
Oncotarget34398www.oncotarget.com

Biological significance and prognostic/predictive impact of 
complex karyotype in chronic lymphocytic leukemia

Maurizio Cavallari1,*, Francesco Cavazzini1,*, Antonella Bardi1, Eleonora Volta1, 
Aurora Melandri1, Elisa Tammiso1, Elena Saccenti1, Enrico Lista1, Francesca Maria 
Quaglia1, Antonio Urso1, Michele Laudisi1, Elisa Menotti1, Luca Formigaro1, Melissa 
Dabusti1, Maria Ciccone1, Paolo Tomasi1, Massimo Negrini2, Antonio Cuneo1,* and 
Gian Matteo Rigolin1,*

1Hematology Section, Department of Medical Sciences, Azienda Ospedaliero-Universitaria, Arcispedale S. Anna, University 
of Ferrara, Ferrara, Italy

2Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
*These authors have contributed equally to this work

Correspondence to: Antonio Cuneo, email: cut@unife.it
Keywords: chronic lymphocytic leukemia; complex karyotype; prognosis; target therapy; Richter transformation
Received: April 05, 2018    Accepted: September 01, 2018    Published: September 28, 2018
Copyright: Cavallari et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 
3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

ABSTRACT

The complex karyotype (CK) is an established negative prognostic marker in a 
number of haematological malignancies. After the introduction of effective mitogens, 
a growing body of evidence has suggested that the presence of 3 or more aberrations 
by conventional banding analysis (CBA) is associated with an unfavorable outcome 
in chronic lymphocytic leukemia (CLL). Thus, the importance of CBA was recognized 
by the 2018 guidelines of the International Workshop on CLL, which proposed the 
introduction of CBA in clinical trials to validate the value of karyotype aberrations.

Indeed, a number of observational studies showed that cytogenetic aberrations 
and, particularly, the CK may have a negative independent impact on objective 
outcome measures (i.e. time to first treatment, progression free survival, time 
to chemorefractoriness and overall survival) both in patients treated with 
chemoimmunotherapy and, possibly, in patients receiving novel mechanism-based 
treatment.

Here, we set out to present the scientific evidence supporting the significance 
of CK as a prognostic marker in CLL and to discuss the biological basis showing that 
the CK is a consequence of genomic instability.

INTRODUCTION

Chronic lymphocytic leukemia (CLL) is the most 
common leukemia of the adult in western countries 
[1–2]. As a result of genetic and biological complexity 
[3], the disease runs a variable clinical course, with 
some patients showing a very indolent evolution and 
others rapid progression [4]. Several biological features 
were identified which may predict the time between 
the diagnosis and the disease progression, the overall 
survival (OS) (i.e. prognostic markers) and the quality 

of response to a specific agent (i.e. predictive markers) 
[5]. The mutational status of the variable portion of the 
immunoglobulin gene (IGHV) [6], chromosome 17p 
deletion as detected by fluorescence in situ hybridization 
(FISH) [7] and TP53 gene mutations [8] represent 
powerful prognostic/predictive factors commonly used 
to stratify CLL patients into different risk groups in the 
era of chemoimmunotherapy [5, 9–10]. The introduction 
of effective mechanism-based treatment (i.e. ibrutinib, 
idelalisib, venetoclax) significantly improved the outcome 
of CLL [11–13] and the adverse impact of 17p-/TP53 
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mutation and of the IGHV mutational status were found to 
be attenuated in several studies [14–16].

Cytogenetic abnormalities in CLL were first 
described using chromosome banding analysis (CBA) in 
the 1970s [17] and in 1990 the complex karyotype (CK) 
was found to be associated with shorter survival [18]. 
At that time conventional cytogenetics was limited by 
the low number of dividing cells in culture [19]. Since 
2006, the introduction of the effective mitogens CpG-
oligodeoxynucleotide (DSP30) and Interleukin (IL)-2, 
dramatically improved the mitotic yield [20–21] and 65-
83% of CLL patients were shown to carry a karyotype 
aberration [22–24]. Furthermore, evidence was provided 
that 21.5-35.7% of CLL cases without aberration by 
FISH carried chromosome aberrations by CBA, including 
CK, that were associated with an inferior outcome [25]. 
Overall, a CK is detectable in 14-34% of untreated CLL 
patients [23–24, 26–29], and up to 25-35% in the relapse 
refractory setting [30].

