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ABSTRACT
Colorectal cancer (CRC) is a public health problem worldwide and in Jordan. Statins 

are cholesterol lowering agents. Beyond their effects, statins use has been reported 
to reduced risk of several malignances, including CRC. This study aimed to assess the 
effect of statins on CRC by studying cellular infiltration of Regulatory T Lymphocytes 
(Tregs) into CRC tissues and their effect on Transforming growth factor beta 1 (TGF-β1) 
level and on angiogenesis. Fourty seven specimens (25 statins users vs. 22 non-users) 
were used. Immunohistochemistry was performed to study Tregs infiltration using their 
marker, fork head transcription factor, and angiogenesis using CD31 as a marker. TGF-β1 
levels were measured using ELISA. Results revealed that statins use was associated 
with more Tregs infiltration, less angiogenesis but no difference in TGF-β1 content 
in tumor tissue. When results were further stratified according to stage of disease, 
more Tregs infiltration was significantly noticed in advanced disease but not in early 
disease. In addition, more angiogenesis inhibition was noticed in early disease but not 
in advanced disease. Same stage-dependence wasn’t noticed with TGF-β1 expression. 
In early disease, reduction of angiogenesis mediated by statins might lead to reduction 
of tumor aggressiveness. On the other hand, Tregs infiltration into tumor mediated by 
statins might reduce cancer aggressiveness in advanced disease. These results suggest 
that statins might be used in the treatment of CRC.

INTRODUCTION

Colorectal cancer (CRC) is the third most common 
cancer and the second leading cause of mortality among 
cancers in the United States [1]. In Jordan, it is the second 
most common cancer after breast cancer [2]. Many 
overlapping etiologies have been linked to the incidence 
of this cancer, such as hereditary, genetic and more 
recently, immunologic [3, 4]. The theory about cancer 
immunosurveillance, which sets that malignant cells are 
recognized as foreign and then eliminated by immune 
system, has been changed after well understanding of 
immunity and improving animal models and different 
techniques [5]. In animal models, the interaction between 
tumors and immune system starts an “immunoediting” 
process [6]. This process leads to three outcomes: cancer 

elimination, equilibrium, and escape [7]. Immune evasion 
plays an important role in immunologic mechanisms of 
development and progression of cancer [8]. Regulatory 
T Lymphocytes (also known as Tregs) are one of many 
major players in tumor evasive mechanisms [9]. Immunity 
can be suppressed by tumor either systematically or in the 
tumor microenvironment [5]. Immunosuppressive effects 
in the microenvironment appears by Tregs domination 
at which they produce Transforming growth factor beta 
(TGF-β) and interlukin-10, which are immunosuppressive 
cytokines, in particular to effector T cells [10]. Tumors 
produce TGF-β to escape immune cells destruction via 
skewing immune response and shifting antitumor effector 
T cells into Tregs [11]. Systemic immunosuppressive 
effects of a tumor can be achived through increasing the 
number of activated granulocytes and myeloid-derived 
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suppressor cells [5]. Surprisingly, an overwhelming 
evidence links Tregs infiltration into CRC tissue with 
favorable prognosis [12].

Statins are HMG-CoA reductase inhibitors that inhibit 
the key step of cholesterol synthesis and are used to treat 
hypercholesterolemia. In addition to that, statins have some 
pleiotropic effects [13]. Many studies have linked statins 
use with a reduction of both incidence and progression of 
many cancers, including breast [14, 15], prostate [16, 17] 
and CRC [18, 19] as well. Some evidence, however, shows 
neutral effect of statins on those cancers. Statins are being 
investigated as anticancer agents in many cancers, including 
cancers of breast, gastric, prostate, lung, colon and in 
hematologic malignancies [20]. Statins mediate anticancer 
effects through their antiproliferative, anti-invasive [21, 22], 
antiangiogenic [23] and proapoptotic effects [21]. Statins 
inhibit tumor cells proliferation by their effect on cell cycle 
by blocking the transition from G1 to S phase, this arrest is 
mediated by downregulation of cyclin-dependent kinase-2 
(CDK-2) activity, and upregulation and stabilization of 
CDK inhibitors p21 and p27 [21, 22]. Apoptosis induction 
by statins appears to be mediated by downregulation of 
bcl-2 expression, activation of caspases, cleavage of PARP, 
and depletion of geranylgeranylated proteins (downstream 
product of mevalonate pathway) [23]. Also, statins induce 
apoptosis by increasing the expression of Bax, which is a 
pro-apoptotic protein [21]. Statins act as anti-invasive agents 
through inhibition of signaling pathways that are related to 
cancer invasive properties [21]. Statins angiogenic effects 
are biphasic: at high statins concentrations angiogenesis 
will be inhibited, while at low concentrations, they act as 
pro-angiogenic [24]. Statins inhibit angiogenesis through 
their ability to downregulate vascular endothelial growth 
factor (VEGF), which is the major angiogenic mediator and 
also a tumor growth promotor [23]. Angiogenesis is a main 
mediator of cancer cells proliferation and dissemination 
or metastasis. TGF-β is a major angiogenic factor and is a 
signature secretory component of Tregs.

