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ABSTRACT

Cancer is one of the leading causes of death in the world. Many strategies of 
cancer treatment such as radiotherapy which plays a key role in cancer treatment 
are developed and used nowadays. However, the side effects post-cancer 
radiotherapy and cancer radioresistance are two major causes of the limitation of 
cancer radiotherapy effectiveness in the cancer patients. Moreover, reduction of the 
limitation of cancer radiotherapy effectiveness by reducing the side effects post-
cancer radiotherapy and cancer radioresistance is the aim of several radiotherapy-
oncologic teams. Otherwise, Telomere and telomerase are two cells components 
which play an important role in cancer initiation, cancer progression and cancer 
therapy resistance such as radiotherapy resistance. For resolving the problems of the 
limitation of cancer radiotherapy effectiveness especially the cancer radio-resistance 
problems, the radio-gene-therapy strategy which is the use of gene-therapy via 
modulation of gene expression combined with radiotherapy was developed and used 
as a new strategy to treat the patients with cancer. In this review, we summarized 
the information concerning the implication of telomere and telomerase modulation 
in cancer radiosensitivity.
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INTRODUCTION

Cancer was the second leading cause of death 
worldwide after cardiovascular diseases [1]. In 2015, 
17.5 million cancer case and 8.7 million of death were 
found. Cancer caused 14% of deaths in 2005 against 16% 
in 2015 and the number is predicted to be increased in the 
future. Based on the data enumerated above, cancer can 
be considered as an important public health which needs 
the strong strategies of management for its prevention 
and its treatment. Moreover, many kinds of strategies 
of treatment such as chemotherapy [2], immunotherapy 
[3], genetherapy [4], nanotherapy [5], radiotherapy 
[6], phytotherapy [7] have been developed and used 
to treat cancer. Among all strategies mentioned above, 
Radiotherapy seems more important because, in many 
countries, more than 50% of new cases of cancer received 

at least one course of radiotherapy during their lifetime  
[8, 9]. Although the effectiveness of radiotherapy of cancer 
is not negligible, radiotherapy efficacy has a limitation 
such as the development of radioresistance by many types 
of cancer [10] and occurrence of the side effects post-
cancer radiotherapy [11]. Reduction of the limitation of 
the cancer radiotherapy efficacy via a better understanding 
of the mechanisms of development of radioresistance 
for cancer radioresistance reduction and/or decreasing 
of occurrence of side effects post-cancer radiotherapy is 
today, the main goal for many research teams of onco-
radiotherapy.

Telomere and telomerase are molecular biomarkers 
and constitute of one of the systems implicated in 
sensitization of cancer to irradiation. Telomere is the 
prognostic and the predictive marker for stratifying 
patients for their post-treatment follow-up [12]. As a 
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rational approach based on the unique role of telomerase 
in the cancer cell biology [13], modulation of telomere 
or telomerase before cancer cell irradiation reduce the 
limitation of cancer radiotherapy efficacy can modulates 
cancer radiosensitivity and the occurrence of the side 
effects post-cancer radiotherapy which in general, depends 
on many factors concerning irradiation and cancer 
cells or tumor tissues [14]. Based on the goal which is 
the reduction of the limitation of cancer radiotherapy 
effectiveness via especially, the understanding of 
how telomere and/or telomerase are implicated in 
radiosensitivity for radiosensitivity enhancing, we 
summarized many articles in which modulation of 
telomere or telomerase before irradiation affects cancer 
cells radiosensitivity which supposed to be implicated 
in the management of limitation of cancer radiotherapy 
efficacy. 

