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ABSTRACT

Interdigitating dendritic cell sarcoma (IDCS) is an extremely rare cancer of 
dendritic cell origin that lacks a standardized treatment approach. Here, we performed 
genomic characterization of metastatic IDCS through whole exome sequencing (WES) 
of tumor tissues procured from a patient who underwent research autopsy. WES was 
also performed on a treatment-naïve tumor biopsy sample obtained from prior surgical 
resection. Our analyses revealed ultra-hypermutation, defined as >100 mutations per 
megabase, in this patient's cancer, which was further characterized by the presence of 
three distinct mutational signatures including UV radiation and APOBEC signatures. To 
characterize clonal heterogeneity, we used the bioinformatics tool Canopy to leverage 
single nucleotide and copy number variants to catalog six subclones across various 
metastatic tumors. Truncal alterations, defined as being present in all clonal tumor cell 
populations, in this patient's cancer include point mutations in TP53 and CDKN2A and 
amplifications of c-KIT and APOBEC3A-H, which are likely driver mutations. In summary, 
we have performed genomic characterization evaluating tumor mutational burden (TMB) 
and heterogeneity in a patient with metastatic IDCS. Despite ultra-hypermutation, this 
patient's cancer was not responsive to treatment with PD-1 inhibition. Our results 
underscore the importance of characterizing clonal heterogeneity in TMB-high cancers.
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INTRODUCTION

Interdigitating dendritic cell sarcoma (IDCS) is an 
extremely rare malignancy of dendritic cell origin with 

approximately 100 cases reported to date [1, 2]. Due to its 
rarity and challenging diagnosis, genomic characterization 
of this neoplasm has not been previously reported. 
Furthermore, no standard therapy exists for IDCS, which 
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tends to affect middle-age adults with median age of 
diagnosis of 56.5 years [3]. Localized IDCS constitutes 
47% of cases and manifests as painless lymphadenopathy, 
most commonly involving the cervical and axillary 
nodes. Isolated extra-nodal disease occurs in 25% of 
cases, involving the liver, lung, spleen, bone marrow and 
gastrointestinal tract [3]. Distant metastases occur in 39% 
of cases and most frequently involved lymph nodes, lung, 
liver and bone marrow [3]. 

Here we performed whole exome sequencing 
(WES) of multiple tumors obtained through rapid 
research autopsy of a patient with metastatic IDCS. To our 
knowledge, this is the first time IDCS has been extensively 
sequenced and analyzed. Our findings demonstrate a 
rare ultra-hypermutated genotype, with >100 somatic 
mutations per megabase of genome (mut/Mb) [4], 
characterized by distinct mutational signature profiles 
and clonal diversity that occurred early in the evolution 
of this patient’s cancer. Phylogenetic analysis revealed 
inactivation of TP53 and CDKN2A (p16INK4a/p19ARF)  
as well as amplification of c-KIT and PDGFRα as 
truncal alterations. We further detected amplification 
of APOBEC3A-H encoding cytidine deaminases on 
chromosome 22q that may have attributed to the ultra-
hypermutation. In summary, our work describes the 
genomic landscape and clonal heterogeneity of an ultra-rare 
cancer through the innovative approach of research autopsy. 

Diagnosis and treatment

Our patient was a 57-year-old Caucasian male who 
developed an isolated FDG-avid 2.4 × 2.4 cm right-sided 
neck mass on PET scan in 2016. Biopsy result of this 
mass showed a “pleomorphic/spindle cell neoplasm”. 
Immunohistochemical (IHC) analyses demonstrated focal 
CK7 staining. Clinical evaluation revealed no primary 
lesion involving the skin or oropharynx. In August 2016, 
he underwent modified radical right neck dissection and 
partial submandibular gland excision with one level I 
lymph node demonstrating complete tumor involvement 
and suspicious for extranodal extension; remaining lymph 
nodes (0/29) from levels II, III and IV were negative for 
tumor infiltration. IHC on the surgical specimen showed 
positivity for S100, SOX10 and CK7. A diagnosis of 
IDCS was issued. Given his localized presentation, he 
received adjuvant radiation to the right level IB-III nodes 
with a boost to the primary site of disease. In November 
2016, he initiated adjuvant nivolumab (3 mg/kg every  
2 weeks) given FoundationOne® report showing >100 
mut/Mb in his tumor. Following adjuvant immunotherapy, 
he developed metastatic recurrence that failed to 
respond to subsequent treatments including combination 
immunotherapy (CTLA-4/PD-1 inhibitors), chemotherapy 
and molecularly targeted therapies (Figure 1). His clinical 
course leading up to the research autopsy is summarized in 
Figure 1A. 

