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ABSTRACT

Brain tumors are the leading cause of cancer-related death in children and are the 
most challenging childhood cancer in relation to diagnosis, treatment, and outcome. 
One potential novel strategy to improve outcomes in cancer involves the manipulation 
of autophagy, a fundamental process in all cells. In cancer, autophagy can be thought 
of as having a “Janus”-like duality. On one face, especially in the early phases of 
cancer formation, autophagy can act as a cellular housekeeper to eliminate damaged 
organelles and recycle macromolecules, thus acting as tumor suppressor. On the other 
face, at later stages of tumor progression, autophagy can function as a pro-survival 
pathway in response to metabolic stresses such as nutrient depravation, hypoxia and 
indeed to chemotherapy itself, and can support cell growth by supplying much needed 
energy. In the context of chemotherapy, autophagy may, in some cases, mediate 
resistance to treatment. We present an overview of the relevance of autophagy in 
central nervous system tumors including how its chemical modulation can serve as a 
useful adjunct to chemotherapy, and use this knowledge to consider how targeting 
of autophagy may be relevant in pediatric brain tumors.

INTRODUCTION

Central nervous system (CNS) brain tumors are both 
the leading cause of cancer-related death in childhood/
adolescence and the most common form of solid tumor 
in this age group [1]. In the US, CNS tumors have an 
incidence of 5.54 per 100,000 children (0-14 years of 
age) (2010-2014) and, despite medical advances in both 
earlier detection and more effective treatment, 10-year 
survival remains less than 75% [1]. However, this masks 
the outcomes in some tumor types such as diffuse intrinsic 
pontine gliomas (DIPG) that are invariably fatal. The 
mainstay of treatment of pediatric brain tumors is surgery 
with optional adjuvant radiotherapy or chemotherapy 
determined through patient age, tumor type, degree of 
surgical resection, location and grade [2]. Approximately 
66% of survivors are left with significant disabilities that 

shorten survival and affect re-integration into society 
[3]. Further advances in the treatment of children’s brain 
tumors are therefore clearly needed to improve patient 
morbidity and mortality.

Autophagy, Greek for ‘self-eating’, is a pathway of 
potential interest as a target for future anti-cancer agents. 
It is a catabolic process that promotes cellular homeostasis 
through the recycling of damaged proteins and organelles. 
The pathway of autophagy begins with the formation 
of a double membrane enclosed layer around proteins/
organelles for recycling. The newly formed structure 
(now known as an autophagosome) fuses with an acidified 
lysosome, promoting breakdown of its contents.

Cells require an ongoing production of proteins for 
their survival and this consumes much of the cellular energy 
supply. In times of nutrient deprivation cells need to maintain 
their energy levels and to achieve this, the cell employs 
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autophagy to ‘eat’ redundant proteins and components in 
order to generate energy. In this manner the cell provides its 
own survival mechanism. Autophagy may also affect cell 
survival as aberrant proteins, if left, could build up within the 
cell and have the potential to affect signalling and transport 
mechanisms [4]. The process also helps to remove reactive 
oxygen species (ROS) that could otherwise cause gene 
mutation and possible loss of control of cell turnover.

The therapeutic targeting of autophagy is already 
under investigation for the treatment of neurodegenerative 
diseases and specific cancers including hepatocellular 
carcinoma [5], melanoma [6, 7] and breast cancers [8]. 
Autophagy modulation has also been considered as a 
treatment strategy for brain tumors both in adults and 
children [9–14] and although its exact role in pediatric CNS 
neoplasms is not yet known [9], build-up of autophagosomes 
is enhanced in tumors such as gangliogliomas [15]; in 
treatment with chemotherapy agent temozolomide (TMZ) 
[16]; and in association with cell death [17].

In this paper, we first explore the variable roles 
of autophagy in tumor evolution. The mechanism 
of autophagy will then be discribed with particular 
reference to different stages that can be regulated 
both physiologically and through pharmacological 
interventions. Current evidence for the potential of a 
combinatorial treatment strategy (chemotherapy with 
autophagy modulation) comes mostly from studies of 
adult tumors; this will be explored with consideration of 
the distinctions between adult and childhood brain tumors. 
Finally, we will examine the currently limited available 
evidence for the potential of the combinatorial strategy in 
targeting pediatric tumors and speculate on new avenues 
to explore in the future.