TELOMERE AND TELOMERASE IN 
NORMAL AND CANCER CELL

Telomere and telomerase in the normal cell

Telomere is the nucleoprotein structure composed 
of guanine-rich conserved DNA which varies in length, 
sequence and number of repeats. It is showed as protector 
of the end of the chromosome and is discovered, for the 
first time, in the flies and maize [15, 16]. In mammalian 
species, telomere is composed of TTAGGC repeat tracks 
that terminated in a single-stranded G-rich 3′ overhang 
[17–20]. The single-stranded (ss) DNA product is a few 
hundred nucleotides whereas the length of double-stranded 
(ds) telomere tracks is around 9–15Kb [21, 22]. Telomere 
also exists in a secondary structure called T-loop formed 
by the invasion of 3′ overhang into the duplex region. This 
is associated with protective proteins termed shelterin 
complex which stabilized T-loop and regulated telomere 
stability and homeostasis [23–26]. The shelterin complex 
consists of Telomere Repeat Factor1 (TRF1), Telomere 
Repeat Factor2 (TRF2), Repressor Activated Protein 
(Rap1), Protection of Telomere (POP1), Tripeptidyl-
Peptidase 1(TPP1), TRF1 and TRF2 interacting Nuclear 
Protein2 (Tin2) which provide protection against DNA 
damage signals, DNA recombination or DNA end-joining 
processes [23]. Sheltering complex assures its function by 
specifically and directly binding to the telomere. TRF1 
and TRF2 bind to ds DNA [27–29] whereas POT1 binds 
to ss-DNA [30, 31] through sequence recognition., Tin2 
links to TRF1, TRF2 links to Tin2 by Protein-Protein 
interaction, TPP1 binds to POT1 and TRF2 to Rap1  
[32, 33]. The interaction TRF1-TRF2 and POT1-TPP1 
at telomere DNA are consolidated by Tin2 (Figure 1). In 
addition to shelterin complex, the Conserved Telomere 
maintenance Complex1 (CTC1), Suppressor of cdc13 
1 (STN1) and telomeric pathways with STN1 (TEN1) 
contributed to telomere homeostasis. The telomere CTC1/

STN1/TEN1 (CST) acts on telomere as a composite and 
functions in the replication and processing of telomere 
prior to affecting telomerase action. Protection effect 
of telomere is characterized by providing mechanism 
to compensate the under replication of the end of linear 
DNA molecule, by keeping true chromosome ends from 
fusing with other chromosome ends or with broken 
chromosome to make chimerics chromosomes, by 
distinguishing true chromosome ends from breaks DNA 
and by controlling the position of chromosome within 
the nucleus [34]. Moreover, the transcriptional silence of 
genes located close to telomere via TPE phenomenon [35], 
transcriptional modulation of gene at a long distance from 
telomere such as telomerase via TPE-OLD mechanism 
[36, 37], the ensuring right chromosome segregation 
during mitosis and definition of the number of the cell 
cycle, via cell cycle regulation, that a cell may undergo 
during its life are also the roles of telomere [28, 38–40]. 
In somatic cells, because of the gap between final RNA 
primer and end of the chromosome cannot be completed, 
telomere shortens after each cell division [41] with loss 
of 100 to 200 bases of telomere DNA per cell division 
[42–44]. When telomeres become critically shorten, cells 
undergo in a senescent state “Hayflick Limit” where 
cells can live for years without division [45]. Telomere 
length is majority regulated by telomerase activity and 
rarely, by Alternative Lengthening of Telomere (ALT)  
mechanism [46].

Telomerase is a special ribonucleoprotein 
enzyme which maintains telomere by neutralizing the 
lost of telomeric repeats at the 3′ telomeric overhang. 
Discovered for the first time in Tetrahymena [47], 
telomerase is minimally composed by a Telomerase 
Reverse Transcriptase(TERT), RNA Template or 
Telomerase RNA component (TERC) and stabilizing 
proteins which including dyskerin (DCK1) and TCHB1 
[23, 48]. Telomerase activity maintains telomere length 
but not totally prevents telomere attrition [49–52]. The 
mechanism of action of telomerase can be divided into 
three steps. In the first step, the 3’matrix end of the 
chromosome of the short telomere binds to RNA domain, 
in the second step, occurrence of elongation which is a 
direct addition of nucleotide and last step, translocation 
which enables repeated use of the same binding site 
[53–61]. The human Telomerase Reverse Transcriptase 
(hTERT) catalytic subunit is a polypeptide which consists 
of 1132 amino acids and plays an important role in cell 
lifespan. At least, three domains can be distinguished in 
the structure of TERT structure. RNA-binding domain of 
telomerase knows as TRBA, reverse transcriptase domain 
and the poorly conserved C-terminal domain [62–64]. 
Certain TERT contain an additional N-terminal which 
facilitate the addition of telomere repeat by its implication 
in the process of primer binding [62, 65]. Telomerase also 
contains the region which acts as a template for telomere 
synthesis [66, 67]. Telomere RNA (TER) structure 
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contains certain conserve elements such as template 
region, the pseudoknot, the trans-activating domain and 
the domains required to ensure in-vivo stability, meaning 
that TER contains the essential elements for telomerase 
activity, assembly, localization and stability of RNA. Apart 
from the telomerase activity of telomerase, telomerase and 
telomerase component have an alternative functions in cell 
life such as telomerase nuclease activity because the length 
of the final products depends on the template region of 
telomerase RNA [68], transferase activity via stimulation 
of certain small molecules [69, 70], mitochondrial 
function activity via implication of hTERT in replication 
and repair of mtDNA [71], DNA damage activity [72] 
and regulation of gene activity [73–75]. According to the 
relationship between telomerase and telomere and their 
roles in cell function and life, dysfunction of telomere and 
/or telomerase can lead to dysfunction of a cell (disease).