RESULTS

Rapid research autopsy

Prior to his death, the patient was consented to an 
Institutional Review Board (IRB)-approved research 
autopsy study for patients with advanced cancers (Figure 2).  
CT scans obtained prior to hospice enrollment showed 
tumor involvement of multiple organs (Figure 1B) and 
were used to guide sample procurement at time of research 
autopsy, which was performed within three hours post-
mortem. A total of twenty-four metastatic tumor samples 
were procured from involved organ sites (Figure 1B, 
*tumors). A pathologist assessed the viability and tumor 
cell (TC) content of autopsy samples (Figure 1C) prior to 
selection for genomic studies. 

Genomic characterization of IDCS

We performed WES on nine metastatic tumors 
and the resected pre-treatment tumor (Table 1). 
Calculation of tumor mutational burden (TMB), including 
single nucleotide variants (SNVs) and insertions/
deletions (indels), demonstrated ultra-hypermutation  
(130.1–167.0 mut/Mb) in all tumors analyzed (Table 1; 
Supplementary Table 1). Interrogation of microsatellite 
status utilizing MANTIS [5] showed that all tumors 
were microsatellite stable (MSS) despite their ultra-
hypermutation (Table 1). To further characterize this 
patient’s cancer, we investigated whether specific 
substitution mutational signatures, which arise due to 
different mutagenic processes [6], may be present. This 
analysis revealed the presence of Signature 2 (APOBEC), 
Signature 7 (UV light) and Signature 11 (alkylating agent), 
which are all characterized by C>T substitutions, in all 
tumor samples (Figure 3A–3B; Supplementary Figure 1 and 
Supplementary Table 2). Of the three mutational signatures, 
Signature 7 had the highest prevalence (Figure 3A). We 
next classified the 7,417 somatic variants (SNVs and indels) 
in all ten tumor samples of this patient into three categories: 
Ubiquitous, Shared and Private (Figure 4A–4B). Ubiquitous 
variants are variants detected in all tumor samples and 
included driver mutations in TP53 and CDKN2A, while 
shared variants are those detected in subsets of tumor 
samples. Finally, private variants are variants unique to 
each tumor sample. A tumor-centric evolutionary tree 
was constructed based on the pairwise genetic distance, 
as measured by number of discordant SNVs, between the 
wildtype cells (normal) and tumor samples in this patient 
(Figure 4C). Finally, we interrogated the prevalence of copy 
number variations (CNVs) using the allele-specific CNV 
caller FALCON [7]. After manual review and curation, 29 
unique CNVs including amplification (including c-KIT, 
PDGFRα, and APOBEC3A-H), deletion and loss-of-
heterozygosity events were detected (Supplementary Figure 
2 and Supplementary Tables 3–4). 
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Figure 1: Research autopsy of a patient with metastatic IDCS. (A) Summary of clinical course and treatment history of the 
patient. Research autopsy was performed 3 hours post-mortem. SRS, stereotactic radiosurgery. (B) CT scans depicting organs with 
metastatic cancer; brain (panel 1, yellow), hilar lymph node (2), liver (3-4), rib (5) and pelvis (6). Arrowheads and dashed circles indicate 
tumors; asterisks indicate tumors procured at research autopsy. (C) H&E stained frozen sections of metastatic tumors in brain, lung, liver 
and rib procured from research autopsy. Sections demonstrate high tumor cell content. Enlarged inset at bottom right of each image panel 
shows dysplastic nuclei with mitotic figures. 
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Reconstructing clonal evolution