We have previosuly shown a direct anti-cancer 
effect for statins on prostate cancer cells, both in-vitro 
and in-vivo [25, 26]. Because of their immunomodulatory 
effect, we predict that statins influence Tregs function 
and localization. In this research, we explored the effect 
of statins therapy on Tregs infiltration into CRC tissue, 
as well as its effect on TGF-β content and vessel content 
within tumors.

RESULTS

A total 47 samples from CRC patients aged between 
50 and 91 years were included in this study. A total of 
25 samples were for statins users (1 sample for 40 mg 
atorvastatin user, 22 samples for 20 mg atorvastatin users, 
and 2 samples for 10 mg atorvastatin users), and 22 for 
statins non-users. Table 1 demonstrates the demographic 
characteristics of the study population.

Figure 1A and 1B, show immunohistochemical 
staining of FoxP3+ Tregs infiltration into human CRC 
tissues in statins users and non-users, respectively. Figure 1C 
shows quantification of FoxP3+ Tregs within tissues in both 
study groups. It demonstrates the number of FoxP3 positive 
cells that infiltrated tumor tissues of statins users compared 
to statins non-users. There was a significantly greater density 
of infiltrating Tregs among statin users compared to non-
users as indicated by positive staining of FoxP3. 

Figure 2 shows the relative expression of TGF-β1 
in tissues of both statins users and non-users among CRC 
patients. No significant difference between users and non-
users of statins was found regarding total levels of TGF-β 
in CRC tissues. 

Figure 3A and 3B show the immunohistochemical 
analysis of vascularity within tumor tissues of statin users 
and non-users, respectively. Tumor sections were stained 
for CD31 which is a marker of vascularity. Figure 3C 
shows the number of blood vessels within tumor tissues 
in both study groups. The number of blood vessels, as 
indicated by positive CD31 staining, was significantly 
lower among statins users compared to non-users. 

Figure 4A shows the analysis for the impact of 
disease stage and treatment on number of FOXP3+ cells 
infiltrating tumors. Two-Way ANOVA showed an effect 
of disease stage on the infiltration of FoxP3+ Tregs within 
tumors, but not treatment or interaction. Within these 
groups, we performed a subanalysis of changes within the 
early and advanced disease groups. Mann-Whitney U test 
failed to show a difference between both treatment groups. 
Figure 4B shows the analysis of FoxP3+ cells infiltration 
within tumor tissues of patients with early disease while 
Figure 4C shows that within tissues of patients with 
advanced disease. Mann-Whitney U test showed that CRC 
tissue of statins users in advanced disease had more FoxP3+ 
Tregs infiltration compared to non-users’ CRC tissues.

Figure 5A shows the analysis of impact of disease 
stage and treatment on number of blood vessels within 
tumors. Two-Way ANOVA showed an effect of both the 
treatment and stage-treatment interaction on vessel content 
of tissues, but not an effect of stage. Within those groups, 
we performed a subanalysis of changes within the early 
and advanced diease groups. Figure 5B shows the analysis 
of vessel content within different treatment groups’ tumor 
tissues in early disease. Mann-Whitney U test showed that 
CRC tissue of statins users in early disease had significantly 
less number of vessels compared to non-users’ CRC 
tissues. On the other hand, Figure 5C shows vessel content 
comparison between both treatment groups in advanced 
disease. Mann-Whitney U test failed to show a difference 
between both treatment groups in advanced disease.