Telomere and telomerase in human diseases 
especially cancer

Telomere and telomerase, via their dysfunction, are 
implicated in several human diseases such as chronic lung 
disease [76–78], chronic obstructive pulmonary disease 
and idiopathic pulmonary fibrosis [79–81], diabetes  
[82, 83], autoimmune disease (rheumatoid arthritis, 
systemic Lupus erythematosus, sclerosis) [84–88], renal 
failure (chronic kidney disease) [89], cardiovascular 
disease [90–92], Parkinson disease [93, 94], chronic 
infection [95, 96], obesity [97], cancer [28], etc.

As mentioned above, telomere become short after 
each cell division because of «end replication problem» 

and this telomere shortening is a natural phenomenon in 
cell viability and chromosome stability where the lagging 
strand DNA synthesis cannot be completed all the way to 
the very end. In this case, increasing the division of the 
cells leads to very short telomere which causes the DNA 
damage responses that trigger cellular senescence [98]. 
The cells in senescence phase have short telomere and 
are characterized by inhibition of cell proliferation. The 
lost of telomere quality, in that case, promotes the DNA 
repair system and tumor suppressor protein P53 which 
stimulates PRb. Activation of P and PRb leads essentially 
to irreversible growth arrest. However, the cells which 
gain additional oncogenic changes such as P53 loss can 
pass senescence step and can continue to divide. This 
initiates the crisis step associated to chromosome end-to-
end fusion (new dysfunctional step) and increasing of the 
cell death [99]. However, very few human cells (1 in 105 
to 107) can continue the division and in this case, with an 
acquisition of cell immortality or cancer initiation ability 
[100]. At this step, certain cells have very short telomere 
without a genomic instability which is maintained by 
reactivating and increasing of telomerase expression or 
in the rare case, by activating the telomerase-independent 
mechanism (ALT) [101]. Several studies demonstrated the 
correlation between telomere shortening and cancer risk 
with cancer type -dependent [102, 103]. In the population 
level, it has been reported that patients with short telomere 
in peripheral blood cell have a high risk to develop cancer 
[104]. However, the shortening of telomere is supposed to 
protect against the malignant transformation of the cells by 
limiting cell proliferation. For its confirmation, It’s found 
that peoples with short telomere length have a low risk of 

Figure 1: Schema of telomere structure with shelterin complex (Telosome) and T-loop formation.
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melanoma development than control [105] suggesting that 
chromosome instability is indispensable in the occurrence 
of cancer initiation mediated by telomere dysfunction and 
only telomere shortening induced chromosome instability 
is implicated in cancer initiation and progression 
[106–109]. This confirms the discover mentioning that 
telomerase is reactivated and overexpressed with bypass 
crisis step where chromosome end fusion, rearrangement 
of the chromosome, malignant transformation have 
occurred. Kim NW et al. reported that high levels of 
telomerase expression associated with telomere shortening 
is detected in most of human cancer to assume telomere 
elongation and maintenance whereas it is absent in most 
of the normal somatic cells or tissues [28]. Although 
telomerase has a high preference for short telomere  
[110, 111] which is implicated in cancer initiation, its 
expression is controversial because some cancer cell does 
not have a high level of telomerase expression which may 
be due to ALT mechanism. Because telomerase consists 
of catalytic subunit telomerase reverse transcriptase 
(TERT), Telomerase RNA component (TERC) and 
telomerase complex associated protein, upregulation 
of telomerase expression is correlated with increasing 
of copy number of hTERT which is strongly positive in 
tumor cell [112] and correlated with telomerase activity, 
cancer initiation and progression [113–115]. Based on the 
important role of telomere shortening induced genomic 
instability and telomerase in cancer development, they 
can be considered as a good target for reinforcement of 
strategies for improvement of cancer therapy especially 
cancer radiotherapy.  

