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ABSTRACT

Adoptive T-cell therapy with T cell receptor (TCR) -engineered T cells is an 
attractive strategy for cancer treatment and the success in this therapy is dependent 
on the functional avidity of the transduced TCRs against targeted tumor antigens. 
Therefore, the establishment of the methodology of the efficient and precise 
evaluation of TCR functional avidity has been awaited. Here, we show a novel platform 
cell line, named 2D3, which enables the functional avidity of transduced TCRs to be 
evaluated efficiently and precisely. In the 2D3, the precise TCR functional avidity of 
transduced TCRs is easily evaluable by the expression of green fluorescent protein 
(GFP) reporter gene driven by nuclear factor of activated T cells (NFAT) activation 
via TCR signaling. Four different TCRs of HLA-A*24:02-restricted Wilms’ tumor gene 
1 (WT1)-specific CD8+ cytotoxic T lymphocytes (CTLs) were transduced into 2D3 
cells and the functional avidities of these four TCRs were evaluated. The evaluated 
functional avidity of these TCRs positively correlated with cell proliferation, cytokine 
production, and WT1-specific cytotoxicity of the TCR-transduced CD8+ T cells in 
response to WT1 antigen. These results showed that 2D3 cell line was a novel and 
stable tool useful for the efficient and precise evaluation of the functional avidity of 
isolated and transduced TCRs in developing TCR-based immunotherapy.
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INTRODUCTION

Adoptive immunotherapy using tumor-associated 
antigen (TAA)-specific CD8+ cytotoxic T lymphocytes 
(CTLs) and/or CD4+ helper T (Th) cells can induce the 
regression of large established tumor in not only mouse 
models but also cancer patients [1–3]. These preclinical 

and clinical evidences encourage us to develop T-cell 
adoptive immunotherapy using genetically engineered 
T cells that are transduced with a T-cell receptor (TCR) 
gene specific for TAA. Furthermore, more recent 
studies have demonstrated that neo-antigens, which are 
generated from passenger mutations, would be promising 
targets for the engineered TCR-T cell therapy [4, 5].  
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In parallel with seeking for good targets from TAAs and 
neo-antigens by genome-wide approaches [6–8], novel 
methods analyzing huge number of TCR repertoire  
[9, 10] and efficiently isolating TCR gene from a single-
cell [11] have been developed. Unfortunately, not all 
isolated TCRs can sufficiently elicit anti-tumor immunity. 
Hence, development of a new method for the precise and 
efficient evaluation of the isolated TCRs has been awaited 
for the prediction of clinical response in the engineered 
TCR-T cell adoptive therapy.

TCR affinity, TCR avidity, and functional avidity 
are known as an indicator to predict the in vitro/in vivo  
properties and behavior of the TCR-transduced T 
cells [12–14]. TCR affinity, which is defined as the 
binding-strength of TCR molecules to peptide-major 
histocompatibility complex (pMHC), is often used for 
this prediction beyond TCR’s specificity because it can 
standardize the strength of TCR binding to pMHC by 
using a numerical value (ie, KD value). However, purified 
soluble TCR α/β complex is needed for calculating TCR 
affinity. It is, therefore, not feasible for screening a large 
number of candidate TCRs. In addition, it has been 
shown that TCR affinity is sometimes not consistent 
with actual T cell function [12, 14]. On the other hand, 
both TCR avidity (which is usually measured by pMHC 
tetramers) and functional avidity (which is assessed using 
a titrated concentration of antigen peptide with antigen-
presenting cells) are correlated with in vitro cytotoxicity 
and in vivo anti-tumor activity in TCR-transduced T 
cells [12, 15]. Since preparation of large sets of tetramer 
for candidate TCRs is difficult in terms of cost, time, 
and effort, assessment of functional avidity must be the 
most adequate and feasible approach for screening of 
TCRs capable of provoking a good clinical response in 
engineered T-cell adoptive immunotherapy.