THE PARADOXICAL ROLE OF 
AUTOPHAGY IN CELL SURVIVAL AND 
TUMOR EVOLUTION

Of the three different subtypes of autophagy, 
macroautophagy (hereafter referred to as autophagy) 
is the most widely investigated and is the focus of this 
paper. Autophagy involves the initiation and formation of 
double membrane vesicles, known as autophagosomes, 
around cellular components for degradation. Methods of 
autophagy detection within the cell include monitoring 
the formation of autophagosomes and turnover of the 
proteins that recruit cargo (proteins/organelles for 
recycling) into the autophagosome (known as autophagy 
receptors). However, as autophagy can be induced as 
part of a survival attempt in the dying cell, build-up of 
autophagosomes alone is not proof of a mechanism of cell 
death [18] as demise may occur alongside pro-survival 
mechanisms. Indeed, autophagy has been closely linked 
to apoptosis and many of their complex components 
are interlinking, with evidence of both antagonism and 
cooperation between these pathways [19, 20].

The role of autophagy in tumor evolution 
depends upon the stage of growth. In the initial phase of 
tumorigenesis, cellular autophagy could help remove ROS 
from the cell to prevent subsequent DNA damage which, 
if left, may trigger uncontrolled cell division [9]. The 
pathway may aid subsequent cell survival in two ways. 
Removing damaged proteins and organelles during tumor 
growth avoids their accumulation; an event which could 
have triggered cell death. In addition, autophagy can help 
maintain cellular nutrition during periods of starvation such 
as tumor growth preceding neovascularization [21]. Indeed, 
the physical location of a cell within a tumor has been 
shown to affect rates of autophagy in glioma cells [22].

Where cells die due to a failure of nutrient 
acquisition, ROS are released from necrosing tissue. 
This release has the knock on effect of increasing 
autophagic activity in neighboring cells which enhances 
substrate availability [23]. This mechanism is of interest 
as increased levels of autophagosome formation in the 
tumor cell niche may make cells more vulnerable to 
death when subsequent steps of the pathway are inhibited 
either via leakage of enzymes from lysosomes, known 
as lysosomal cell death [18], or via possible physical 
disruption to cell activities by numerous autophagosomes. 
Additional factors contributing to a possible increased 
rate of autophagy in tumor cells include situations of 
cellular distress such as starvation, the release of ROS (as 
mentioned above), or endoplasmic reticulum (ER) stress 
[23] which can arise during chemotherapy [9] or through 
radiotherapy (see below).

METHODS AND EFFECTS OF 
AUTOPHAGY MODULATION IN 
TUMOR CELLS

Autophagy modulation following anti-cancer 
treatments can affect cell survival to both extremes. 
On the one hand autophagy activation acts as a 
protective mechanism mediating the acquired resistance 
phenotype of some cancer cells during chemotherapy. 
An example of this comes from the work that has been 
done using chemical inhibition of the initiation phase of 
autophagy (see figure 1) in neuroblastoma to sensitize 
cells to chemotherapy [24, 25] and the concept has 
also been proven in other tumor types [26–28]. In 
this context, inhibition of autophagy can potentially 
resensitise previously resistant cancer cells or augment 
the cytotoxicity of various chemotherapy treatments. 
Alternatively, autophagy induction could itself be 
detrimental to the cell, with cell death resulting secondary 
to leakage of enzymes from the lysosomes [18, 29] or due 
to modulation of intracellular signaling from the build up 
of autophagosomes [4].

Pharmacological induction of autophagy often inhibits 
mTOR, making autophagy constitutively more active (see 
Figure 1). The later stages of autophagy (i.e. the degradation 
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of autophagosomal cargo) can also be pharmacologically 
controlled using chloroquine and its derivative 
hydroxycholoquine. (Hydroxy)Chloroquine is a drug that 
inhibits the fusion of autophagosomes to lysosomes [30] by 
increasing the lysosomal pH thus inactivating the digestive 
enzymes contained within it.

A simple combinatorial strategy of autophagy 
modulation alongside cytotoxic drug therapy was 
investigated by Levy and Thorburn in DAOY+ ONS76 
medulloblastoma cells as well as BT-16+ BT-12 CNS 

atypical teratoid/rhabdoid tumor cells treated with 
chemotherapy agents CCNU and cisplatin. Results varied 
between cell types but on the whole, cell survival in the 
presence of cytotoxic drugs was unaffected by either 
autophagy activation alone using the mTOR inhibitor 
rapamycin or inhibition of autophagosome degradation 
alone using chloroquine [9]. These results suggest that 
autophagy modulation is not as straight-forward as 
initially hoped and cell response to modulation is likely 
to be context dependent. New therapies are likely to be 