The CK has a strong adverse prognostic 
significance in several hemopoietic neoplasms such as 
acute myeloid leukemias, myelodysplastic syndromes 
and myelofibrosis [31–36] and a number of papers were 
published in the last 10 years highlighting its relevance 
in the landscape of prognostic biomarkers in CLL. We 
therefore set out to review here the biological basis 
underlying the development of CK and the prognostic 
and predictive value of this cytogenetic pattern in CLL 
in the chemoimmunotherapy and the mechanism-based 
treatment era.

METHODS

In this analysis the CK was defined by the presence 
of at least three clonal aberrations in the same clone as 
detected by CBA [18, 37–39]. The studies describing the 
significance of multiple unrelated clones with less than 3 
chromosome aberrations in the same clone were excluded.

Literature search

To describe the biological role of CK and its 
association with other biomarkers in CLL we performed 
a first search on PubMed using a MeSH controlled 
vocabulary using the following terms: “Leukemia, 
Lymphocytic, Chronic, B-Cell” [Mesh] AND “Karyotype” 
[Mesh] OR “Abnormal Karyotype” [Mesh] OR 
“Karyotyping” [Mesh]. We found 311 citations without 
any restriction on publication date. We included in this 
analysis those paper fulfilling the following requirements: 
i) English language; ii) biologic characterization including 
salient clinicobiologic parameters and CBA; iii) single 
centre or multicentre studies enrolling consecutive patients 
and studies using a learning cohort and a validation cohort.

We also performed a research on PubMed to identify 
publications from January 2000 to March 2018 describing 

the role of the CK as a prognosticator in CLL patients 
(chemoimmunotherapy and targeted therapy era). The 
following terms were used: “Leukemia, Lymphocytic, 
Chronic, B-Cell/drug therapy”[Mesh] AND “Clinical 
Trial” [Publication Type]. We included in this review 
only full length manuscripts satisfying these criteria: i) 
English language; ii) phase 2 or phase 3 clinical trials; 
iii) multivariate and/or univariate analysis including 
CK; iv) time to first treatment (TFT), or progression 
free survival (PFS) or overall survival (OS) as clinical 
endpoints. Manuscripts describing the prognostic impact 
of the selected parameters in patients who had received 
experimental treatment were not included.

RESULTS

CK as a consequence of genomic instability

Considering that up to 90% of CLL with CK 
show an U-IGHV mutational status [22–23, 28–29] 
a relationship may exist between the IGHV gene 
configuration and the development of CK. Indeed a large 
body of evidence showed that the lymphocytes with 
U-IGHV i) respond to antigen stimulation by activating 
intracellular signalling, ii) undergo cell divisions in vivo 
as shown by incorporation of deuterated water, iii) carry 
relatively shorter telomeres and, iv) tend accumulate 
genomic defects [40–41]. Interestingly, Burns and co-
workers [42], used a whole exome sequencing approach 
to study gene mutations in correlation with the IGHV 
gene configuration and found that exonic CLL driver gene 
lesions were more common in U-IGHV CLL than in CLL 
with mutated IGHV gene. Coding mutations involved 
NOTCH1, SF3B1, TP53, KLHL6 and, less frequently, 
IKZF3, SAMHD1 and BIRC3[42]. These gene mutations 
may directly increase genome instability reducing the 
ability of the cells to respond to DNA damage and may 
also act in an indirect manner, affecting pathways linked 
to cell proliferation or serving as an important bridge with 
the microenvironment, which is of particular importance 
in CLL [43].