Functional avidity is assessed by phosphorylation 
of linker for activation of T cells (LAT) and extra-
cellular signal-regulated kinase (ERK), calcium influx, 
and cytokine release after the stimulation with a titrated 
concentration of antigen peptide. Compared to TCR 
affinity, functional avidity is a relative indicator and 
easily influenced by various factors such as CD8/CD4 co-
receptors and TCR clustering (ie, quantity of TCR/CD3 
molecules and where and how TCR-pMHC interaction 
are formed) [13, 16]. Therefore, the use of primary T 
cells for the assessment of precise functional avidity is 
inappropriate because they are heterogeneous and express 
endogenous TCRs that cause incorrect TCR clustering by 
mispairing with transduced TCRs [17] and competing for 
CD3 molecules [18]. 

In this study, we describe a novel platform cell 
line, named 2D3, for efficient and precise evaluation of 
TCR functional avidity. 2D3 cells are endogenous TCR-
null and CD8-positive and can express green fluorescent 
protein (GFP) through transcription factor nuclear factor 
of activated T cells (NFAT) that is activated by TCR 

signaling. Therefore, the establishment of 2D3 cells 
enabled us to selectively analyze the functional avidity of 
appropriately transduced TCRs by using GFP expression 
as a marker.

Thus, 2D3 cell line should be a good tool useful for 
the evaluation of the functional avidity of isolated and 
transduced TCRs and prediction of the TCR-transduced 
T cell function in developing effective adoptive T-cell 
immunotherapy against cancer. 

RESULTS

Establishment of 2D3 cell line by the 
transduction of hCD8 and NFAT-GFP reporter 
genes

We established a 2D3 cells in which the signals 
from transduced TCRs activated the NFAT, followed by 
the GFP expression as a selection marker for appropriately 
TCR-transduced cells (Figure 1A). Jurkat-76, a TCR α/β-
negative sub-line of Jurkat (CD8− T lymphoma cell line) 
was thought to be an ideal candidate as a source of the 
platform cell line because it could not produce endogenous 
TCRs and thus because transduced TCRs would be well 
expressed without competition with endogenous TCRs. 
Therefore, we transduced Jurkat-76 cells with hCD8 gene 
and established J76.7 cell line, and finally established 
CD8+ 2D3 cell line by the transducing the J76.7 cells with 
NFAT-GFP reporter gene. 2D3 cells did not express CD3 
molecules on the cell surface because of lack of their 
endogenous TCR expression (Figure 1B), and strongly 
expressed GFP in the majority of cells when they were 
stimulated with Phorbol 12-myristate 13-acetate (PMA)/
Ionomycin to activate NFAT (Figure 1C). Both expression 
of hCD8 and NFAT-GFP reporter genes was stable and 
long-lasting (data not shown). Thus, we succeeded in the 
establishment of 2D3 cell line suitable for evaluating the 
expression and function of CTL-derived TCRs.

2D3 is a platform cell line for efficient and 
precise evaluation of the expression and function 
of transduced TCRs

To confirm that 2D3 cell line could be a platform 
cell line suitable for the evaluation of the expression 
and function of transduced TCRs, 2D3 cells were 
transduced with lentiviral vector encoding B10-TCR, 
which was the TCR that was isolated and cloned from 
an HLA-A*24:02-restricted, WT1235 peptide-specific 
CTL clone, B10 [19]. B10-TCR- and mock-transduced 
2D3 cells could be monitored by the expression of Venus 
fluorescent protein. As expected, B10-TCR-transduced 
2D3 cells expressed both CD3 and TCR α/β molecules 
on their surface and were WT1235 tetramer-positive. In 
contrast, mock-transduced 2D3 cells expressed neither 
CD3 molecules nor B10-TCR (Figure 2A). Furthermore, 
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B10-TCR-transduced 2D3 cells showed GFP expression 
in WT1235 peptide-concentration dependent manner 
(Figure 2B). This WT1235 peptide concentration-response 
curve showed that Effective concentration 50 (EC50), 
which was often used to describe the functional avidity 
of TCR, was 52.7 nM (95% confidence interval (CI), 
42.3–64.8 nM) for B10-TCR. In general, since TCR 
functional avidity is determined by several factors such as 
TCR affinity and quantities of TCR, CD3, and CD8/CD4 
molecules, it is easily influenced by cell types used for 
experiments, especially by TCR constructs that regulate 