Figure 1: Molecular Mechanisms of Autophagy. The initiation of autophagy is controlled through a series of complexes involving a 
group of evolutionally conserved proteins known as “autophagy related proteins” (ATGs) which eventually lead to the production of scaffold 
protein LC3-II; essential for autophagosome function. The initial complex involved incorporates ULK1/2 (uncoordinated 51-like kinase 
1/2), ATG13 (a regulator of ULK1 auto-induction) and FIP200 (also a regulator) [38] and its assembly results in auto-phosphorylation of 
ATG13/ULK1. A subsequent conformational change in this preliminary complex allows the formation of further complexes [39]. The second 
complex formed at the site of autophagosome construction involves Beclin 1, which has been identified as a tumor suppressor [40]. Beclin 
1 interacts with the anti-apoptotic regulator Bcl2 [41, 42]. This coupling is broken under situations of starvation which allows Beclin 1 to 
associate with VPS34 (a class 3 PI3K) and p150 (also known as VPS15) to produce PI3P. PI3P interacts with one of several WIPI proteins 
(WD40 repeat protein interacting with phospho-inositides) and the WIPI protein subtype determines the rate of autophagy [39, 43, 44]. In 
the next step of autophagy, stimulation of ATG12 allows the formation of a complex that helps in the conversion of LC3-I to LC3-II via the 
addition of phosphatidylethanolamine (PE) and in the positioning of this modified protein on the developing autophagosome [45] where 
it acts as a scaffold protein [46]. The specificity of autophagy comes from the involvement ofautophagy receptors, such as SQSTM1/p62, 
that can simultaneously bind to the autophagosomal membrane (via LC3) and to ubiquitin modifications used to mark autophagic targets 
[47]. The growing autophagosome encircles both the receptor and its target for recycling as well as other cellular waste, forming a double-
membrane vesicle that is able to fuse to a lysosome either directly or via fusion with an endosome derivative (multi-vesicular body, MVB 
[15, 48]). Fusion with the lysosome allows the release of digestive enzymes into the autophagosome with consequent catabolism of proteins 
and organelles resulting in the release of amino acids for recycling [49]. The chief inhibitor of autophagy, mTOR works to inhibit the initial 
ULK1-ATG13-FIP200 complex. mTOR is a protein kinase - active when energy supply is sufficient [19, 43] - that hyperphosphorylates 
ATG13 and prevents auto-phosphorylation of ULK1, thereby inhibiting further steps [50, 51]. mTOR works downstream of growth factors 
and is also controlled by feedback of both cellular energy levels and protein availability. This includes the monitoring of amino acid levels 
in lysosomes using v-ATPase (vacuolar-type H+ ATPase) in the lysosomal membrane. Where levels of amino acids are sufficient, the 
binding of growth factors to tyrosine kinase receptors leads to receptor autophosphorylation and consequent activation of both PI3K and 
Ras. Class 1 PI3K aids the phosphorylation of PIP2-PIP3., thus triggering AKT to inhibit the formation of a complex between TSC1 and 
TSC2. The phosphorylation of ERK by Ras also inhibits this interaction. The TSC1-2 complex normally acts to inactivate the GTPase 
rheb. When active, rheb upregulates mTOR activity. Therefore, action of AKT indirectly up-regulates mTOR, meaning that autophagy is 
inactive [52]. This is reversed during periods of starvation where nutrients are less abundant, meaning that mTOR becomes inactive and 
autophagy occurs at an enhanced rate. PTEN (phosphatase/tensin homolog on chromosome 10) is a phosphatase acting on lipids to cause 
the conversion of PIP3 back to PIP2, thus increasing levels of cellular autophagy via reduced mTOR activity [53].
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specific to tumor type [31] and cell environment [22]. 
Notably a number of important cancer-related signalling 
pathways have been implicated in the regulation of 
autophagy. The phosphatidylinositol 3-kinase/mammalian 
target of rapamycin (PI3K/mTOR) and the AMP-activated 
protein kinase (AMPK) pathways have emerged as central 
conduits in the regulation of autophagy. Mutations in these 
pathways are associated with malignancies such as breast 
cancer [32, 33], ovarian cancers [34] and leukemia [35, 
36] and modulation of these pathways is being considered 
as a target for new cancer therapies irrespective of their 
effects on autophagy. Caution should therefore be taken 
when selecting potential strategies for targeting autophagy 
as each target may modulate multiple pathways and have 
numerous conflicting roles within the cell [37]. Further 
work on crosstalk between these pathways may help to 
improve the specificity and therefore success of future 
compounds selected as candidate cancer treatments. 
Nonetheless, the combination of autophagy inhibitors 
with cytotoxic drugs is attracting attention, and gaps in 
our knowledge of the ability of autophagy manipulation to 
overcome resistance to anti-cancer therapies are apparent.