DISCUSSION AND CONCLUSIONS

Statins are known to have anticancer effects. 
For that reason, their use might help to reduce the 
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risk of many cancers including CRC. This research 
questions the significance of use of statins, a commonly 
prescribed class of medications, concomitantly in CRC 
patients.

This study revealed that statins treatment leads to 
a significant higher density of FoxP3+Tregs infiltration 
within tumor tissues of CRC patients. Similar effect 
of statins have been reported in a study that showed an 
increase in Tregs frequency in healthy individuals as 
part of statins’ immunomodulatory effects [29]. Another 
study showed that statins use increases the frequency 
and suppressor effects of Tregs in hypercholesterolemia 
subjects. The same study revealed that statins use 
significantly leads to an increase in the number of FoxP3+ 
T cells in the peripheral blood [30]. Similar effect of 
statins has been observed in a study in rheumatoid 
arthritis patients [31]. In addition to that, simvastatin 
use significantly increases the number of FoxP3+ Tregs 
expression in atherosclerotic plaques, also it increases 
the suppressive function of Tregs, this finding has been 

reported by another study [32]. Increased content of Tregs 
within CRC tissue is of important prognostic value as 
indicated by others [33]. Researchers suggest the effect to 
be mediated through suppression of TH17 cells [34].

In this study, there were no significant differences 
between statins users and non-users in regard to TGF-β 
expression. Some studies have shown that statins reduce 
TGF-β expression in diabetic animals’ tissue [35, 36]. A 
study was conducted on rats has reported that rosuvastatin, 
in a dose-dependent manner, reduced the expression of 
TGF-β1 in diabetic cardiomyopathy [35]. Another study on 
diabetic rats showed that lovastatin significantly inhibits 
the expression of TGF-β1 [36]. However, some studies 
have reported that statins induce TGF-β expression. 
Simvastatin significantly induces the expression of TGF-β, 
according to a study that was performed on rats mesangial 
cells [37]. Similar finding has been revealed by another 
study. It has been shown that significant downregulation 
of TGF-β1 by simvastatin can be protective in diabetic rats 
kidneys [38]. Also, a study was conducted on mice has 

Table 1: Demographics and clinical characteristics of the study population
Characteristics Statins users Statins non-users

Gender Male
Female

16
9

17
5

Age (Average ± SEM) 66.81 ± 1.86 58.35 ± 2.75

Tumor stage

Stage I
Stage II
Stage III
Stage IV

1
4
15
5

1
4
14
3

Figure 1: Immunohistochemical analysis of FOXP3+ cells within CRC tissues of study groups. (A and B) represent 
immunohistochemical staining with FoxP3 for tissues of patients who were statins users vs. statins non-users, respectively. (C) Statistical 
analysis of the two treatment groups.
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shown that TGF-β expression was significantly increased 
by simvastatin in atherosclerotic plaque [32]. Pravastatin 
has also the same effect in hypercholesterolemic patients, 
as it significantly increased plasma level of TGF-β1 
[39]. Another study showed similar findings in blood of 
patients with ST-segment elevated myocardial infarction 
reciving 80 mg of oral atorvastatin before primary 
percutaneous coronary intervention in regard to mRNA 
expression of both TGF-β and FoxP3 expression [40]. 

These findings somehow contradict the results of the 
present study. However, we should take into consideration 
that tumor microenvironment is different from any of the 
aforementioned tissues.

Furthermore, a significant reduction in CD31 
expression within tumor tissues mediated by statins is 
another important finding in this study. This translates to 
a significant decrease of tumor vessel content and thus 
angiogenesis. Many studies have demonstrated that statins 

Figure 2: Relative expression of TGF-β. NS = statistically non-significant.

Figure 3: Angiogenesis within tumor tissues. (A and B) Immunohistochemical staining with CD31 for tissues of patients who were 
statins users vs. statins non-users, respectively. (C) Statistical analysis of the two treatment groups.



Oncotarget35756www.oncotarget.com

effect on angiogenesis depends on their concentration 
in the blood or their dose. Low doses of statins induce 
angiogenesis, while at high doses they become angiostatic 
[24, 41, 42]. This finding is consistent with the result of this 

study because moderate doses of atorvastatin were used 
in the  enrolled subjects. Other study has demonstrated 
that statins induce angiogenesis in different mechanism 
at which low doses of atorvastatin increased VEGF 

Figure 4: Effect of stage on FoxP3+ cells tumor infiltration. (A) Analysis for the impact of disease stage and treatment on number 
of FOXP3+ cells infiltrating tumors. (B) Analysis of FoxP3+ cells infiltration within tissues of patients with early disease, and (C) that 
within tissues of patients with advanced disease. NS = statistically non-significant.