expression efficacy [20]. Therefore, to confirm that B10-
TCR functional avidity was stably evaluable by the 2D3 
cells regardless of the difference in B10-TCR constructs, 
we examined the response of 2D3 cells transduced with 
codon-optimized α-p2A-β or β-p2A-α B10-TCR that was 
different from original B10-TCR construct but specific 
to WT1235 peptide (Figure 2C). As expected, EC50 was 
50.8 nM and 53.7 nM for codon-optimized α-p2A-β and 
β-p2A-α B10-TCRs, respectively, and similar to that 
obtained from original B10-TCR construct (α-p2A-β)-
transduced 2D3 cells (Figure 2C). Thus, 2D3 cell line 

Figure 1: Establishment of 2D3 cell line. (A) Schema of 2D3 cells. The transduction of TCRs into 2D3 cells recruits CD3 onto 
the cell surface, and appropriate TCR signaling induced by antigen recognition activates the NFAT-GFP reporter gene, followed by GFP 
production. NFATx3, NFAT-binding sites x3; IL-2 mini pro, IL-2 minimal promoter. (B) Expression of CD3 and CD8 in Jurkat-76, J76.7, 
and 2D3 cells. Representative contour plots are shown. (C) GFP expression in 2D3 cells after PMA/Ionomycin stimulation. Representative 
contour plots are shown. 
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was thought to be a platform cell line suitable for efficient 
and precise evaluation of the expression and function of 
transduced TCRs. 

TCR functional avidity evaluated by 2D3 cells 
correlate with effector function of the TCR-
transduced CD8+ T cells 

It is well-known that the strength of TCR functional 
avidity effect the proliferation, cytokine production, and 
cytotoxicity of TCR-transduced CD8+ T cells. Hence, 
we investigated whether the TCR functional avidity 
evaluated by 2D3 cells correlated with the function of 
the TCR-transduced CD8+ T cells. We established four 
different HLA-A*24:02-restricted, modified WT1235 
peptide (mWT1235)-specific CD8+ T cell clones, isolated 
the TCRs from the clones, and transduced the 2D3 cells 
with the individual TCRs (Table 1). Four mWT1235-
specific TCR-transduced 2D3 cells expressed GFP in 
response to mWT1235 and showed individually unique 
peptide concentration-response curves (Figure 3A). 
EC50s obtained from mWT1235 concentration-response 
curves were 43.3 nM (95% CI, 29.0–65.0 nM) for B10-
TCR, 29.3 nM (95% CI, 22.1–38.9 nM) for TM-H2-TCR,  
976 nM (95% CI, 815–1188 nM) for FSK1-TCR, and 1776 
nM (95% CI, 1166–3019 nM) for TM-L1-TCR. Since big 
difference in EC50 was observed among four mWT1235 
-specific TCR-transduced 2D3 cells, we classified these 
four TCRs into two groups: high-avidity TCRs (B10- and 
TM-H2-TCRs) and low-avidity TCRs (FSK1- and TM-
L1-TCRs). Next, these four TCRs were transduced into 
freshly isolated CD8+ T cells. High-avidity TCR (B10- and 

TM-H2-TCRs)-transduced CD8+ T cells produced cytokine 
at much higher frequencies in response to mWT1235, 
compared to low-avidity TCR (FSK1- and TM-L1-TCRs)-
transduced CD8+ T cells (Figure 3B). It appeared TM-L1-
TCR-transduced CD8+ T cells rarely produced cytokine 
in response to mWT1235. Furthermore, we examined cell 
proliferation of B10-TCR, TM-H2-TCR, and FSK1-
TCR-transduced CD8+ T cells by weekly stimulation 
with mWT1235 (Figure 3C). B10-TCR- and TM-H2-TCR-
transduced CD8+ T cells remarkably expanded by day 
28, whereas FSK1-TCR-transduced CD8+ T cells could 
not expand regardless of the repeated stimulation with 
mWT1235. These results demonstrated that TCR functional 
avidity evaluated by using 2D3 cells positively correlated 
with effector functions of the TCR-transduced CD8+ T cells. 