EVIDENCE OF AUTOPHAGY 
MODULATION IN ADULT CASES

Caveats to transferring knowledge of adult to 
childhood tumors

Classification of childhood brain tumors is based on 
the histological subtype including details of the molecular 
characteristics, degree of differentiation – from low (grade 
1) to high grade (grade 4) according to WHO guidelines 
– and the original cell type. Brain tumors in childhood 
differ from those in adults in terms of the type of tumor, 
natural progression and site of occurrence [54]. Pediatric 
brain tumors are best considered to arise due to aberrations 
in normal development and are derived from embryonic 
structures, as is the case with the medulloblastoma. 
However, glioblastoma cells in adults and older children 
show similarities in terms of morphology and gene 
expression [55], suggesting that similar treatment options 
may be apposite. Currently, drugs like TMZ are equally 
ineffective as a cure for both adult and childhood/
adolescent high grade glioma [56]. Overall evidence from 
approaches in adults is likely to be useful in directing 
treatments to trial in children, but on a cautionary note 
results may not be directly transferrable between the two 
distinct groups of tumor.

Conflicting effects of 3-MA demonstrating that 
the outcomes of autophagy manipulation may be 
specific to tumor type and envionment

3-MA impedes autophagy in the early stages 
through the inhibition of class 3 PI3K [57] and has a 

variable role in glioma survival. Discrepancy in the effect 
of 3-MA on cell survival may come from opposing effects 
of simutaneous class 1 PI3K inhibition (and subsequent 
autophagy activation) alongside activation of class 3 PI3K 
due to lack of complete specificity for class of PI3K. In 
addition, 3-MA has been shown to act on many different 
pathways of metabolism within the cell. Its influence on 
autophagy is inconstant, with effects depending on the 
concentration used and the availability of nutrients.

Sun et al investigated the efficacy of berberine, 
an anti-bacterial agent used in China, in reducing the 
viability of glioma cell line LN18. Cell death was 
increased in treatment with berberine even where 
caspases were inhibited by Z-VAD, ruling out apoptosis 
as the mechanism. Cell death was thought to be due to a 
reduction in mitochondrial function and ATP availability 
and this was shown to occur alongside autophagy 
activation (demonstrated by an increase in LC3-II and 
decrease of autophagy receptor p62 presumed to be due 
to enhanced degradation). The addition of 3-MA was 
found to further reduce survival of these cells treated with 
berberine [58], and may be linked to additive function in 
causing cell starvation.

This is in contrast to findings that antineoplastic 
drug AG 1301 (1 micromole) reduced survival of C6 
glioma cells to 56.67% of that of the control sample, where 
3-MA enhanced cell survival. Autophagy was shown to be 
activated in AG1301 treatment as there was an increase in 
LC3-II:LC3-I with reduction in p62 [59]. Discrepancies 
in the effect of 3-MA on cell survival help to demonstrate 
that autophagy modulators as treatments may be more 
complicated than just their effects on autophagy and that 
effects are likely to be specific to tumor type, environment 
and concentration used.

Autophagy inhibitor chloroquine is of potential 
use in the treatment of glioblastoma

Autophagy modulation as a treatment strategy 
has been investigated in adult glioblastoma cells using 
chloroquine. As noted previously chloroquine and its 
derivative hydroxylchloroquine inhibit lysosomal fusion 
to the autophagosome, an effect thought to be due to their 
neutralizing action as weak bases.

Glioblastoma is the most common adult malignant 
brain tumor and has a median survival of 14.6 months 
despite therapy [10]. Treatment of glioblastoma in 
adulthood most frequently involves alkylating agent 
temozolomide (TMZ) with optional radiotherapy. It 
was demonstrated in U87MG (glioblastoma cell line) 
that chloroquine treatment in addition to TMZ led to an 
increase in LC3-II (a marker of autophagosome formation) 
whilst knockout of Beclin 1 (a protein necessary in the 
initiation of autophagy) reduced the cytotoxic effect of 
chloroquine [60]. This evidence suggests an increase in 
autophagosome build up through additional chloroquine 
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treatment. In a cohort of 30 glioblastoma patients aged less 
than 60 years, it was found that treatment with chloroquine 
after tumor resection as an adjunct to chemotherapy and 
radiotherapy increased the mean survival time to 24 
months as opposed to 11 months in those who did not 
receive chloroquine. Following these results, chloroquine 
was identified as an attractive subject for study in larger 
cohorts [61]. A more recent study, carried out in 2015, 
found the addition of chloroquine to further reduce the 
size of C6 glioma tumors than the implementation of 
TMZ treatment alone [62] and is backed up by secondary 
findings of Min et al. whilst developing a luciferase 
reporting system of autophagy activity [63].