Thomay et al[44], reported that loss or mutation 
of TP53 was associated with an increased number of 
break events, with frequent involvement of (near-) 
heterochromatic regions adjacent to the centromeres, 
generating dicentric chromosomes and whole-arm 
translocations. In a recent analysis on relapsed/refractory 
(R/R) CLL, TP53 mutations preceded clonal evolution 
leading to the emergence of clones with CK [45]. 
Furthermore, patients with TP53 mutations showed 
significantly shorter telomeres [44, 46–48] a condition 
causing chromosomal instability [44, 49]. Though few 
data are available on the association between CK and 
telomere length, it is worth noting that two studies showed 
that patients with CK had shorter median telomere length 
[44, 50]. In patients with 11q-/ATM deletions and a CK, 
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the frequency of TP53 mutations was significantly lower 
than in patients with CK without del (11q), suggesting 
that the disruption of the DNA damage control pathway 
through ATM or TP53 lesions may favour the development 
of multiple chromosomal rearrangements [44]. Other 
mutations occurring at a higher incidence in patients 
with CK involved FBXW7 (16.7%) in a study [24] and 
MYD88 (14.3%) in another study [26]. These genes 
have been linked to the NOTCH1/WNT pathways and 
to the inflammatory pathway, respectively [51]. FBXW7 
encodes for a tumour suppressive protein, which regulates 
ubiquitin-mediated degradation of various oncoproteins 
(cyclin E, c-MYC, NOTCH) [52]. The abnormal binding 
of cyclin E to FBXW7 has been related to chromosomal 
instability in hematopoietic progenitors [53] providing a 
possible functional link to the development of CK. MYD88 
mutation may have a role in generating genome instability 
through the activation of the RAS/ERK pathway [54]. 
Moreover, a recent study by Oliveira-Santos et al pointed 
out a possible role of the histone methyltransferases 
SET and MYND domain containing 2 (SMYD2) and 
SET and MYND domain containing 3 (SMYD3), 
members of the SMYD family of methyltransferases, in 
the development of CK [55]. In this study, SMYD2 and 
SMYD3 were found to be overexpressed in CLL patients. 
Interestingly, lower expression of SMYD2 and SMYD3 
was significantly associated with a CK [55]. Although 
the mechanism linking these methyltransferases and CK 
is unknown, it noteworthy that SMYD2 may act as an 
oncogene by promoting the methylation of p53 and of 
the retinoblastoma tumor suppressor protein (RB) [56–
57], and that SMYD3 promotes MAP3K2 methylation, 
inducing genomic instability by activation of Ras/Aurora 
kinase A-driven mechanisms [55, 58–59].

Although the precise mechanisms underlying the 
development of CK in CLL are have not been elucidated, 
evidence was provided in 2 studies using CBA and 
NGS on a panel of CLL driver genes that the CK may 
be associated with a distinct pattern of genetic lesions 
(Figure 1). A sequence of events possibly leading to the 
development of complex cytogenetic rearrangements is 
illustrated in Figure 2.

The CK is more frequently found in CLL with 
unfavorable clinicobiologic features

An extensive biologic characterization of CLL 
patients enrolled in clinical trials allowed for the 
identification of biomarkers associated with an inferior 
prognosis in large international studies recruiting patients 
treated with chemoimmunotherapy [10, 60]. Because 
CBA was not included in these studies, we set out analyse 
possible correlations between CK and clinical parameters 
(stage, age, sex, performance status) and biomarkers, i.e 
TP53 disruption, 11q-; unmutated IGHV gene (U-IGHV) 

with a documented prognostic significance at multivariate 
analysis in the chemoimmunotherapy era [10, 60].

Studies including CBA and the classical 
clinicobiologic prognosticators showed that no consistent 
correlation was found between CK and unfavorable 
clinical parameters, such as age, sex, performance status, 
beta-2-microglobulin levels, whereas an association 
appears to be well documented between CK and advanced 
stage, as shown in Supplementary Table 1.

The U-IGHV status, del (17p)/TP53 mutations or del 
(11q)/ATM deletions were more frequently seen in CLL 
with CK, than in CL without CK (Figure 3) [22-24, 28-29, 
39, 61-63].

A number of recurrent driver gene mutations was 
detected in CLL by next generation sequencing (NGS) and 
excellent reviews highlighted that, while the vast majority 
of them recur across patients at a low frequency, mutations 
of TP53, ATM, NOTCH1, and SF3B1 can be found in >5% 
of treatment-naïve patients and may predict for an inferior 
prognosis [48, 64–65]. We therefore analysed available 
evidence on the association between genetic features 
and CK. Several studies reported a correlation between 
CK and TP53 or ATM mutations or the unmutated IGHV 
configuration (Figure 3). The results of 2 studies using 
CBA with novel mitogens and NGS to detect mutations 
in large CLL-specific gene panels are shown in Figure 
2. Overall, these data show that the incidence of TP53 
disruption in CLL with CK was significantly higher (21-
80% of the cases) than in an unselected treatment-naïve 
CLL population (3-13% of the cases) [22-24, 26, 28-
29, 63] or in CLL without CK. Likewise, a statistically 
significant association was found between CK and the 
unmutated IGHV (U-IGHV) in the majority of studies (50-
90% of the cases) [22-24, 28-29, 63] and with 11q- or ATM 
mutation (22%-42, 1%) (Supplementary Table 1, Figure 1) 
[23, 26–27, 29, 63]. Herling and colleagues did not find a 
significant association between CK and the U-IGHV status 
in the patients enrolled in the CLL11 trial [24], possibly 
due to over-representation of IGHV-unmutated cases and 
consequent low number of IGHV-mutated cases in this 
analysis including patients with disease progression. These 
findings are not surprising, since TP53 and ATM function 
are involved in maintaining genomic stability [66–67], 
and the U-IGHV configuration identifies a CLL clone that 
is responsive to B-cell receptor antigen stimulation with 
consequent cell activation [40–41].