Integrating the above genomic data (SNVs, 
indels and CNVs), we used the program Canopy 
[8] to synthesize a hypothetical model of the clonal 
evolution of this patient’s cancer (Figure 5A). Canopy 
identified six genetically distinct clonal populations 
of tumor cells, present in various proportions within 
each tumor (Figure 5B; Supplementary Table 5). These 
six clones are differentiated by ten unique groups of 
genomic alterations (Figure 5A, a–j; Supplementary 
Tables 6–7), which all contained mutational Signature 
7 (Supplementary Figure 3 and Supplementary Table 2). 
Of note, group a contains truncal alterations ancestral 
to all tumor cells including two well-documented driver 
mutations, TP53 P278L and CDKN2A R80X, which 
were classified as ubiquitous (Figure 4C). Interestingly, 
we also detected a truncal variant RPA2 V108L. RPA2 
encodes a subunit of the heterotrimeric Replication 
Protein A complex that is critical for DNA replication, 
repair, recombination and DNA damage response [9]. 
Finally, we identified two notable truncal amplifications 
of regions on the long arms of chromosome 4 
(~17.2Mb), containing c-KIT and PDGFRα, and 
chromosome 22 (~24.6Mb), containing APOBEC3A-H 
(Figure 5A; Supplementary Figure 2). 

DISCUSSION

Extensive multi-regional sequencing of tumors 
revealed the complex genetic landscape of treatment-
refractory cancers by demonstrating intratumor 
heterogeneity [10, 11], which underscores the limitations 
of tumor profiling with tissue derived from a single 
biopsy specimen. From a clinical perspective, tumor 
heterogeneity contributes to the incomplete therapeutic 
responses seen in patients receiving different types of anti-
cancer therapies including molecularly targeted therapies. 
Mechanistically, tumor heterogeneity drives acquired 
therapeutic resistance by facilitating the selection and 
expansion of therapy-resistant clones. Research autopsy 
has emerged as a powerful approach to characterize tumor 
heterogeneity at different metastatic sites in the individual 
patient. Together with information from treatment-naïve 
samples, sequencing of metastatic tumor samples from 
autopsy can provide a comprehensive molecular portrait 
of advanced cancers that reflects changes in tumor cell 
populations and genomes over time [12, 13]. Here we 
performed research autopsy on a patient with widely 
metastatic IDCS. Genomic profiling of his tumors revealed 
somatic ultra-hypermutation and tumor heterogeneity 
in the form clonal diversity. Recently, Campbell  
et al. demonstrated a prevalence of ultra-hypermutation  

Figure 2: Overview of research autopsy protocol. 
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(TMB >100 mut/Mb) of 0.6% in a cohort of 78,452 adult 
cancers [4]. Therefore, the rare histologic classification of 
IDCS in this patient is accompanied by a rare ‘genotype’ 
of ultra-hypermutation. 

Hypermutation in cancer may arise from intrinsic 
defects in DNA damage repair pathways or extrinsic 
mechanisms such as mutagenic exposure [4]. The majority 
of ultra-hypermutation detected by Campbell et al. was 
attributed to mutations in mismatch repair (MMR) genes 
and replication-associated DNA polymerases Polε or Polδ. 
While we did not detect genomic alterations involving 
MMR or Polε/Polδ to explain this patient’s ultra-
hypermutated cancer, we did detect a truncal amplification 
of a region on chromosome 22q containing genes 
encoding the APOBEC3A-H (or A3 subfamily) cytidine 
deaminases. The deregulated expression and activity of 
A3A and A3B have been linked to cancer development 
through enhanced DNA hypermutation and unfaithful 
RNA editing [14–16]. Furthermore, we identified a 
truncal RPA2 variant with a predicted (by DUET [17]) 
destabilizing missense mutation in the C-terminal winged 
helix domain important for protein-protein interaction that 
could have further contributed to defective DNA damage 
repair and hypermutation. Together with driver mutations 
in tumor suppressors TP53 and CDKN2A, the above 
events could have produced ultra-hypermutation seen in 
this patient’s cancer. 

Different models of mutation accumulation have 
been proposed for hypermutated cancers and could be 
classified as ‘steady’ versus ‘dynamic’ hypermutation 
[4]. In the steady model, mutations accumulate gradually 