The mean tolerated dose of hydroxychloroquine 
in a phase 2 clinical study was found to be 600mg/day; 
a dose which yielded no changes in survival or tumor 
growth inhibition. 800mg/day resulted in neutropenia 
and thrombocytopenia in all three subjects, likely due to 
myelosuppression resulting from treatment with both TMZ 
and hydroxychloroquine [64]. The use of chloroquine as 
an adjunct to promote autophagosome build-up could 
theoretically be further enhanced through concurrent 
upregulation of autophagy using a compound such as 
rapamycin to enhance the initiation phase. The use of 
such a combination approach could reduce the therapeutic 
dose of (hydroxy)chloroquine. However, rapamycin can 
also cause neutropenia and pancytopenia [65] as can 
radiotherapy [66]. These are effects of most methods 
of chemotherapy and should be kept in mind when 
developing new treatment strategies.

Huang et al investigated the potential of 
bevacizumab, a monoclonal antibody targeting VEGF-A 
receptors as a treatment to induce apoptosis of U87MG 
glioblastoma cells. The addition of 10 micromolar 
chloroquine enhanced the percentage of apoptotic cells 
from 25.45% to 54.22%. The method of cell death from 
this combined approach was suggested to be due to cell 
starvation coming from both a lack of angiogenesis 
and recycling of intracellular components [67]. These 
findings have been reproduced by Müller-Greven et al in 
CD133+ve gioblastoma cells; treatment with bevacizumab 
was associated with enhanced autophagy levels and cell 
death was enhanced by adding in bafilomycinA1 (a 
compound that blocks lysosomal acidification). In this 
investigation, autophagy was demonstrated through co-
localisation of LC3 puncta with a marker of lysosomes 
(LAMP2) [68].

Autophagy inhibitor chloroquine is of potential 
use in the treatment of glioblastoma and 
medulloblastoma alongside fenofibrate

Fenofibrate, a PPAR alpha agonist, has been 
shown to force cells from a human glioblastoma cell line 
into B-oxidation of fatty acids. This process led to ATP 
depletion and AMP dependent activation of autophagy that 

was visualized via enhanced abundance of LC3-II. In vitro, 
the addition of 50 micromolar fenofibrate to an LN-229 
glioblastoma cell culture led to 96% growth inhibition. 
Although the oral route was found to be ineffective in 
vivo, intracranial delivery of 5microlitres of 1millimolar 
fenofibrate to 5 mice with U-87MG-Luc tumors led to a 6 
fold decrease in tumor proliferation compared with DMSO 
treated controls [69].

Cell survival of LN-229 cells treated with 
fenofibrate was enhanced where a non-cytotoxic dose 
of rapamycin was added which could be reflective of 
enhanced energy release as part of effective autophagy 
upregulation. Conversely, cell death was enhanced 
by the addition of chloroquine or bafilomycin which 
prevent recycled contents from being released out of the 
autophagsosomes [69].

The use of fenofibrate as part of a combinatorial 
strategy in pediatric cancer patients has been investigated 
in a recent phase 2 clinical trial which used a novel 
approach of continuous low dosing of medications- known 
as a metronomic strategy- aiming to simultaneously 
exploit the anti-angiogenic properties of several different 
pharmaceuticals. The approach demonstrated a partial 
response (decrease in tumor growth <50%) or stabilization 
in 8/12 patients with low grade glioma and 12/19 
patients with ependymoma, although only 58% and 37% 
respectively of patients were able to complete the 27 week 
course of treatment [70].

A further study into the use of fenofibrate in cancer 
treatment used mouse BsB8 cells, a model for pediatric 
medulloblastoma. Pediatric medulloblastoma has an 
incidence of 0.2 per 100,000 in England (1995-2003)
[71] and is the most common malignant brain tumor in 
childhood. High incidence in younger children and quick 
progression compared to other subtypes of childhood brain 
tumor [72] make it an essential research topic. 25 micro 
moles of fenofibrate added to mouse BsB8 cells for 24hrs 
reduced the phosphorylation of regulators IRS-1, AKT 
and GSK-3B, which could have the downstream effect 
of inducing autophagy. There was reduced growth noted 
in these cells, suggesting that autophagy modulation may 
also have an effect in medulloblastoma cells [73].