We also analysed possible association of CK and 
immunophenotypic markers. In 3 studies the CK was 
associated with CD38-positivity [23, 63] (Supplementary 
Table 1). No study analysed whether a CK was associated 
with CD49d expression, an immunophenotypic marker of 
unfavorable prognosis [68].

Overall the data here summarized clearly show 
that there is a strong and reproducible association of CK 
with advanced stage, U-IGHV, TP53 disruption, ATM 
mutations.
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The CK is a strong adverse risk factor in the 
chemoimmunotherapy era

The CK was shown to represent an independent 
adverse prognostic factor in several studies analysing a 
full set of biomarkers and using robust efficacy endpoints, 
i.e. time to first treatment (TFT), progression free survival 
(PFS) or overall survival (OS).

Impact on TFT

Early observations concerning the negative impact 
of complex chromosomal abnormalities on clinical 
outcome date back to the first studies on cytogenetic 
aberrations in CLL [18–19, 69–71]. In a monocentric 

study on 109 CLL patients conducted by Mayr et al, 
the CK was found to be predictive of a worse TFT at 
univariate analysis (median TFT, 26 months; 95% CI, 
15-37 months vs 106 months 95% CI, 61-151 months; P 
< 0.001) [20]. In another monocentric study on 482 CLL 
patients [38], the CK was associated with a shorter TFT in 
treatment-naïve patients at univariate analysis (HR 1.644; 
P = 0.029) and similar findings were reported by Travella 
and coworkers, who observed a 13-month median TFT in 
patients with CK as compared with 69-month median TFT 
in patients without CK (P=0.015) [72]. These observations 
were also reported in a larger study on 1001 previously 
untreated CLL where the CK was associated with a shorter 
TFT at univariate (p=0.01) and multivariate analysis [23]. 
In subsequent studies the prognostic impact of CK on TFT 

Figure 1: (A) Frequency of Gene Mutation by NGS in patient with or without CK reported by Rigolin et al [26] (B) Frequency of Gene 
Mutation by NGS in patient with or without CK reported by Herling et al [24]. *p<0.05
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was documented in a learning cohort (LC) including 166 
patients and in an independent validation cohort (VC) 
including 250 patients (HR 5.004; 95% CI, 1.980-12.597; 
P<0.001 and HR 2.159; 95% CI, 1.499-5.331; P<0.001, 
respectively). The difference held at multivariate analysis 
in the LC (HR 2.418; 95% CI; 1.173–4.983; P=0.017) 
[39]. More recently, Puiggros et al, conducted a study on 
1045 untreated MBL/CLL patients to evaluate the clinical 
impact of CK and high risk FISH (HR-FISH) on outcome 
[63]. The cases with CK had a higher 2-year cumulative 
incidence of progression requiring treatment (48%; 95% 
CI, 36-58% vs. 20%; 95%CI, 18-23%; P<0.001) [63]. 
Finally, in a large retrospective monocentric study by 
Rigolin et al including 335 newly diagnosed CLL, the 
CK was associated with a shorter TFT, independent from 
CLL-IPI (HR 2.157; IC 95%, 1.177-3.952; 0.013) [27].

Impact on PFS

The correlation between CK and PFS was 
investigated in few clinical trials in the era of 
chemoimmunotherapy (CIT). In a study by Badoux et 

al, the CK proved to be predictive of shorter PFS in 284 
R/R CLL patients treated with FCR (HR 2.6; 95%CI, 
1.5-4.4; P<0.001) [73]. Similar data were presented in 
another study including 80 R/R CLL patients treated with 
Cyclophosphamide, Fludarabine, Alemtuzumab, and 
Rituximab [74]. In this analysis the CK along with del 
(17p) were significantly associated with worse PFS (HR 
4.1; 95%CI, 2.0-8.4; P<0.001). Likewise a retrospective 
study on 110 CLL patients treated with first-line FCR 
showed that the CK was associated with shorter median 
PFS (21 vs. 55 months; HR 2.4; 95%CI, 1.14-5.19; 
P=0.002) [29]. Herling and coworkers described the 
impact on outcome of CK in a subset of patients treated 
with chlorambucil-based chemo- or chemoimmunotherapy 
in the CLL11 trial and found that chromosome 
translocations, a type of chromosome imbalance often 
associated with complex karyotype [75], was associated 
with shorter PFS [24].