Next, we determined that the TCR functional 
avidity evaluated by the 2D3 cells also correlated 
positively with cytotoxicity of the TCR-transduced 
CD8+ T cells against HLA-A*24:02-positive, WT1-
expressing leukemic cells. Since the WT1-expressing 
leukemic cells expressed natural WT1235 peptide 
(nWT1235), the functional avidity of the B10-TCR- or 
TM-H2-TCR-transduced CD8+ T cells was evaluated 
by the 2D3 cells in response to the nWT1235, instead of 
mWT1235 (Figure 3D). The EC50 of B10- and TM-H2-
TCRs was 62 nM and 180 nM, respectively, and that 
of B10-TCR was approximately three times higher 
than that of TM-H2-TCR. As shown in Figure 3E, B10-
TCR-transduced CD8+ T cells could lyse HLA-A*24:02-
positive, WT1-expressing leukemic cells, while TM-
H2-TCR-transduced CD8+ T cells could not lyse them. 
These results showed the positive correlation between 

Figure 2: Evaluation of TCR functional avidity by 2D3 cells. (A) Expression of CD3 and TCR in B10-TCR-transduced 2D3 
cells. The 2D3 cells were stained with anti-CD3, anti-TCR α/β mAbs, and WT1235 tetramer. Representative contour plots are shown.  
(B, C) Peptide concentration-response curves in 2D3 cells transduced with three different B10-TCR constructs. The 2D3 cells were 
stimulated with titrated concentration of modified WT1235 peptide (mWT1235). Y-axis represents the frequency (% of max) of GFP-positive 
cells in 2D3 cells. (B) Peptide concentration-response curve of original α-p2A-β B10-TCR-transduced 2D3 cells. (C) Peptide concentration-
response curves of codon-optimized α-p2A-β (left) and β-p2A-α (right) B10-TCR-transduced 2D3 cells. All data are mean value ± SEM 
(n = 3). All data are normalized as a percent of maximal frequency of GFP-positive cells.
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the TCR functional avidity evaluated by 2D3 cells and 
the cytotoxicity against HLA-A*24:02-positive, WT1-
expressing leukemic cells. 

Taken together, these findings indicated that TCR 
functional avidity evaluated by 2D3 cells was clearly and 

positively correlated with the effector functions such as 
proliferation, cytokine production, and cytotoxicity of 
the TCR-transduced CD8+ T cells regardless of whether 
the TCR specificity was for natural or modified WT1235 
peptide. 