Figure 5: Effect of stage on angiogenesis within tumor. (A) Analysis of impact of disease stage and treatment on number of blood 
vessels within tumors. (B) Analysis of vessel content within different treatment groups’ tumor tissues in early disease, and (C) vessel 
content comparison between both treatment groups in advanced disease. NS = statistically non-significant.
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expression, as evident in a study conducted on a rat model 
[43]. Another study has shown that treatment with low dose 
of atorvastatin leads to a significant increase of VEGF-
induced angiogenic responsiveness of coronary endothelial 
cells in normal and diabetic rats [44]. Another study 
conducted on simvastatin has reported the same results in 
which simvastatin has enhanced myocardial angiogenesis 
through increased VEGF expression levels [45].

Little is known about the relationship between colon 
cancer stage (early vs. advanced) and Tregs infiltration 
or level of blood vessels. Only one study found that 
FoxP3+ cell infiltration into lymphoid follicles from 
histologically normal mucosa as a prognostic factor in 
colon cancer at an early stage [46]. This study is not even 
discussing the tumor content of FoxP3+ Tregs. In regard 
to angiogenesis, one study showed that the expression of 
VEGF-1 increases significantly at stage IV of disease, 
compared to stages II and III [47]. This is though not a 
direct measure of vascularity of tumor tissue. Despite 
that, we predict that higher FoxP3+ cells within the tumor 
in advance stages is important in suppression of tumor 
dissemination and proliferation through suppression of 
inflammatory processes. This could probably be through 
TH17 suppression [34] or by inflammasome-mediated 
mechanism [48] or other immunomodulatory effects of 
statins. For the effect on vessel density within the tumor, 
we predict that statins ability to inhibit vessel formation 
in early disease was blunted by multiple mechanisms 
activated in advanced disease.

In conclusion, statins treatment leads to increase in 
Tregs infiltration within CRC tumor tissues which might 
be associated with CRC positive prognosis. In addition, 
statins decrease CRC angiogenesis. These findings suggest 
that statins reduce the risk of CRC.

MATERIALS AND METHODS

Study population

Institutional review board (IRB) approval was 
acquired beore conducting this research. This study was 
conducted on archived tumor samples acquired from 
the pathology department at King Abdullah Univeristy 
Hospital (KAUH). KAUH is a tertiary care center 
receiving cases with health problems, such as cancer, 
from other hospitals in Jordan. By reviewing records 
of paraffin-embeded CRC samples available between 
January 2008 till December 2015, a total of 200 samples 
were found. Unfortunately, medication records of patients 
referred from other hospitals were not available in KAUH 
archives. To confirm the status of statins use, investigators 
had to contact the 200 patients, one by one, to figure out 
if they are receiving statins, which statin and dose. Some 
other information were hard to be retrieved, such as 
duration of statin therapy. Some patients were dead and 
some changed their contact information, and eventually 

we ended up with 47 samples. Among those samples, 25 
were from CRC patients who were using statins and 22 
samples were from CRC patients who were not using 
statins as controls. Samples would be compared in respect 
to three features: Tregs infiltration, angiogenesis, and 
TGF-β1 content. Tumor samples were staged upon resection 
according to the American Joint Committee on Cancer’s 
TNM staging system [27] adopted around that time.

Regulatory T Lymphocytes infiltration and 
angiogenesis

Immunohistochemistry was conducted to study both 
Tregs infiltration and angiogenesis. 