Figure 2: Genetic background favouring the development of complex karyotype.
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Table 1: Impact of complex karyotype on OS

Tot. pts CK Treatment Disease 
status

Median OS
(months)

Univariate 
analysis

Multivariate 
analysis

Reference CK yes CK no
HR 
(IC 

95%)
P HR (IC 

95%) P

[20] 109 NA various TN and 
pretreated 107 346 15.44* <0.001 - Ø

[38] 482 71/399
(17.8%) NA TN 81.1% 

at 5y

86-
94.4%
at 5y #

3.830
(1.714-
8.560)

0.001 - Ø

[73] 284 22/182
(12.1%) FCR R/R 26

10.5 m. 
-78 m.

##
- - 1.9

(1.1-3.2) 0.015

[74] 80 8/67
(11.9%) CFAR R/R NA NA - - 2.0

(1.1-3.7)** 0.022

[72] 38 16/38
(42.1%) NA TN 56 144 - - - -

[39] LC 166
VC 250

20/145 
(13.8%)
35/238
(14.7%)

various TN NA NA

2.701
(1.988-
8.787)
2.155

(1.160-
4.004)

<0.001
0.015

4.856
(1.475-
9.998)
3.630

(1.358–
9.703)

<0.0001
0.010

[29] 110 38/110
(34.5%) FCR TN 72.4% 

at 5 y
85.8% 
at 5y - - 5.16

(1.2-22.1) 0.07

[24] 161 30/154
(19.5%)

Clb/Clb-R/
Clb-G TN NA NA

2.9 
(1.5-
5.4)°
2.6 

(1.3-
5.4)°°

0.001°
0.006°°

2.682
(1.366-
5.264)

0.004

[63]# 1045 99/1043
(9.5%) various TN 79 NR - -

1.66
(1.06-
2.59)

0.027

[27] 335 41/287
(14.3%) various TN 70 135

3.176 
(1.882-
5.359)

<0.001
3.572

(1.341-
9.515)

0.011

[77] 186 37/186
(19.8%)

Lenalidomide-R
Lenalidomide-O R/R 23 62.8 - -

2.08
(1.15-
3.76)

0.015

TN=treatment naïve; R/R= relapsed/refractory; OS=overall survival; CK=complex karyotype; NA=not available; 
Clb=chlorambucil; FCR=Fludarabine, Cyclophosphamide, Rituximab; G=Obinutuzumab; R= Rituximab; O-Ofatumumab; 
Ø=not significant; LC: learning cohort; VC: validation cohort
*log rank; **CK or 17p aberration; °all arms; °°(Clb-R+Clb-G);
#MBL/CLL
# OS was compared in this study between patients with CK and patients without CK carrying chromosome translocations, 
or 1-2 aberrations or normal karyotype.
## OS in the patients without CK was reported in this study according to the aberration detected by FISH (13q-, +12, 11q-, 
17p).
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Impact on OS

As shown in Table 1, a significantly shorter survival 
was observed in virtually all the observational studies that 
included treatment naïve patients, including a monocentric 
study on CLL patients treated with first-line FCR [29] 

and an analysis using a learning cohort and a validation 
cohort [39]. Interestingly, the presence of CK was shown 
to represent an adverse prognostic parameter that was 
independent of the international prognostic index [27].

Figure 3: Frequency of TP53 disruption (A), ATM deletion (B), and unmutated IGHV gene configuration (C) according to the presence 
or absence of CK. The number of cases are reported aside each bar. NS: not significant; UM-IGHV: unmutated IGHV.
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In 2016, Herling et al[24], performed an analysis 
in a subgroup of 161 elderly and comorbid patients 
enrolled in the CLL11 trial comparing the efficacy of 
chlorambucil alone, against chlorambucil with rituximab 
or with the second generation anti CD20 obinutuzumab. 
The patients with available karyotype included in analysis 
were representative of the entire study cohort with the 
exception of a higher percentage of patients >70 years. A 
CK in 30/154 (19.5%) patients was shown to represent an 
independent negative prognostic factor on OS along with 
advanced stage, elevated beta-2-microglobulin (β2M) an 
unmutated IGHV gene and mutations in the POT1 gene. 
Interestingly, in a phase II trial evaluating chlorambucil 
and rituximab in 85 treatment naïve patients [76] the 
presence of CK was associated with a lower overall 
response rate (ORR) and complete remission rate, which 
represent surrogate endpoints of OS. Indeed Takahashi 
et al, more recently confirmed the adverse impact of CK 
on ORR and OS in a study conducted on 186 R/R CLL 
patients treated with a Lenalidomide based regimen [77]. 
Finally, in two trials including relapsed/refractory CLL, 
the CK was significantly associated with a shorter OS in 
patients treated with fludarabine cyclophosphamide and 
rituximab, with or without alemtuzumab [73–74].