THERAPIES-ASSOCIATED WITH 
TELOMERE OR TELOMERASE 
MODULATION AND CANCER CELLS 
RADIOSENSITIVITY

Telomere and telomerase as good targets for 
enhancement of cancer radiosensitivity

Several studies reported the link between short 
telomere and radiosensitivity [116, 117]. In human, 
irradiation induces damage in people with short 
telomere than people with long telomere [118, 119]. 
In cell level, Zhong YH. et al. reported that there is 
a negative correlation between radiosensitivity of 15 
human carcinoma cell lines from different tissues and 
their telomere length [120]. In the same way, Cabuy E. 
et al. showed that high radiosensitivity human cells have 
short telomere than the normal cell [121]. McIlrath J.  
et al., also reported that murine lymphoma cells L5178Y-S 
which have 7 Kb is more radiosensitive than L5178Y-S 
having 48 Kb [116]. The negative correlation between 
radiosensitivity and telomere shortening may be caused by 
telomere shortening associated to chromosome aberration 

[122, 125] and chromosome aberration is associated to 
radiosensitivity [124], by chromatin structure change 
where the access of ATM to its target chromatin is limited 
[117, 123, 124]. Moreover, it has been reported that late 
generation of mTR(−/−) such as G5mTR(−/−) mice and 
Terc−/− mice exposed to γ-Ray shown high mortality 
via increase rate of apoptosis and cytogenic damage  
[117, 124], suggesting that there is also a negative 
correlation between telomerase and cancer cells 
radiosensitivity. Based on those data, telomere and 
telomerase can be considered as good biomarkers for 
cancer radiosensitivity and their modulation can enhance 
cancer response to irradiation.  

Telomere dysfunction and radiosensitivity

Several telomere or telomerase modulation 
approach such as Telomere Homolog Oligonucleotide, 
G-quadruplex Ligand, targeting of telosome or another 
Telomere maintenance proteins has been demonstrated 
to be implicated in telomere dysfunction -associated with 
modulation of cancer radiosensitivity. 

T-Oligos and G4-Ligand

Telomere Homolog Oligonucleotide called T-Oligos 
and G-quadruplex Ligand or G4-Ligand are developed 
and used to induce telomere dysfunction mediated 
enhancement of cancer radiosensitivity. Telomere 
Homolog Oligonucleotide called T-Oligos mechanism 
of action is to accumulate in the nucleus and rapidly 
promoted DDRs at telomere-mediated by P53, ATM, 
E2F1, cdk2 and P95/NBS1 which finally leads to cell 
cycle arrest, senescence, apoptosis [126–130]. Because 
of its specific anti-cancer effect, T-Oligos is showed to 
highly affected viability and growth of cancer lung cell, 
melanoma, prostate, ovarian, breast and colorectal cancer 
[129, 131–134]. T11 is one of T-oligos which consists 
of 11 oligonucleotides and has an anti-cancer effect in 
several types of cancer [135–136] in-vitro and in-vivo  
[137, 138]. It enhances the anti-cancer effect of irradiation 
[139]. G-quadruplex or G4 is a structure which forms 
naturally in telomere region by folding of non-coding 
repeat sequence of guanine-rich DNA (Telomeric ends 
called G-rich ends of the chromosome). By its ligand, 
G4 stabilization can prevent telomere elongation which 
leads to telomere embrittlement [140]. G4-Ligand is G4 
stabilizing ligand used as a potential treatment for cancer 
development and progression [141]. Several G4 ligands 
are developed and used as cancer therapy whereas very 
few are used in combination with radiotherapy. It is 
reported that G4-ligand binds to G4 DNA and highly 
sensitizes cancer cell to irradiation [142]. Pt-ctpy also 
is kind of G4-ligand with a good affinity for G4 DNA 
[143] and belongs to tolyterpyridine metal [144, 145]. 
Merle P et al. reported that Pt-Ctpy induced reduction 
of GBM and NSCLC cell proliferation in concentration-
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dependent-manner, induced the accumulation of S-phase 
cells, G2/M phase cell and apoptosis cells [142]. Pt-Ctpy 
is well tolerated without toxic effect where it’s used alone 
and it increased irradiation effect in-vitro and in-vivo 
when it is used in combination and before radiotherapy. 
TAC is another G4 Ligand and contains 70% of TAC-
Me2 and 30% of TAC-Me3. It is reported as inhibitor 
of cancer cell (GBM) proliferation in a dose-dependent 
manner via a minimal effect on cell cycle and apoptosis 
after one week alone treatment. However, the therapeutic 
dose (5 Gy) of TAC which does not have an effect on 
cell cycle and apoptosis induced high sensitization of 
GBM cell to irradiation [146]. The pentacyclic acridine 
RHPS4 is also G4 Ligand implicated in telomere no 
protection (dysfunction) and blockage of cell proliferation  
[147–149]. By using the comparison between the survival 
curves, Berardinelli F. et al. reported that RHPS4 
enhanced cancer cell radiosensitivity. In the same report, 
U251MG radioresistant cancer cells pretreated 120 h with 
0.2 µM of RHPS4 before 2 Gy irradiation showed 53% 
of reduction of survival whereas unpretreated cell showed 
20% of decreasing and RHPS4 combine with irradiation 
(0.2 µM of RHPS4 +3 Gy) activate a transient G2 phase 
blockage which leads to the cell proliferation reduction at 
0.61 proportion and 0.84 proportion of cell proliferation 
reduction for (3 Gy) [150].