due to continuous mutagenic exposure or germline MMR 
deficiencies, leading to hypermutation over time. The 
dynamic model, seen in cancers with Polε or Polδ mutations, 
is characterized by ‘bursts’ of mutations followed by rise 
in genome-wide TMB [4]. Through analyses of clonality 
and mutational signatures, we hypothesize a gradual mode 
of hypermutation consistent with the former model in our 
patient’s cancer. Genomic profiling of treatment-naïve 
tumor revealed high TMB at baseline that may have been 
the result of UV exposure, producing the driver mutations 
in TP53 and CDKN2A. TMB analysis of his autopsy tumor 
samples demonstrated an increase of ~20–37 additional 
mut/Mb that could be attributed to the truncal amplification 
of the A3 subfamily of cytidine deaminases, as indicated 
by the presence of APOBEC-specific Signature 2, and/or 
potentially therapy-induced mutations. Interestingly, the 
brain metastasis (T10) was the only autopsy tumor sample 
that had similar TMB as the treatment-naïve tumor (T1) 
while still retaining the APOBEC signature. A technical 
explanation underlying this finding may be due to lower 
TC contents in both samples affecting variant detection. 
Alternatively, this may reflect similar biology between the 
treatment-naïve tumor sample obtained from neck surgery 
and the brain metastasis; this similarity is demonstrated 
by the shorter genetic distance between ‘normal’ and T1 
or T10 samples relative to other tumor samples in the NJ 
tree. Finally, the genetic dissimilarity between the brain 
metastasis and tumor samples from other organs also 
suggests the presence of unique genetic features of cancer 
cells with increased propensity for invasion of the central 
nervous system. Although high TMB has been established 

Table 1: Sample characteristics and sequencing metrics

Sample Organ involved % Tumor 
cells

Median 
Coverage

Percent 
100X

TMB 
(mut/Mb) # SNVs # Indels Microsatellite

Normal Blood N/A 265 88.01 N/A N/A N/A N/A
Tumor 1 
(T1) Biopsy (Bx) 30% 100 50.10 131.5 5,091 21 0.326, MSS

T2 Left lung (L.lung) 80% 213 79.83 158.4 6,139 22 0.330, MSS
T3 Right lung (R.lung) 90% 245 84.19 165.3 6,408 19 0.330, MSS
T4 Liver1 90% 218 82.12 163.3 6,329 20 0.328, MSS
T5 Liver2 80% 233 83.38 158.8 6,160 15 0.327, MSS
T6 Liver3a 80% 270 87.01 150.4 5,826 22 0.318, MSS
T7 Liver3b 90% 286 87.88 156.1 6,050 19 0.324, MSS
T8 Rib 80% 272 86.70 148.9 5,776 15 0.319, MSS
T9 Right iliac (R.iliac) 90% 242 85.20 167.0 6,473 20 0.330, MSS
T10 Brain 50% 257 86.80 130.1 5,043 15 0.320, MSS

A board-certified pathologist estimated the percentage of tumor cells in each sample. Liver3a and Liver3b samples were 
procured from two different regions of a large liver tumor. The pre-treatment biopsy sample was obtained from a formalin-
fixed paraffin-embedded surgical specimen, while autopsy tumor samples were frozen in OCT. Percentage 100X indicates 
the percent of variants in each tumor sample with at least 100X coverage. TMB includes synonymous and non-synonymous 
SNVs as well as insertions/deletions (indels). #SNVs and #Indels columns indicate the total number of somatic SNVs and 
indels detected in each tumor sample. Microsatellite status was determined using MANTIS, with scores <0.4 indicating 
microsatellite stability (MSS). 
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Figure 3: Detection of mutational signature profiles in metastatic IDCS. (A) Mutational signatures in tumor samples were 
called with deconstructSigs. Among the thirty signatures in the COSMIC Mutational Signatures set, only Signatures 2 (APOBEC), 7 (UV) 
and 11 (alkylating agents) were detected. T1-10 are as labeled and correspond to samples listed in Table 1. (B) Representative lego plot 
of a sequenced tumor (T2) demonstrating the predominance of C>T transitions in the three signatures detected in this patient’s cancer. 
The X-axis of lego plots contains 96 possible mutation types that result when the six classes of base substitutions (e.g. C>T) are placed 
in the trinucleotide context of flanking 5′ and 3′ bases. The Y-axis represents the fraction of base substitutions in sample T2 within each 
trinucleotide context. 
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as a clinically useful biomarker of response to checkpoint 
blockade in multiple human cancers [18, 19], our patient 
developed progressive cancer while receiving adjuvant 
therapy with the PD-1 inhibitor nivolumab and had disease 
progression while being treated with dual CTLA-4/PD-1 
blockade. Therefore, his case highlights the need for 
identification of additional biomarkers to predict clinical 
benefit for immunotherapy in patients with hypermutated 
cancers.