CK is an independent adverse prognosticator in 
high risk CLL

A negative prognostic impact of CK was recently 
documented even when the analysis was restricted to 
high risk CLL as defined by unfavorable genetic features 
[23-24, 28, 78]. Herling et al, showed that patients with 
CK alone exhibited a similar survival as those with 
TP53 lesion, whereas patients with both CK and TP53 
aberrations had a particularly poor prognosis (P<0.001) 
[24]. In another study on 101 patients carrying TP53 
abnormalities, 31/101 cases (47%) showed a CK. CK was 
associated with shorter OS at multivariate analysis (HR 
2.47; 95% CI, 1.11–5.49; P=0.027) confirming that CK 
may portend a dismal outcome in this aggressive subgroup 
[78].

In a study on previously untreated high-risk 
CLL (defined by the presence of U-IGHV gene and/
or chromosome 11q22 deletion and/or chromosome 
17p13 deletion and/or TP53 mutations) the presence of 
CK in 21/101 (20.8%) cases has been associated with 
unfavorable FISH (i.e. 11q- or 17p-) (P<0.001) and 
TP53 disruption (P=0.012). In multivariate analysis, the 
CK was significantly associated with a shorter TFT (HR 
2.934; 95% CI, 1.686-5.108; P<0.001), an inferior OS (HR 
2.914; 95% CI, 1.080-7.861; P = 0.024) and a trend toward 
a shorter time to chemorefractoriness (TTCR) (HR 2.486; 
95% CI, 0.905-6.825; P=0.077) [28].

In the subgroup of patients with concurrent TP53 
disruption and unfavorable karyotype, the median TFT 
reported in this study was 5.5 months compared to 97.3 

months in patients with sole TP53 disruption (p<0.0001). 
Likewise, the median OS and TTCR, were much shorter in 
this subgroup (28.7 months and 15 months, respectively) 
than in patients with sole TP53 disruption who did not 
reach the median OS (P<0.0001) and showed a TTCR of 
30 months (P<0.0001) [28].

Similar observations were reported by Baliakas et 
al, who found a trend for a significantly shorter TFT in 
patients with del(17p) and concomitant CK as compared 
with patients with del(17p) alone (P=0.06) [23].

Finally, Le Bris et al, reported a dismal outcome in 
patients with concurrent TP53 disruption, U-IGHV and 
CK, with a shorter PFS (12 vs. 55 months; HR: 8.1, 95% 
CI 1.13–57.39; P<0.0001) and shorter OS (5–year OS: 
21.3 ± 18% vs 84.7 ± 8%; HR: 25.7, 95% CI 1.15–574; 
P < 0.0001) as compared with the patients without this 
combination of adverse risk factors [29].

The CK may represent an unfavorable 
prognostic marker in the targeted therapy era

Whereas mechanism-based treatment with novel 
agents proved very efficacious in unfavorable genetic 
subsets of CLL (i.e. U-IGHV, TP53 disruption, 11q-) 
[79–81] several studies showed that the CK may have 
a negative prognostic role in R/R CLL receiving kinase 
targeted treatment or the BCL2 inhibitor venetoclax, as 
summarized in Table 2 [14, 61, 79, 82-83]. A retrospective 
analysis on 88 R/R CLL patients receiving Ibrutinib 
based regimens demonstrated that the CK was a stronger 
predictor of an inferior outcome than del(17p) [61]. A CK 
and del(17p) were found in 21/56 (38%) and 34/86 (40%) 
assessable cases, respectively, whereas they coexisted in 
17 cases. At a median follow-up for surviving patients of 
28 months (range, 14-48 months) the CK was associated 
with a shorter event free survival (EFS) (HR 6.6; 95% CI, 
1.7-25.6; P = 0.006) and inferior OS (HR 5.9; 95% CI, 
1.6-22.2; P = 0.008). Furthermore, a trend for a shorter 
EFS was observed in patients with a CK and del(17p) 
vs. those with sole del(17p) (P = 0.056), whereas no 
association was noted between del(17p) and OS (P = 
0.885) [61]. It is worth noting that TP53 mutations were 
not assessed in this analysis. Brown et al, analysed the 
prognostic significance of CK in the phase 3 RESONATE 
study, including 195 R/R CLL patients treated with 
Ibrutinib [14]. At a median follow up of 19 months the 
presence of CK in 39/153 (25%) assessable patients did 
not show a significant impact on PFS (HR 1.53, 95% CI, 
0.741-3.157; P=0.2476) and on OS (HR 1.86; 95% CI, 
0.770-4.485; P=0.1610). It is noteworthy that, at a 5-year 
follow-up of phase-2 studies, the presence of CK was 
associated with a highly significant difference in median 
PFS in R/R CLL (31 months with CK compared to not 
reached in patients without CK and with 51 months in 
the entire cohort). However, the only genetic parameter 
retaining its adverse significance at multivariable analysis 
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in this study was represented by the 17p deletion [79]. The 
CK and/or del(17p) may predispose to ibrutinib resistance 
through the development of the BTK C481S mutation 
or phospholipase Cγ2 (PLCγ2) activating mutation [61, 
84–86].