Table 1: Identification of WT1235-specific TCRs derived WT1235-specific clones

TCR V region D region J region CDR3 amino acid sequences

B10
α TRAV27*01 - TRAJ28*01 C A G P L S G A S Y Q L F

β TRBV9*01 TRBD1*01 TRBJ2-3*01 C A S S L W G S T D T Q Y F

TM-H2
α TRAV20*02 - TRAJ52*01 C A V R G G R A G G T S Y G K L T F

β TRBV9*01 TRBD2*01 TRBJ2-3*01 C A S S V F G S S T D T Q Y F

FSK1
α TRAV19*01 - TRAJ26*01 C A L S A A Y G Q N F V F

β TRBV6-5*01 TRBD1*01 TRBJ2-1*01 C A S S Y G K G L Y N E Q F F

TM-L1
α TRAV17*01 - TRAJ43*01 C A T D P G Y N N D M R F

β TRBV20-1*01 TRBD2*02 TRBJ2-2*01 C S A R G Q R E L S G E L F F

Figure 3: Correlation between TCR functional avidity and effector functions in the TCR-transduced CD8+ T cells.  
(A) Peptide concentration-response curves in 2D3 cells transduced with four different mWT1235-specific TCRs (B10-, TM-H2-, FSK1-, 
and TM-L1-TCRs) for the stimulation with titrated concentration of mWT1235. Y-axis represents the frequency (% of max) of GFP-positive 
cells in 2D3 cells. (B) Cytokine production of mWT1235-specific TCR-transduced CD8+ T cells stimulated with 1 μg/ml of mWT1235. 
Frequencies of IFN-γ-single-, TNF-α-single-, and IFN-γ and TNF-α-double-producing CD8+ T cells are shown. (C) Proliferation of WT1-
specific TCR-transduced CD8+ T cells. CD8+ T cells (5 × 105 cells) were weekly stimulated with mWT1235, and the estimated number 
of the WT1-specific TCR-transduced CD8+ T cells was calculated every week. All data are mean values ± SEM (n = 3). (D) Peptide 
concentration-response curves in 2D3 cells transduced with mWT1235-specific B10- or TM-H2-TCR for the stimulation with titrated 
concentration of nWT1235. It should be noted that peptide used for making the peptide concentration-response curve was mWT1235 for (A) 
and nWT1235 for (D). (E) Cytotoxic activity of B10-TCR or TM-H2-TCR-transduced CD8+ T cells against WT1-expressing leukemic cells. 
Assay for cytotoxic activity was performed repeatedly and the representative results are shown. All data are replicate measurements and 
represent mean values ± SEM.
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DISCUSSION

In the present study, we successfully established 
2D3 cell line as a platform cell line to efficiently evaluate 
the function of TCRs. Actually, we demonstrated the clear 
correlation between TCR functional avidities evaluated 
by the 2D3 cells and effector functions such as cell 
proliferation, cytokine production, and cytotoxicity of the 
TCR-transduced CTLs. 

To our knowledge, there is no standard method to 
evaluate simply the functional avidity of human TCRs. 
T cell lines (ex. 58α-β-, TG40, or Jurkat) and T cells 
are often used as a platform cell for the evaluation of 
functional avidities of transduced TCRs, such as cytokine 
production, killing activity, and phosphorylation of 
proteins downstream of TCR signaling [21, 22]. Here is a 
question-are functional avidities evaluated by using these 
cells? Since mouse T cell lines, 58α-β- and TG40 express 
CD3 molecule, human transduced TCRs are expressed 
on the cell surface with mouse CD3 molecule. However, 
it is unknown whether the complex of human TCRs and 
mouse CD3 can induce normal TCR signaling. Indeed, 
Cohen et al. reported that binding stability between 
human TCRs and mouse CD3 differed from that between 
human TCRs and human CD3 [23]. Nagai et al. used 
TCR-negative Jurkat/MA cells [24] that expressed only 
CD8 α molecule to monitor TCR signaling [25] because 
CD8 α could be expressed as CD8 α/α homodimers, 
which could bind to MHC class I molecule, without CD8 
β on the cell surface. On the other hand, it is well-known 
that CD8 β associates with only CD8 α and cannot be 
expressed alone on the cell surface. Although both CD8 
α/α and CD8 α/β could express on the surface, there is 
difference in the binding ability to MHC class I molecules 
between CD8 α/α and CD8 α/β [26]. In addition, CD8 β 
intracellular domain promotes association of lymphocyte-
specific protein kinase (Lck) and LAT with surface CD8 
complexes [27]. Of course, almost all mature CD8+ T 
cells express CD8 α/β heterodimer in vivo. Therefore, 
2D3 cell line, which expresses CD8 α/β heterodimer, 
is a suitable platform cell line to assess TCR functional 
avidity. Furthermore, since 2D3 cell line is deficient in 
endogenous TCR expression, only transduced TCRs can 
be expressed on 2D3 cell surface without mispairing 
with endogenous TCRs. Interestingly, it has been shown 
that T cell recognition of pMHC can be increased up to  
50-fold after priming with the same pMHC [28]. In 
addition, functional avidity maturation of CTLs can occur 
through the change of TCR clustering of various molecules 
such as lipid raft, Lck, and CD3 without the selection of 
higher affinity TCR during early stage of viral infection 
[29]. In addition, the same mechanism can also induce 
the inability of CD8+ T cells for the recognition of pMHC 
[30]. Taken together, TCR functional avidity of human 
T cells is variable in response to antigen stimulation. 
Therefore, human T cells are not suitable for platform 

T cells to evaluate TCR functional avidities, whereas 
the 2D3 cells are convenient for the evaluation of TCR 
functional avidities because of its functional stabilities. 