Telosome modulation and cancer radiosensitivity

As telomere maintenance element, telosome 
(telomere sheltering complex protein) is a complex of 6 
proteins (TRF1, TRF2, RAP1, TIN2, TPP1 and POT1) 
which modulation is one of the ways to promote telomere 
dysfunction associated to cancer high radiosensitivity. 

Zhou YF et al. reported that POT1 which is 
one of telosome is implicated in the regulation of cell 
radiosensitivity [151]. Otherwise, the POT1 expression 
is in positive correlation with telomere length because 
patients with high level of POT1 have long telomere and 
were photon irradiation resistant [152]. Downregulation 
of POT1 by using siRNA increase human cancer cell 
radiosensitivity. TRF2 also is one of telosome and is 
implicated in the modulation of cancer radiosensitivity. It 
is reported that inhibition of TRF2 expression enhanced 
the effect of 2.5 Gy of γ-Ray irradiation by decreasing 
scurvies cell fraction [153] and by increasing γ-H2AX 
foci leading to the reduction of telomere protection from 
irradiation consequence of high radiosensitivity [154]. 
TPP1 is one of the radioresistance proteins because it is 
overexpressed in the radioresistant cancer cells and its 
ectopic expression confers radioresistance ability to cancer 
cell [155]. Zhou YF et al. reported that modulation of 
TPP1 modulates telomere homeostasis and radioresistance 
of human colorectal cancer [156]. It’s also reported that its 
suppression enhanced cancer radiosensitivity in telomerase 
negative cell by inducing telomere dysfunction [157].  

However, the role of Rap1, TRF1 and Tin2 which are also 
a part of shelterin complex, is not known yet in cancer 
radiosensitivity. Then, it will be good to encourage more 
research concerning that to clearly master the role of those 
proteins particularly and generally, telosome in cancer 
response to irradiation in the relationship with telomere 
function.

Other telomere maintenance proteins and cancer 
radiosensitivity

The telomere maintenance component 1 (CTC1) 
is the third member of the CST (CTC1-STN1-TEN1) 
complex binding to telomere and assume its integrity 
[158]. CTC1 knock-down promotes great telomere 
loss [159, 160] and it implicated in the modulation of 
radiosensitivity. Zhou YH et al. demonstrated that CTC1 
expression is inhibited in radiosensitive human melanoma 
cells compared to radioresistant cells and its total 
inhibition increased cell radiosensitivity by promoting 
telomere shortening and apoptosis [161]. Ku80 is one 
of the subunits of the Ku80/Ku70 heterodimer which is 
implicated in telomere maintenance by binding to the DSB 
ends and by initiating its repair via DNA-PKCs recruitment  
[162, 163]. It’s reported that its deficiency leads to cancer 
cells sensitization to irradiation and Ku80 mutation also 
leads to telomere ends repair prevention [164] which 
decreased telomere length and enhanced the response 
of many cancer cell line to irradiation [165]. Otherwise, 
Zhou FX et al. reported that down-regulation of Ku80 
by using siRNA enhanced the radiosensitivity of 
telomerase deficiency cell U2OS by inducing telomere 
shortening [166]. The high mobility group box1 
(HMGB1) is a ubiquitous chromatin-associated protein 
which implicated in non-homologous end-joining, 
mishmash repair [167] and telomere maintenance. 
It’s implicated in cancer progression and its Knock-
down in mouse embryonic fibroblast (MEFs) leads to 
telomere dysfunction [168]. Moreover, Zhou YF et al. 
reported that inhibition of HMGB1 enhanced human 
cell radiosensitivity via inhibition of repair kinetics 
of DNA damage induced by irradiation, increasing of 
apoptosis, decreasing of the proportion of cell in S-phase 
and induction of telomere shortening [169]. WRAP53 
protein is implicated in telomere elongation caused by 
telomerase and is highly expressed in a cancer cell [170]. 
Depletion of WRAP53 reduced telomere length without 
affect telomerase activity [171–173] suggesting that 
it has a high relationship with telomere maintenance. 
WRAP53 modulation can modulate cancer radiosensitivity 
because of the negative correlation which exists between 
WRAP53 and cancer cells radiosensitivity. Decreasing 
of WRAP53 is associated to high radiosensitivity.  
Xie CH et al., reported that in Hep2 cell, transfection of 
a cell by phWRAP53-siRNA for inhibition of WRAP53 
expression before irradiation showed high radiosensitivity 
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via telomere shortening than non-transfected cells [174]. 
All data mentioned above indicate that telomere play an 
important role in cells function and its dysfunction is 
lethal for cancer cells which can lead to enhancement of 
cancer therapy such as cancer radiotherapy. Basing on the 
relationship between telomere and telomerase, targeting 
telomerase may also be one way to promote telomere 
dysfunction-induced radiosensitivity. 