Immunohistochemistry

The specimens were analyzed immunohistochemically 
using sections from paraffin-embedded CRC tissue. The 
samples were analyzed for their infiltration of FoxP3-
positive T cells, which is a marker for Tregs, and CD31. 
After a microtome sectioning from paraffin-embedded 
blocks using Leica rotary microtome, these sections (4 µm) 
were labeled, heated using oven at 75°C, deparafinized by 
dewaxing with xylene (two containers for 15 minutes in 
each) and hydrated with ethanol (100%, 100%, 90%, 80%, 
and 70%, for 2 minutes for each). After that, an antigen 
retrieval step was performed. Heat-induced antigen retrieval 
was done using PT-linked instrument (DAKO, Denmark) 
and high pH citrate buffer (DAKO, Denmark) for FoxP3 
and low pH citrate buffer for CD31. Then, these sections 
were treated with 3% hydrogen peroxide (DAKO, Denmark) 
for 10 minutes in order to block endogenous peroxidase 
activity. Sections were then washed with Phosphate-buffered 
saline (PBS), and then incubated with primary antibodies, 
monoclonal anti-mouse FoxP3 (Abcam; 236A/E7, ab20034; 
Cambridge, MA; 1:200 dilution) and monoclonal anti-
mouse CD31 antibody (Santa Cruz Biotechnology; sc-
376764; 1:200 dilution), for 60 minutes at 4°C. This was 
followed by washing with PBS buffer and incubation with 
the secondary antibody, which is horseradish peroxidase 
(Envision Flex / HRP – DAKO, Denmark) for 20 minutes at 
20°C. After washing the sections with PBS buffer, antigen 
signal detection was conducted by visualizing a color after 
a reaction with 3,3’ diaminobenzidine (DAB + chromogen; 
Dako Cytomation). Then, the slides were counter-stained 
with Mayer hematoxylin, dehydrated with ethanol (70%, 
80%, 90%, and 100%, 2 minutes for each), dried in the oven 
for 3–5 minutes, immersed in xylene, and then mounted 
by DPX mounting media to be ready for visualizing under 
microscope. Positive control was tonsils tissue for FoxP3 
and appendix tissue for CD31, while PBS buffer replaced 
the primary antibody was used as negative control.

Images were obtained at 400x magnification. The 
number of FoxP3+ cells and CD31+ blood vessels were 
counted by two investigators in 5 high power fields of 
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each tumor section and then the mean number of these 
cells and blood vessels were calculated. The counting was 
performed by blinded investigators who did not participate 
in the immunohistochemical staining procedure and who 
had no knowledge of the clinical data about these samples.

Transforming growth Factor-β content

TGF-β content was examined through three steps, 
proteins extraction, protein assay, and ELISA. 

Protein extraction

Protein extraction was performed using a 
commercial protein extraction kit (Qproteome FFPE 
Tissue Kit, Qiagen, Hilden, Germany; catalog number: 
37623) according to manufacturer’s protocol. The 
procedure started with two sections of each sample 
that were cut from the tissue blocks (4 µm thick). 
Deparaffinization of the tissues was performed starting 
with incubating samples in an oven for 30 minutes at 
70°C, then they were transferred to two containers of fresh 
xylene for 10 minutes in each. After that, samples were 
incubated in a series of decreasing ethanol concentrations 
(100%, 100%, 96%, 96%, 70% and 70%), for 10 minutes 
in each concentration and finally they were immersed in 
double-distilled water for 30 seconds. After tapping the 
slide on a paper towel, tissue samples were transferred 
into eppendorf tubes and mixed with 100 μL of extraction 
buffer EXB that is provided in the kit. Samples were 
incubated on ice for 5 minutes, and then incubated at 
100°C in a heating block, followed by incubation at 80°C 
with shaking for 2 hours using a water bath shaker. At the 
end of incubation period, samples were centrifuged for 
15 minutes at 14,000 g at 4°C to enable transferring the 
supernatant-containing proteins into new eppendorf tubes 
[28]. The tubes were then stored at –20°C until the time 
of analysis.

Protein assay

Protein assay was performed to quantify the 
extracted protein. It was performed by using Microfuge 
Tube Assay Protocol of Reducing Agent-compatible/
Detergent Compatible (RC DC) Protein assay (BioRad, 
catalog number: 500–0120). First step was A′ solution 
preparation by adding 5 μL of DC Reagent S to each 
250 μL of DC Reagent A. Standard curve samples were 
prepared by preparing 5 serial dilutions of bovine serum 
albumin (BSA) as protein standards: 1.5 mg/mL, 0.75 mg/
mL, 0.375 mg/mL, 0.1875 mg/mL, and 0.09385 mg/
mL. After pipetting 25 μL of each standard and sample 
into clean dry microfuge tube, 125 of RC Reagent I were 
pipetted into each tube, and then these tubes were vortexed 
and incubated for 1 minute at room temperature. RC 
Reagent II was added by adding 25 μL to each tube, then 
the tubes were vortexed, and later centrifuged at 15,000 × g 

for 5 minutes. After that supernatants were discarded and 
127 μL of A′ solution were added to each tube, vortexed, 
and incubated at room temperature until the precipitates 
were dissolved completely. This was followed by another 
vortex step, then 1 mL of DC Reagent B was added to 
each tube, vortexed, and incubated for 15 minutes at room 
temperature. The last step is absorbance reading at 750 nm. 
Absorbance for each sample was read in duplicate.