Enhancement of autophagy induction during 
radiotherapy induces cell growth arrest in adult 
CNS cancer

As noted above radiotherapy has been shown to 
induce autophagy which itself can be cytoprotective. 
Palumbo et al. investigated the role of autophagy 
in radiotherapy treatment of glioblastoma using 
radiosensitive T98G cells and in U373MG cells which 
show limited sensitivity to this treatment. In T98G cells, 
low levels of radiotherapy resulted in enhanced cell death 
with increases in the action of autophagy components 
Beclin 1, ATG5 and enhanced conversion of LC3-I to 
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LC3-II, signifying increased autophagosome maturation. 
siRNA knockout of essential autophagy genes (Beclin/
ATG7) ameliorated the reduction in cell proliferation, 
suggesting a potential requirement of functional autophagy 
for cell death. Cell death was enhanced by rapamycin, a 
compound known to induce autophagy at the early stages. 
U373MG cells were not affected in their individual 
viability after treatment with rapamycin but their survival 
fraction decreased dramatically [66]; an effect possibly 
linked to the buildup of autophagosomes. Overall, the 
study highlighted a potential role of functional autophagy 
in cell death following radiotherapy.

Treatment of radioresistant adult glioblastoma cells 
with the dual mTOR and P13K inhibitor NVP-BEZ235 
(see Figure 1) was found to lead to cell growth arrest 
and a reduction in tumor proliferation after radiotherapy 
[74]. NVP-BEZ235 treatment of U251 glioblastoma 
cell line showed increased autophagy levels as indicated 
by the enhanced conversion of LC3 I-II. The observed 
increase in radiosensitisation may have been due to a 
combination of factors including autophagy activation. It 
was proposed that NVP-BEZ235 might also interfere with 
DNA damage repair through the AKT/mTOR pathway. 
Both rapamycin and mTOR inhibitor PP242 were found 
to cause irreversible growth arrest on a range of head 
and neck cancer cells treated with radiotherapy including 
glioma cells [75], providing further evidence of the 
potential for pharmacological mTOR manipulation to be 
a viable treatment mechanism in addition to radiotherapy. 
It should be noted that enhanced autophagy activation 
can happen alongside cell death and is not necessarily 
causative. Further studies are needed to confirm a possible 
link between autophagosome build up and cell death with 
possible mechanisms being cell starvation (with nutrients 
locked inside autophagosomes) or modulation of cell 
signaling.

RELEVANCE TO PEDIATRIC BRAIN 
TUMORS

Current evidence of autophagy modulation as a 
treatment strategy in children’s brain tumors

Evidence of autophagy manipulation in childhood 
brain tumors is lacking; this conclusion is supported 
from the limited results of a recent literature search as 
presented in Table 1. As in adults, the effect of autophagy 
modulation appears to be tumor specific as highlighted 
in an investigation into sildenafil alongside etoposide 
treatment where autophagy was studied as a possible 
mechanism of cell death. Interestingly, inhibition of 
autophagy initiation via knockout of either Beclin 1 or 
ATG5 was found to enhance survival of DAOY/D283 
cells but was detrimental to the survival of patient derived 
HOSS1 medulloblastoma cells [31]; thus emphasizing the 
need for treatments to be tumor specific if autophagy is to 

be manipulated successfully in childhood tumors as well 
as those in adults.

Evidence of autophagy modulation as a treatment 
strategy in pediatric brain tumors with V600E 
mutation

BRAF, a kinase implicated in cell growth and 
survival, is activated following growth factor-receptor 
binding [52, 82, 83]. The V600E mutated variant of BRAF 
disrupts auto-inhibition, leading to constant activation of 
cell growth and has been identified in various types of 
pediatric brain tumors. These include on average 9% of 
pilocytic astrocytomas (one of the most common brain 
tumors in childhood), 33% of anaplastic astrocytomas 
and 69% of pleomorphic xanthoastrocytomas. The 
mutation is generally more abundant in pediatric CNS 
tumors than those found in adults [82]. CNS tumor cells 
with the BRAF V600E mutation have higher rates of 
autophagy in response to cell stress than those without. 
Studies have found that treatment using growth inhibitor 
vemurafenib, a chemotherapy agent, combined with 
chloroquine results in a greater reduction in viability of 
tumor cells with the mutation than in those without [76]. 
This phenomenon has also been demonstrated in a case 
study of a brainstem ganglioglioma with BRAF V600E 
mutation first presenting at 13 years of age. Treatment of 
the patient with vemurafenib and vinblastine resulted in 
manifestations of resistance in contrast to vemurafenib-
chloroquine combination which reduced tumor growth 
over a 2.5 year follow up period [76, 84]. The success 
of this treatment may have been influenced by the 
modulation of autophagy through the combined action of 
chemotherapy and chloroquine in the presence of BRAF 
V600E mutation.