TELOMERASE MODULATION AND 
CANCER CELLS RADIOSENSITIVITY

Several strategies or techniques such as 
oligonucleotide inhibitor, the small-molecule telomerase 
inhibitor, Immunotherapy approach (Vaccinotherapy), 
Telomerase direct or indirect gene therapy (RNA 
interference) and phytotherapy are developed and 
used in cancer therapy. Among them, few are used, as 
telomerase inhibitor by targeting of telomerase RNA 
(TR) or telomerase reverse transcriptase (TERT), in 
combination with irradiation to enhance cancer cells 
response to irradiation via telomere shortening (Telomere 
dysfunction).

Telomerase activity Oligonucleotide inhibitor 
and cancer cells radiosensitivity

Imetelestat (GRN163L) is a 13-mer oligonucleotide 
which reported to suppress catalytic activity of telomere by 
targeting the template region of hTR [175, 176]. Its anti-
cancer effect is reported on breast cancer [177], prostate 
cancer [178], glioblastoma [179], myeloma leukemia [180] 
and it is also showed as cancer radiosensitivity modulator. 
Zhigang G et al. reported that imetelestat treatment before 
irradiation enhanced esophageal squamous cancer cells 
response to irradiation by inducing DNA break (apoptosis) 
and reducing cell proliferation in-vitro and in-vivo 
[181]. Similar results are discovered by Gomez-Millan 
J et al. on breast cancer cell where treatment of MDA-
MB-231 cancer cell with GRN163L enhanced cancer 
radiosensitivity in-vitro and in-vivo [182] via telomerase 
activity and telomere length inhibition. Sylvain T et al. also 
showed that imetelestat increased the response of a tumor 
to irradiation illustrated by tumor volume reduction and 
inhibition of telomerase activity [183]. ASODN is another 
oligonucleotide inhibitor which inhibits telomerase 
activity via targets of human telomerase RNA and called 
hTR ASODN. Zhou YF et al. reported that hTR ASODN 
increased esophageal squamous cancer cells sensitivity 
to irradiation by down-regulating telomerase activity and 
increased human neuroglioma cell (U251) sensitivity to 
irradiation by inducing DNA damage and by reducing cell 
proliferation [184]. In 2005, Zhonghua Yu et al. reported 
the similar results on nasopharyngeal carcinoma cells 
where cells treated with the combination of hTR ASODN 
and irradiation showed high sensitivity to irradiation 

via reduction of their proliferation and their telomere  
length [185].

Direct or indirect gene therapy targeting 
telomerase and cancer radiotherapy

Direct gene therapy of telomerase means the use 
of RNA interference (siRNA, shRNA, miRN…; etc) to 
post-transcriptionally silence telomerase gene expression 
which leads to telomerase mRNA reduction. This kind 
of telomerase reduction can lead to telomere shortening 
and can be implicated in radiosensitivity modulation 
because certain TERT or TERT promoters’ mutations are 
associated to telomere length and predict poor survival 
and radioresistance [186]. Mice deficient in the RNA 
component of Telomerase is high radiosensitive [117, 
124] and HCT116 cells with hTERT allele disruption 
(hTERT +/−) called haplo insufficient had a reduction 
of telomerase activity, telomere length and are more 
radiosensitive [187]. The similar results were reported by 
several discovers where direct inhibition of telomerase 
expression by transfecting cancer cell with RNAi and 
with shRNA before irradiation enhanced the effect of 
irradiation via reduction of telomerase activity and/or 
telomere length [188–192].