Previous studies demonstrated that TCR functional 
avidity determined T cell fate. It is well-known that 
in Th1/Th2 polarization, weak TCR signaling favors 
Th2 differentiation and stronger one induces Th1 
differentiation [31–33]. In addition, the difference in 
TCR functional avidity to self-antigens also has an effect 
on memory/effector T cell development. Allen PM and 
his colleagues reported that the magnitude of secondary 
response in Listeria-specific T cells was determined by 
the strength of TCR functional avidity to self-antigen 
[34, 35]. Furthermore, we previously demonstrated that 
WT1-specific CD8+ T cells with high-avidity TCR to 
WT1 peptide easily differentiated into effector T cells in 
TCR-retrogenic mice [36]. However, it remains unclear 
how TCR avidity controls T cell responses and their fate, 
especially memory/effector differentiation. Since TCR-
stimulation of quiescent T cells such as naïve and memory 
T cells induces metabolic shift from catabolic to anabolic 
energy production, it may be speculated that the strength of 
TCR avidity finely regulates the metabolic condition that 
determines T cell differentiation [37]. Primary human T 
cells are not suitable for the evaluation of the role of TCR 
avidity in the T cell functional differentiation because they 
are heterogeneous and are difficult to keep the cells viable 
for long term after transduction of TCR genes. On the other 
hand, Jurkat cell line, which is a parent cell line of 2D3 cell 
line, is stable to viability and can respond to TCR signals. 
Jurkat cells can form lipid raft [38], like primary human 
T cells, and increase CD3 ζ and ERK phosphorylation 
through cholesterol removal [39]. Therefore, it appears that 
Jurkat cells functionally mimic primary human T cells, and 
thus 2D3 cell line should be useful for the study of how 
TCR avidity controls T cell responses and their fate.

Since 2D3 cells has a GFP, instead of luciferase, 
as a reporter gene, we can easily sort the activated TCR-
transduced 2D3 cells by using GFP-positivity as an 
indicator and examine the molecules associated with the 
signals from the transduced TCR.

In conclusion, we demonstrate a novel platform 
cell line as a useful tool to evaluate efficient and precise 
TCR functional avidity for developing TCR-based 
immunotherapy.

MATERIALS AND METHODS

Cell lines

Human T-cell acute leukemia cell line Jurkat-76 
[40] deficient in endogenous TCR expression was kindly 
provided by Prof Hans J Stauss (UCL Cancer Institude, 
London, UK). Human chronic myelogenous leukemia 
cell lines, K562 and HLA-A*24:02 gene-transduced 
K562, named K562-2402 were kindly gifted from 
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Yoshiki Akatsuka (Aichi Cancer Center Research, Aichi, 
Japan). Transporter associated with antigen processing 
(TAP)-deficient and HLA-A*24:02-positive cell line, 
T2-2402 was kindly provided by Kiyotaka Kuzushima 
(Aichi Cancer Center Research, Aichi, Japan). All cell 
lines were cultured in RPMI 1640 (Nacalai Tesque Inc., 
30264-56) with 10% heat inactivated fetal bovine serum 
(FBS) (SIGMA, 172012–500 ML) and 1% penicillin/
streptomycin (Nacalai Tesque Inc., 26253–84). Lenti-X™ 
293T cell lines were purchased by Clontech Laboratories, 
Inc. (632180) and were cultured in Dulbecco’s modified 
Eagle’s medium (DMEM) containing 4.5 mg/ml glucose 
(Nacalai Tesque Inc., 08458–16) with 10% heat inactivated 
FBS. Human CD8+ T cells were isolated from peripheral 
blood mononuclear cells using the magnetic BD IMag 
Cell Separation System according to the manufacturer’s 
instructions (BD Biosciences Pharmingen, 557941) after 
written informed consent was obtained from healthy 
volunteers. T cells were cultured in X-VIVO™ 15 (Lonza, 
04–418Q) supplemented with 10% heat inactivated human 
AB serum (GemCell, Gemini, BioProducts, 100–512) and 
interleukin (IL)-2 (Imunace35, Shionogi & Co., LTD) at 
appropriate concentration. 