In summary, we present the first genomic 
characterization of metastatic IDCS, an extremely rare 
neoplasm of dendritic cell origin that lacks any standard 
therapy. This patient had metastatic IDCS characterized 
by ultra-hypermutation and clonal heterogeneity, likely 
through a combination of chronic mutagen exposure (UV), 

acquired defects in pathways important for DNA repair 
(TP53, CDKN2A, RPA mutations), and gain of genes 
that promote DNA hypermutation (APOBEC3A-H). His 
cancer was aggressive and refractory to multiple anti-
cancer therapies including molecularly targeted agents 
and immunotherapies. In the future, it will be important 
to study additional patients with this and other rare 
cancers with hypermutation. Finally, the broader clinical 
implication of our results is that although patients with 
hypermutated cancer, originating from either somatic or 
germline genomic aberrations, are more likely to benefit 
from checkpoint inhibition, research is still needed to 
stratify these patients to maximize therapeutic efficacy 
and identify the different genetic determinants of primary 
or acquired resistance to immunotherapy.

Figure 4: Classification of somatic variants and construction of neighbor joining (NJ) tree. (A) The 7,417 somatic variants 
detected in all ten tumor samples T1-10 from this patient were classified into three categories: Ubiquitous (Ubi.), present in all ten tumor 
samples; Shared (Sha.), present in some but not all ten tumor samples; Private (Priv.), present in only one tumor sample. Percentage of 
each variant category are as indicated in the bar graph. Somatic variants analyzed include single nucleotide variants (SNVs) and insertions/
deletions (indels). (B) Heatmap demonstrating distribution and variant allele frequency (VAF) of the 7,417 somatic variants in ten tumor 
samples T1-10. Color intensity corresponds to VAF. (C) NJ tree depicting the evolutionary relationship of the ten tumor samples T1-10 
from this patient. Normal represents hypothetical population of wildtype cells without somatic aberrations. The 3,642 ubiquitous variants 
included driver mutations TP53 and CDKN2A as well as the RPA2 variant predicted to have loss-of-function. Branch lengths correspond 
to the genetic distance between samples. T1-10 corresponds to samples listed in Table 1.
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MATERIALS AND METHODS

Research autopsy

The patient was consented to an IRB-approved 
clinical study for tumor profiling and body donation. 
At time of death, the patient’s next-of-kin (and/or 
hospice agency) notified members of the research team.  

The deceased was transported to the OSU Medical 
Center and a limited research autopsy was conducted 
within 3 hours after patient’s passing. Metastatic 
tumors and adjacent normal tissues were sampled and 
immediately archived as fresh frozen specimens in OCT 
medium. After conclusion of the autopsy, the deceased 
was transported back to the designated funeral home 
within 24 hours. 

Figure 5: Analysis of cancer phylogeny and clonal evolution. (A) Phylogram constructed using Canopy integrating SNVs, 
curated copy number variations (CNVs) and indels detected through WES of tumor samples T1-10. Output from Canopy includes number 
of clones, clonal fractions and mutational groups (a-j) associated with each clone. Given the large number of somatic SNVs in this ultra-
hypermutated cancer, downsampling of SNVs was performed in addition to following recommended parameters for Canopy tree building. 
Somatic SNVs not utilized by Canopy as well as indels were retroactively assigned based on VAF patterns to mutational groups a-j using 
a maximal likelihood model. Based on this analysis, six different clones of tumor cells were identified in this patient’s cancer. Truncal 
or group a mutations are common or ancestral to all clones of tumor cells. In contrast, mutations in groups b, d, f, h, and j are private to 
clones 1, 2, 3, 4, and 6, respectively. The length of horizontal branches in the tree is proportional to the number of mutations. (B) Stacked 
bar graph depicting the percentage of different clonal tumor cell populations as estimated by Canopy in each sample. T1-10 corresponds 
to samples listed in Table 1.
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Whole exome sequencing

We extracted genomic DNA from frozen tumors and 
normal (blood) samples and prepared sequencing libraries 
using an established protocol [20] that included enrichment 
with the xGEN® Exome Research Panel v1.0 from 
Integrated DNA Technologies. Sequencing was performed 
on an Illumina HiSeq4000 at The Genomics Services 
Laboratory at Nationwide Children’s Hospital (Columbus, 
Ohio) and achieved a median depth of 100–286x. 