Many researches are carried out concerning the 
indirect target of telomerase which is the target of a 
protein implicated in telomerase function. Survivin is a 
member of the inhibitor of apoptosis (IAP) protein family 
and is highly expressed in most of the cancer cells whereas 
it is undetectable in normal cells [193, 194]. Zhang HZ 
et al. reported that the use of siRNA to inhibit telomerase 
activity in control of surviving promoter enhanced 
radiotherapy effect in Hela cell in-vitro and in-vivo [195]. 
Ubiquitin-Conjugating Enzyme called UBE2D3 or E2D3 
is a key component in ubiquitin-proteasome system and 
is reported to lowly express in many cancer cell line 
[196]. Zhou YF et al. demonstrated that UBE2D3 is 
negatively correlated to radioresistance [197–200] and its 
inhibition decreased radiosensitivity by increasing hTERT 
expression and telomerase activity in MCF-7 cell [199]. 
The author also reported that UBE2D3 overexpression 
enhances radiosensitivity by reducing telomerase activity 
and telomere length in esophageal cancer cell in-vitro and 
in-vivo [200]. Tankyrase 1(TNKS1) is a protein required 
for telomerase activity [201–203]. Indirect telomerase 
inhibition by using siRNA TNKS1 against TNKS1 leads to 
telomere uncapping and increasing of cancer cell ionizing 
irradiation sensitivity [204]. The latent membrane protein 
(LMP1) encodes by Epstein-Bar Virus (EBV) is suggested 
to be one of the major oncogenic factors in nasopharyngeal 
cancer cell line and is implicated in hTERT activation. 
EBV-LMP1 DNAzyme (D2L) is a DNA enzyme which 
binding to their target RNA via Wastor-Crick base-pairing 
and cleaves the mRNA of LMP1 [205]. It is reported that 
activation of hTERT is mediated by LMP1 and targeting 
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LMP1 by using D2L leads to increase of radiosensitivity 
via inhibition of hTERT expression and telomerase 
activity [206].

Phytotherapy associated with telomerase 
targeting and cancer radiosensitivity

Phytotherapy is the use of the vegetable drug or 
vegetable extraction to treat diseases including cancer 
[207]. Many of them showed an anti-cancer effect by 

targeting telomerase expression or telomerase activity 
while few of them are used in combination with 
radiotherapy for radiotherapy effect enhancement. Panax 
ginseng is one of the most common herbals in medicine 
and ginseng saponins (ginsenosides) are its major 
active components. As an anti-cancer product, ginseng 
saponing is reported to have an anti-tumor effect by 
downregulating telomerase activity [208, 209]. It is also 
reported that panax ginseng (ginseng sponing) modulated 
radiosensitivity of cancer cell. You JS. et al. reported 

Figure 2: Schematic diagram of link between therapies associated with telomere or telomerase modulation and Cancer 
Radiosensitivity.
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that the use of ginseng in combination with radiotherapy 
more reduced the survival rate of tumor cell (66.7%) vs 
(75.3%) and (76.1%) for ginseng and irradiation alone 
treatment respectively. Suggesting that the synergic use 
of ginseng and radiotherapy may increase cancer cells 
radiosensitivity and may decrease irradiation side effects 
[210]. Resveratrol is a major component of polyphenol 
from grapes and it was used for many disease treatments 
including cancer [211–215]. It is also reported that its 
relative high concentration substantially inhibited cancer 
proliferation and telomerase activity in human colorectal 
cancer and in breast cancer cell line [214, 216]. Resveratrol 
enhanced EOL1 cancer cell radiosensitivity by inducing 
apoptosis [217], NSCLC cancer cell radiosensitivity 
by increasing ROS generation and DNA DSBs [218] 
and MCF-7 cancer cell radiosensitivity by inducing 
cell cytotoxicity and activating of different pathways of 
cellular death [219]. Curcuma is polyphenol contains 
in Curcuma Longa and its anti-proliferative effect was 
reported in many types of cancer cell line such as head and 
neck squamous cancer cell, breast cancer, prostate cancer, 
lung cancer, pancreas cancer [220–226]. Anticancer 
effect of Curcuma is associated with apoptosis induction 
and reduction of telomerase expression or activity in 
several cancer cell lines [227–230]. It is reported to 
enhance cancer radiosensitivity [217] via the different 
mechanisms such as suppression of NF-kb activity [231]. 
Epigallocatechin-3-gallate (EGCG) is a major polyphenol 
(more than 50% of total polyphenol) contains in green 
tea [232]. As a possessor of specific anti-cancer ability 
[233, 234], EGCG showed its anti-proliferative effect 
via the different mechanisms like induction of apoptosis, 
inhibition of cell migration, inhibition of telomerase 
expression or telomerase activity and telomere length 
[235–240]. EGCG used in combination with X-irradiation 
resulted in enhancement of cancerous cell line response to 
irradiation [217, 241]. 

