overnight at 4° C. Primary antibodies 
used were P-AKT Ser473 (Cell Signaling, #4060), 
T-AKT (Cell Signaling, #), P-ERK1/2 Tyr204 (Santa 
Cruz, sc-101761), P-ERK1/2 Thr202/Tyr204 (Cell 
Signaling, #9101), T-ERK 1/2 (Santa Cruz, sc-93/sc-154).  
Visualization was performed by using horseradish 
peroxidase (HRP)-conjugated secondary antibodies 
(Santa Cruz Laboratories, Dallas, Texas, USA) and the 
enhanced chemiluminescence detection system (Biorad) 
on a ChemiDoc XRS+ Imaging device (Biorad).

Annexin/7-AAD stainings

200.000 cells were seeded into wells of 12-well plates 
and left to adhere overnight. Cells were treated at the IC50 
of each compound. At indicated time points, cells were 
then trypsinized and stained with AnnexinV-APC (BD 
Bioscience, 550474) and 7-AAD (ebioscience, 00-6993-50) 
according to the manufacturers protocol. Cell fluorescence 
was captured using a FACS Canto II device (BD Bioscience) 
and analyzed using FlowJo software (FlowJo LLC, V10).
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