UAI-201 is another BRAF targeting drug that was 
found to cause dose-dependent inhibition of glioma growth 
in cells with V600E mutation, including the KG-1-C line 
from glioma cells of a 13 year old boy. Treatment of these 
V600E mutated cells with UAI-201 resulted in an increase 
in LC3-I to LC3-II conversion indicative of autophagy 
activation. Deletion of Beclin-1 lessened the anti-
proliferative effect of UAI-201 in cells with the V600E 
mutation [84]. The requirement for Beclin-1 provides good 
evidence that autophagy is involved in cell death in BRAF 
mutation (where it is already genetically upregulated). 
Because BRAF mutation is generally more common in 
pediatric CNS tumors, than in adult cases the strategy of 
targeting autophagy holds promise in this group.

Evidence of autophagy modulation as a 
treatment strategy for subependymal giant cell 
astrocytoma in children with tuberous sclerosis

Several genetic mutations can predispose to the 
development of a low grade glioma. Tuberous sclerosis 
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Table 1: Current evidence of autophagy modulation as a strategy for treating children’s brain tumors

Paper title Study aims Model of disease Modifier Outcome Evidence specific 
to pediatrics

Autophagy 
inhibition improves 
chemosensitivity in 
BRAF(V600E) brain 
tumors [76].

Evidence in tumor 
cells+ a case study 
suggesting cells 
with BRAF(V600E) 
mutation are 
autophagy dependent

WT BT16 and 
BRAFV600E 794 
(ganglioglioma), 
AM38 and 
NMC-G1 mutant 
cells (astrocytoma)

CQ
Reduced tumor viability 
only in BRAF (V600E) 
mutation

BRAF(V600E) 
mutation is 
important in 
pediatric central 
nervous system 
(CNS) tumors. 
Case as below.

Autophagy inhibition 
overcomes multiple 
mechanisms of resistance 
to BRAF inhibition in 
brain tumors [77].

Evidence in cells 
of LC3 indution 
with chloroquine 
in relation to tumor 
growth

94R and AM38R 
cells resistant 
to vemurafenib 
+ multiple case 
studies.

CQ

Tumor growth reduced. 
This was also shown 
with continuing 
treatment over 2.5 yrs 
in one case study.

Pediatric case 
study

PDE5 inhibitors enhance 
the lethality of standard 
of care chemotherapy in 
pediatric CNS tumor cells 
[31].

Investigation of 
mechanism of action 
for cell death after 
treatment with 
sildenafil.

DAOY/D283
patient derived 
HOSS1 
medulloblastoma 
cells treated with 
etoposide

KO Beclin 1 /
ATG5

Enhanced survival of 
DAOY/D283 cells; 
reduced survival 
HOSS1 cells

Pediatric CNS 
tumor cells

Salinomycin induced 
ROS results in abortive 
autophagy and leads to 
regulated necrosis in 
glioblastoma [78].

Investigation into 
mechanism of action 
of salinomycin 
against tumor cells

SF188, GSC11 
glioblastoma cell 
lines

Salinomycin

Salinomycin enhances 
ROS, thus inducing 
autophagy which was 
then blocked with build 
up of lysosomes. Cell 
death then occurred via 
necrosis.

Pediatric high 
grade glioma cells

Restoration of miR-
30a expression inhibits 
growth, tumorigenicity 
of medulloblastoma 
cells accompanied by 
autophagy inhibition.
[79].

Effect of miR-30a on 
autophagy and cell 
death

DAOY- SHH 
medulloblastoma
D285- type 4-5
D4250 group 3

miR-30a

MirR-30a inhibits 
autophagy (reduces 
beclin 1/ATG5 
expression) and was 
linked to increased cell 
death

DAOY cell line 
from desmoplastic 
cerebellar 
medulloblastoma 
of a 4 yr old [80].

The p53 tumor suppressor 
protein protects against 
chemotherapeutic stress 
and apoptosis in human 
medulloblastoma cells 
[81].

Effect of 3-MA / CQ 
on survival of D556 
and DAOY cells 
(secondary outcome)

D556, DAOY 3MA
/CQ None

DAOY cell line 
from desmoplastic 
cerebellar 
medulloblastoma 
of a 4 yr old [80].

Modulation of a brain 
tumor autophagy and 
chemosensitivity [9].

Effect of rapamycin/
CQ on DAOY + 
BT-16 CNS atypical 
teratoid/rhabdoid 
tumor cells survival 
+CCNU and cisplatin

DAOY+ ONS76 
medulloblastoma 
cells as well as 
BT-16+ BT-12 CNS 
atypical teratoid/
rhabdoid tumor 
cells

Rapamycin/
CQ None

DAOY cell line 
from desmoplastic 
cerebellar 
medulloblastoma 
of a 4 yr old [80].