Alignment, variant calling, and annotation

Sequencing reads were aligned to hg19 using bwa 
[21] version 0.7.14. Deduplication was performed using 
Picard [22] version 2.3.0. Quality recalibration and local 
realignment around indels was performed with Picard and 
GATK [23] version 3.5. Somatic SNVs (single-nucleotide 
variations), somatic indels, and germline SNVs were called 
using VarScan2 [24] version 2.3.9. Somatic SNVs were 
filtered using bam-readcount as follows: minimum average 
base quality of variant-supporting reads 22, average variant 
distance to 3’ read end of 0.24, Fisher’s exact test P ≤ 0.05, 
maximum average sum of base quality mismatches 100, 
maximum average mismatches per base of variant-supporting 
reads 0.04, and minimum VF (variant fraction) 6%. Germline 
SNVs were filtered as above, except for Fisher’s exact test 
P ≤ 0.1 (as recommended by VarScan2 documentation). 
Somatic indels were filtered with Fisher’s exact test P ≤ 
0.05 and VF ≥ 6%. In addition, a list of repetitive regions in 
hg19 was generated using the RepeatFinder tool included in 
MANTIS, modified to output all repeats of 1-mers to 5-mers 
spanning at least 4 bp. Indels falling within this list were 
excluded from further analysis.

Somatic SNVs and indels were annotated with 
ANNOVAR (revision #11f4bb, 2016-02-01) [25]. 
Mutational signatures from the COSMIC Mutational 
Signatures set [26] were called with deconstructSigs [27] 
version 1.8.0 with default settings and exome2genome 
trinucleotide frequency correction, run on R version 
3.3.2. Microsatellite instability testing was performed 
using MANTIS version 1.0.3, run with three threads and 
otherwise default settings.

To compute a neighbor joining tree of per-sample 
phylogeny, we first generate a distance matrixD∈ +( )× +( ) N N1 1 .   
For sample i ϵ1..N, define Si as the set of somatic SNVs 
in that sample called as above. Define SN+1 as the empty 
set, representing germline (with no somatic SNVs by 
definition). We compute D as follows:

d S Sij i j= | � |∆

where △ is the set symmetric difference. Neighbor joining 
was performed over D using RapidNJ [28] version 2.3.2. 
The resulting tree was plotted with Interactive Tree of Life 
(iTOL) [29] version 4.2.3.

Copy number variation

 Copy number variations (CNVs) were called 
using FALCON version 0.2 with threshold 0.3, and 
the QC procedure provided with Canopy was run with 
default length and ΔCN settings. The read depth ratio 
for each sample was computed as the ratio of aligned 
reads in tumor to aligned reads in normal. CNVs called 
by FALCON were manually inspected to identify events 
with major copy number >2 or minor copy number < 0.5 
in at least one tumor sample, and spanned at least 25% 
of a chromosome. For each of these CNVs, common 
breakpoints were estimated across all tumors. FALCON 
was then re-run in each sample with τ̂chr set to the nearest 
SNP and threshold 0.2, with manual rescue of CNVs 
(threshold ≥ 0.1 in all cases). 

Subclonal phylogenetic analysis

The reference read count, alternate allele count, and 
variant fractions of all nonsynonymous somatic variants 
called within each tumor sample were compiled. Somatic 
SNVs were further filtered with at least 100x coverage in 
all samples, minimum of 20 alt-supporting reads in at least 
one sample, not on a sex chromosome, and a DANN [30] 
predicted mutational impact score ≥ 0.96 (n = 893). This 
list of high-confidence mutations was downsampled to a 
set of 60 mutations with maximal diversity using a high 
correlation filter, implemented as follows:
while |M| > n:

i ← arg maxx (ρMxMy); y > x; x, y ϵ 1..|M|
delete(Mi)

where M is the set of mutations, with each mutation 
being a vector of its per-sample VFs, n is the desired 
final number of mutations (in this case, n = 60), and ρ is 
the correlation between VFs in each sample, defined as 
follows:

ρ
σ σ












ab
a b

Cov a b
=

( , )

where Cov(x, y) is the covariance between elements of 
same-length vectors x and y, and σx is the population 
standard deviation of elements of vector x.