The CK was shown to have a strong adverse impact 
on outcome in patients treated with Venetoclax [83]. 
Among 67 R/R CLL patients treated with this BCL-
2 inhibitor, 16 out of 38 (42%) assessable patients had 
CK. In univariate analysis the CK was associated with 
higher risk of progression (HR 6.6; 95% CI, 1.5-29.8; P = 
0.005) along with fludarabine-refractory status (HR 7.01; 
95%CI, 1.7-28.5; P = 0.002). Multivariate analysis was 
not performed due to the small sample size in this study. 
Interestingly, the presence of a CK increased the risk of 
progression among patients with F-refractory disease (P 
= 0.002), whereas TP53 mutation and/or del(17p) did not 
show any impact on time to progression (TTP) [83].

In patients treated with idelalisib and rituximab, the 
prognosis was not significantly influenced by the presence 
of a CK in the analysis by Kreuzer and coworkers, who 
reported their experience on 65 patients with available 
karyotype drawn from 110 R/R CLL patients receiving 
Idelalisib plus rituximab. With a relatively short follow-up 
(median of 21.4 months), 26 patients with CK showed no 
significant difference in terms of PFS and OS as compared 
with 39 patients without CK [82].

Prospective studies are needed to support the 
circumstantial evidence summarized here that a CK may 
represent a prognosticator in patients with R/R CLL 
receiving new oral agents.

CK and Richter transformation

The presence of CK was sporadically linked to 
the development of RT in previous reports [87–89]. In 
a retrospective study on CLL patients treated with first- 
line FCR, Le Bris et al, reported a CK in 1/4 cases with 
RT [29]. Anderson et al found a CK in 12 of 25 patients 
(48%) with progression on Venetoclax, including 8 of 17 
patients with RT (47%) [83]. Rogers et al, studied the 
impact of CK in 46 CLL patients who developed RT. They 
reported a CK in 28/42 (67%) patients who subsequently 
developed RT and found that CK had an adverse impact at 
multivariate analysis on OS with the R-EPOCH regimen 
(HR 2.72; CI 95%, 1.14-6.52; P=0.025) [90].

In a recent analysis, Miller et al, found an 
association between near-tetraploidy (4 copies of 
most chromosomes within a cell) with CK and showed 
that 6/9 patients with this peculiar cytogenetic pattern 
developed RT. In a multivariate analysis near-terapolidy 
and CK represented independent predictors of ibrutinib 
discontinuation due to transformation [91].

Further studies are required to define the correlation 
between CK and RT

Table 2: Impact of complex karyotype on R/R CLL patients treated with pathway inhibitors

Therapy 
and 

patient 
population

Tot. pts CK Median OS
(months) OS Median PFS

(months) PFS

CK yes CK no HR (IC 
95%) P CK yes CK no HR (IC 

95%) P

Ibrutinib 
in R/R CL 
[14, 61]

88 21/56
(37.5%) 25 NR

5.9
(1.6-
22.2)

0.008 19 39
6.6

(1.7-
25.6)*

0.006

195 39/153
(25.5%) NR NR

1.86
(0.770-
4.485)

0.161 NR NR
1.53

(0.741-
3.157)

0.248

Idelalisib 
in R/R CLL 
[82]

110 26/65
(40%) NR NR

1.78
(0.69-
4.64)