Treating children’s brain tumors.
A search in PubMed for the terms “autophagy AND children’s brain tumors/autophagy AND pediatric brain tumors” (11.4.18) returned 35 
and 34 results respectively. 13 papers were identified in both of these searches. 11 papers presented evidence of autophagy manipulation on 
brain tumor models; of which seven presented evidence specific to the pediatric brain tumors rather than adult pathology; with two finding 
no effect of autophagy modulation on cell survival [9, 81].
Abbreviations: chloroquine, CQ; knockout, KO.
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(TS) is an autosomal dominant condition caused by 
mutation of either TSC1 or TSC2 and is associated 
with neurological effects such as seizures, autism and 
reduced intellect as well as tumor formation in the heart, 
brain, lungs and kidneys [85]. Subependymal giant cell 
astrocytoma (SEGA) is a benign brain tumor occurring in 
up to 20% of patients with TS and most commonly occurs 
between the ages of 10 and 20 years. It can be treated 
using the antineoplastic chemotherapy drug everolimus; 
an mTOR inhibitor [86].

Wild type TSC1 and 2 combine to form a complex 
involved in tumor suppression that inactivates the 
GTPase Rheb [87], thus decreasing mTOR signaling 
which relieves mTOR-mediated inhibition of autophagy. 
Mutation in either TSC1 or TSC2 leads to constant 
activation of mTOR [88] which could suppress autophagy 
activity. TSC2 negative murine embryonic fibroblasts 
were found to have smaller and fewer autophagosomes 
at baseline than wild type cells, with a reduced rate of 
autophagosome formation. Genetic reduction of SQSTM1 
(coding for autophagy receptor p62) inhibited growth in 
xenograft tumors with homozygous deletion of TSC2, 
proving the activity of SQSTM1/p62 and the process of 
autophagy to be still somewhat active in these tumors. 
However, autophagy inhibition remains a challenge in this 
case due to lack of selectivity for tumor cells. SEGA tumor 
growth was inhibited through using a combination of 
rapamycin and chloroquine where rapamycin induces the 
formation of autophagosomes whilst chloroquine inhibits 
their destruction [88]. In support of this model the drugs 
were found to be more cytotoxic in combination than 
when used alone. These results are noteworthy as they 
demonstrate that autophagy modulation may be of use 
even in the absence of additional genetic/pharmacological 
autophagy induction.

CONCLUDING REMARKS

Evidence of autophagy manipulation in pediatric 
brain tumors is limited and is tumor-specific. However, 
manipulation of autophagy remains an exciting candidate 
treatment strategy, especially alongside chemotherapy, 
where cancerous cells with high turnover are likely 
to have been affected by cytotoxic agents and may be 
undergoing autophagic removal of damaged proteins and 
organelles. The resulting up-regulation of autophagy in 
tumor cells following treatment could potentially make 
them more vulnerable to modulation than in healthy tissue. 
Disease-associated genetic mutation can have an effect 
on baseline cellular autophagy rates as demonstrated in 
V600E mutation of BRAF and this could make autophagy 
modulation particularly useful in affected cells. However, 
cytotoxicity through combinatorial use of several agents 
to manipulate autophagy can be achieved even in tumors 
with genetic downregulation of autophagy, as in the case 
of TSC mutations.

FUTURE PERSPECTIVE

Childhood brain tumors continue to be the leading 
cause of cancer-related death in this age group and are, 
therefore, an important area of research currently and in 
the future. Developing medication is particularly important 
for childhood brain tumors as strategies to both improve 
survival and to minimize therapy related long term 
sequelae are so clearly needed. Although autophagy action 
is influenced by both genetic and environmental factors, 
use of the combination approach is not necessarily limited 
in the absence of constitutive autophagy up-regulation and 
could, therefore, potentially be investigated as an adjunct 
to current therapy in all types of childhood brain tumor.

EXECUTIVE SUMMARY

•	  Childhood brain tumors currently represent a significant 
research area.

•	 Autophagy is a process already implicated in tumor 
evolution, and leads to stage-dependent enhancement 
or reduction of tumor growth.

•	 Autophagy can be upregulated in tumor cells 
undergoing chemo and radiotherapy.

•	 The regulation of autophagy can already be targeted at 
specific stages using available drugs.

•	 The autophagy inhibitor chloroquine has been shown to 
reduce glioblastoma growth.

•	 Induction of autophagy induces cell growth arrest in 
adult CNS tumors being treated with radiotherapy.

•	 There is some evidence of autophagy modulation as a 
successful treatment strategy in pediatric brain tumors. 
This so far includes those with the V600E mutation and 
SEGA tumors in tuberous sclerosis.
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