However, the mechanisms of synergic effect 
of phytotherapy products mentioned above (ginseng, 
Curcuma, resveratrol, EGCG) combined with irradiation 
treatment does not include telomere or telomerase 
targeting. It will be good to encourage more research 
concerning that to know if targeting telomere or 
telomerase is included in the mechanism of their synergic 
effect on cancer cell radiosensitivity.

ADVANTAGES OF THE USE OF THE 
COMBINATION OF THERAPIES 
TARGETING TELOMERE OR 
TELOMERASE AND CANCER 
RADIOTHERAPY

Radiotherapy for curative treatment has an important 
part in cancer treatment with many advantages and 
disadvantages. The main disadvantages of radiotherapy are 

the damage of normal tissues or cells which depend on the 
volume of tissue, the total dose of radiation, the dose per 
fraction of radiation, irradiation delivery method, factor 
and comorbidities of the patients [14, 242]. The damage of 
normal tissues by radiotherapy can lead to cardiovascular 
diseases, a pulmonary complication, infertility, 
endocrinopathy abnormality and second malignancy 
[243, 244], dermatitis [245], and gastrointestinal diseases 
[246], which are known as side effects of the post-cancer 
radiotherapy, are a major health and socio-economic 
problems. Combination of other therapy which modulates 
telomere and/or telomerase associated with a reduction of 
cancer proliferation and radiotherapy (Figure 2) is one of 
the strategies for reducing total dose of irradiation which 
may reduce side of effect induce by high total irradiation 
or per fraction irradiation dose. Based on these advantages, 
it will be good to complete the list of targeting telomere 
or telomerase mediated high radiosensitivity treatment 
such as vaccine-therapy (immunotherapy) which can be 
used in combination with irradiation treatment to improve 
irradiation effect. In our case, telomerase vaccine-therapy 
leads to high expression of telomerase in cancer treatment 
in-vitro and in-vivo manner and as a tumor neo-antigen to 
stimulate the cancer cells deaths since it is reported that 
TERT is a tumor-associated antigen (TAA) which caused 
antitumor CD8+ cytotoxic lymphocyte (CTL) response in 
several types of tumor [247]. Several telomerase vaccines 
are developed and used in the treatment of cancer in 
fundamental and clinical research [248] where they 
showed a high anti-tumor effect by activating an immune 
system against telomerase for its destruction [249]. For 
this, more research should be encouraged to explore more 
on the combination of telomerase vaccine and irradiation 
in future and application of that kind of combination for 
cancer treatment could enhance radiotherapy effect and 
reduce side of effect post-cancer radiotherapy.  

CONCLUSIONS

Radiotherapy is one among the of cancer treatment 
and plays an important role in treating cancer. As other 
cancer treatments, radiotherapy efficacy has also certain 
limitation such as cancer radiotherapy resistance and 
side of effect post-cancer radiotherapy. Telomere and 
telomerase are cancer markers and are implicated in 
cancer development, cancer treatment and limitation 
of cancer treatment effectiveness such as cancer 
radiotherapy limitation especially cancer radio-resistance. 
Combination of two treatments by modulating telomere 
or telomerase before radiotherapy treatment improves 
cancer radiosensitivity if only the modulation of telomere 
or telomerase is associated with chromosome instability. 
Meaning that chromosome instability is the key factor of 
telomere or telomerase modulation mediated high cancer 
radiosensitivity. However, several researches need to 
be done concerning the reinforcement of cancer radio-
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gene-therapy used before and certain kind of cancer 
treatment such as vaccine-therapy and phytotherapy need 
to be used in combination with radiotherapy to expand 
the group of therapies mediated telomere or telomerase 
targeting (chromosome instability) which could be 
used in combination with radiotherapy for reducing its 
effectiveness limitation especially, via the enhancement 
of cancer radiosensitivity.
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