ELISA

TGF-β1 concentration was determined by using 
a Human TGF-β1 ELISA Kit (MBS175889). This kit 
is based on a quantitative standard sandwich enzyme 
linked immune sorbent technique. The experiment 
was carried out according to manufacturer protocol. 
Solution A (1N HCl) was prepared by adding 8.35 mL 
of 12N HCl into 91.67 mL of deionized water. 
Solution B (1.2N NaOH/0.5M 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES)) was prepared 
by adding 12 mL of 10N NaOH and 11.9 g of HEPES 
into 75 mL deionized water, then adding deionized water 
to adjust volume to 100 mL. Standards were prepared by 
adding 1 mL of standard diluent buffer into the tube that 
containing 10,000 pg/mL human TGF-β1 standard. 1000 
pg/mL of human TGF-β1 standard was prepared by adding 
0.1 mL of the first standard into 0.9 mL of sample diluent 
buffer, while the remaining standards (500 pg/mL, 250 pg/
mL, 125 pg/mL, 62.5 pg/mL, 31.2 pg/mL, 15.6 pg/mL, 
and 7.8 pg/mL) were prepared by serial dilution. 

At first, samples were diluted using deionized 
water to get 0.1 mg/mL dilution. Then these samples 
were activated (because TGF-β1 mostly contained in as 
inactive form in samples) by adding 20 μL of solution 
A to each 40 μL of each sample, 10 minutes later 20 μL 
of solution B were added to each sample. The 96-well 
plate was pre-coated with a mouse monoclonal antibody 
specific for TGF-β1. A total of 0.1 mL of blank, which is 
a sample diluent buffer, and 0.1 mL of each standard and 
sample were pipetted into the plate wells and incubated 
at 37°C for 90 minutes, each sample and standard was 
loaded in duplicate. After discarding the solution, 0.1 mL 
of biotinylated anti-human TGF-β1 antibody working 
solution, which is a goat polyclonal antibody that is 
specific for TGF-β1 and it was diluted with antibody 
diluent buffer to get a 1:100 dilution, were added into 
each well. The plate was incubated at 37°C for 60 minutes, 
then it was washed three times using PBS buffer. After 
discarding washing buffer 0.1 of ABC working solution, 
which is Avidin-Biotin-Peroxidase Complex that was 
diluted with ABC diluent buffer to get 1:100 dilution, were 
added into each well, and the plate was incubated at 37°C 
for 30 minutes. This was followed by five times washing 
using PBS buffer to wash away any unbound conjugates. 
0.09 mL of TMP color developing agent, HRP substrate, 
were added to each well, and the plate was incubated 
at 37°C in dark for 25 minutes. Then 0.1 mL of acidic 
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3,3,5,5- tetramethylbenzidine (TMB) stop solution was 
added to each well. Finally, the absorbance was read at 
450 nm using a microplate reader.

Statistical analysis

Data analysis was performed using Graphpad 
Prism software version 7.0 (GraphPad Software, 
La Jolla, California, USA). D’Agostino & Pearson 
omnibus normality test indicated that data were not 
normaly distributed. For that reason, Mann-Whitney U 
nonparametric test was used to analyze the data. To study 
the effect of disease stage on FoxP3+ cells infiltration and 
tumor angiogenesis, we used first the two-way analysis 
of variance (ANOVA) test. For multiple comparison 
between all groups, we used Tukey’s multiple comparisons 
test. Dichotomization of some categorical variables 
was considered for statistical analysis of some study 
variables. This dichotomization was based on sample size 
and was performed in advance of conducting statistical 
analysis in order to avoid small sample size upon further 
stratification of data. Therefore, the TNM stage of CRC 
was dichotomized as early disease (stages I and II) and 
advanced disease (stages III and IV). Mann-Whitney U test 
was used to compare differences between groups within 
each disease stage. A difference between study groups was 
considered to be significant if P-value was < 0.05.
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