Canopy was then run with an in-house parallelized 
version of sample.cluster mode with cluster number from 
2 to 9, 10 MCMC clustering runs, τK+1 0.05, number 
potential subclones from 3 to 9, 50 chains per subclone 
number, burnin 100, thinning parameter 5, simulation runs 
from 20000 to 50000, and writeskip 200. As FALCON 
does not generate standard deviations for regions with 
identical major and minor copy number, and Canopy does 
not support sparse ԑM or ԑm matrices, the Frobenius norm 
of non-NA values of the ԑM and ԑm matrices was used for 
Canopy. The optimal subclone number was selected by 
highest BIC (Bayesian Information Criterion) score.
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Afterwards, the remaining somatic SNVs (not used 
for Canopy tree building) and indels were retroactively 
assigned to the resulting tree using a maximal likelihood 
model. For an arbitrary somatic mutation v, define N as 
the number of tumor samples, r N∈  as the number of 
alternate-supporting reads for v in each sample, x N∈  
as the coverage of the variant position in each sample, 
and 

p N∈ ,  a vector of expected variant fractions in each 
sample (derived from the tree as shown below). Given 
known x  and p , and modeling alternative read depth as 
jointly binomial across tumor samples, the probability and 
log-likelihood can be computed as follows:

P r x p
x
r
p p

i

N
i

i
i
r

i
x r

i i i  | ,( ) = 







 −( )

=

−( )∏
1

1

( ) ln | ,
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j j
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To compute 
p,  we utilize the phylogenic tree and 

clonal fractions reported by Canopy, along with its per-
subclone major and minor copy number estimates. Define 
Z as the number of edges of the tree, and K as the number 
of tumor subclones + 1 (to account for normal cells). Given 
the tree, a matrix T∈{ } ×0 1, Z K  representing the phylogenetic 
composition of each subclone can be constructed as follows 
(note that the tree root corresponds to germline):

T
k z

z k,
,
,

=
1 if thepath from root tosubclone contains edge
otherwis0 ee





= =, .. , ..z Z k K1 1

Next, define P∈ ×K N  as the clonal fraction matrix 
provided by Canopy (where entries in the first column 
represent proportion of normal cells in each sample), T as 
the number of CNV regions used for Canopy, CM ∈ ×( )T K  
as the per-subclone major copy number matrix, and 
Cm ∈ ×( )T K  as the per-subclone minor copy number 

matrix. Any zero values within each column of P were 
set to 0.0005, with the remaining entries reduced equally 
to ensure that each column sums to 1. This is first used 
to compute A∈ ×( ) ,T N  the total copy number of each 
CNV region in each sample (independent of any specific 
mutation), as follows:

A C C P= +( ) 

M m

Next, assume without loss of generality that v is 
within edge z. From Canopy, if v is within a CNV t, t is 
within edge y. We can calculate the copy number of v in 
each subclone, 



b K∈ ,  as follows:
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where ○ is the Hadamard product of matrices. This permits 
calculation of the copy number of v in each sample, under 

the assumptions that v ∈ z and v is on a major or minor 
allele, as follows:





s b= PT

Computation of � p  for mutation v is now 
straightforward:

p s
a
i N ai

i

i

t

= = = { }, .. ,

,

, ,1 2

A *
T

N

v t

v

iswithinCNV

iswithin aCNV and isson an autosomeor chrXin a female

ison chrXor chrY in amale1{ }




N ,v







To perform the assignment, ( )v z∈  is computed 
as described above for all edges. If v is within a CNV region 
and the candidate edge is before the CNV, its possibilities 
of being on the major or minor allele are both considered. If 
the candidate edge is after the CNV, only the possibility of it 
occurring on one copy of the allele is considered, utilizing the 
simplifying assumptions (also made by Canopy) that each 
somatic mutation occurs only once and no back-mutations 
occur. If the candidate edge contains the CNV, all three 
above possibilities (major/minor/after) must be considered. 
To avoid numerical errors, if pi = 0 and ri ≠ 0 for a candidate 
assignment in any sample, that candidate assignment is 
discarded. The edge with highest log-likelihood is selected, 
with ties (such as can occur with deletions or on a different 
branch than a CNV) broken in favor of the edge furthest from 
the root node. This approach was implemented and run using 
Python 2.7.1, using scipy [31] 0.10.1.
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