0.230 20.9 19.4 1.18 0.630

Venetoclax 
in R/R CLL 
post KI 
[83]

67 16/38
(42.1%) - - - - 16 NR

6.6
(1.5-

29.8)**
0.005

R/R relapsed/refractory; OS = overall survival; TFT = time to first treatment; EFS = event free survival; PFS = progression 
free survival; NR = not reached; *Event Free Surival (EFS); **Time to progression (TTP).
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Perspectives

The importance of cytogenetic analysis in CLL was 
recognized by the 2018 guidelines of the International 
Workshop on CLL [92], which proposed the introduction 
of CBA in future prospective clinical trials to validate 
the prognostic and predictive value of karyotype 
aberrations [93]. The following issues represent an area 
of investigation which may facilitate the introduction of 
cytogenetic analysis in clinical practice.

Refinement of the definition of CK

Evidence was provided that this broad cytogenetic 
category, defined by the presence of at least 3 chromosome 
aberrations, should be regarded as heterogeneous. The 
patients with CK due to the coexistence of trisomy 
of chromosomes 12, 18 and 19, showed favourable 
clinicobiologic characteristics in terms of age (median 59 
years), high incidence of mutated IGHV status and low 
frequency of TP53 disruption or NOTCH1 mutation (5% 
and 4% of cases, respectively) [23, 94, 95]. Likewise, 
Baliakas and colleagues identified a subset of patients 
with CK carrying +12, +19 plus other numerical and/or 
structural chromosome abnormalities (12% of the cases), 
which displayed indolent clinical course independent 
of clinical stage, IGHV mutational status and TP53 
status [96]. These findings suggest that the cytogenetic 
complexity defined solely by numerical aberrations should 
not be regarded as an unfavorable prognostic marker in 
CLL. Recently, Rigolin et al, showed that within patients 
carrying CK as defined by the presence of 3 or more 
aberrations, the presence of unbalanced translocations 
(i.e. chromosome additions, derivatives, insertions, 
duplications, ring-, dicentric- and marker-chromosomes) 
was associated with a worse outcome in terms of OS and 
TTFT (HR 2.773; 95% CI, 1.056-7.281; P=0.038 and HR 
2.375; 95% CI, 1.027-5.492; P=0.043) [97]. Interestingly, 
a distinct mRNA expression profile, with a deregulation 
of genes involved in cell cycle control and DNA damage 
response, was documented in patients with a CK carrying 
unbalanced rearrangements [97].

Finally, of the presence of ≥5 chromosomal 
aberrations, referred to as high-CK, predicted for 
a particularly aggressive clinical course in a large 
multicentre study, possibly due to a strong association with 
TP53 disruptions (P<0.001) [23]. More recently high-CK 
(i.e. ≥5 chromosomal aberrations) was shown to represent 
a strong adverse prognosticator independent of clinical 
stage, IGHV mutational status and TP53 status [96].

New methods of detection

CBA is somewhat laborious, has a low sensitivity 
and requires mitotic stimulation of fresh or frozen living 
cells. Hence, alternative methods of detection of genomic 

complexity were developed. The array-based (CGH/SNP) 
analysis offers the opportunity to study the CLL genome, 
does not require in vitro mitogens and allows for the 
detection of subtle DNA gains and losses [98]. Leeksma 
et al, recently analysed 1911 patients with monoclonal 
B-cell lymphocytosis and treatment-naïve CLL and found 
that 451/1911 cases (24%) displayed genome complexity 
(defined as the presence of ≥3 structural and/or numerical 
aberrations) [99]. This study also showed that array-
analysis detected more aberrations than CBA (2.35 vs 
1.84, 95% CI paired differences 0.221-0.798) [99].

Diagnostic platforms using whole genome 
sequencing (WGS) to detect single nucleotide variants 
and insertion/deletions are being developed and validated 
for potential usage in clinical practice [100]. Although 
these methods will likely provide comprehensive genomic 
characterisation of CLL and will represent alternative 
method to recognize the prognostic or predictive role 
genetic lesions in trials, they still require standardization 
and a univocal definition of “genome complexity”.

At the moment CBA represents a standardized tool 
for risk assessment in CLL, providing complementary 
information to FISH and traditional genetic studies of 
recurrent mutations. Because cytogenetic laboratories are 
available in the majority of hematologic centres and the 
mitotic yield greatly improved with novel mitogens, CBA 
could be incorporated in prospective trials to definitely 
establish its predictive power in an era in which both CIT 
and new mechanism-based treatment are available [92].
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