Peptides, antibodies, and reagents

Natural WT1235 peptide (nWT1235 peptide; 
CMTWNQMNL) and modified WT1235 peptide (mWT1235 
peptide; CYTWNQMNL) were synthesized by Sigma-
Aldrich Co., LLC. and Peptide Institute, Inc., respectively. 
For flow cytometric analysis, the following mAbs were 
used: anti-CD3-eFluor 450 (UCHT1, 48-0038-42), 
anti-TCR α/β-Phycoerythrin (PE) (IP26, 12-9986-42), 
anti-Interferon (IFN)-γ-PE (4S.B3, 12-7319-82) and 
anti-Tumor Necrosis Factor (TNF)-α-Allophycocyanine 
(APC) (MAb11, 17-7349-82) purchased from 
eBioscience and anti-CD8-APC-Cy7 (RPA-T8, 25-
0088-T025) purchased from Tonbo Biosciences. 
PE-labeled HLA-A*24:02 modified WT1235–243  
tetramer (WT1235 tetramer) was purchased from MBL 
Co., Ltd. (TS-M014-1). RetoroNectin (TaKaRa Bio Co., 
T100A) and anti-CD3 mAb (OKT-3, Tonbo Biosciences, 
40-0037-U500) were used at concentrations of 20 μg/ml  
and 2 μg/ml, respectively, to stimulate human CD8+ 
T cells. NFAT-GFP reporter plasmid [41] was kindly 
provided by Prof. Takashi Saito (Riken Research Center 
for Allergy and Immunology, Yokohama, Japan). PMA 
(Sigma-Aldrich, P8139-1MG) and Ionomycin (Sigma-
Aldrich, I0634) were used at concentrations of 25 ng/ml 
and 1 μg/ml, respectively.

Establishment of 2D3 cell line 

Two hundred thousand Jurkat-76 cells were 
subjected to electroporation with hCD8 α-E2A-
hCD8 β-encoding pcDNA3.1/Zeo (+) using the Neon 

transfection system (Thermo Fisher Scientific Inc., 
MPK5000) according to the manufacturer's guidelines. 
hCD8 α-E2A-hCD8 β construct was kindly provided by 
Prof Hans J Stauss. CD8-transduced Jurkat-76 cells were 
single-cell sorted into 96-well round-bottom plates and 
stably hCD8 α/β-expressing Jurkat-76 cell line, named 
J76.7 was successfully established. Two hundred thousand 
J76.7 cells were transduced with NFAT-GFP reporter 
plasmid by electroporation followed by single cell sort. A 
single-cell-derived cell line capable of highly expressing 
GFP protein only when stimulated with PMA/Ionomycin 
was established as 2D3 cell line. 

Cloning of full-length TCR α and TCR β chain 
genes from WT1-specific T cell clone and 
lentiviral vector construction

HLA-A*24:02-restricted, WT1235-specific B10-
TCR was isolated previously [19]. FSK1-TCR, TM-H2-
TCR, and TM-L1-TCR were isolated from distinct HLA-
A*24:02-restricted WT1235-specific CD8+ T cell clones 
and identified as described previously [42]. In order to 
transduce WT1235-specific TCR into CD8+ T cells, TCRs 
(β-p2A-α cassettes) were codon-optimized, synthesized by 
GeneArt (Thermo Fisher), and cloned into CSII-EF-MCS-
IRES2-Venus lentiviral vector (kindly provided from 
Drs Hiroyuki Miyoshi and Atsushi Miyawaki, RIKEN, 
Tsukuba, Japan) with shRNA constructs for endogenous 
TCR α/β constant regions to prevent mispairing between 
the transduced and endogenous TCRs [17]. Lentivirus 
particles were obtained from transient transfection of 
Lenti-X™ 293T cells with each TCR-encoding lentiviral 
vector, pCAG-HIVgp, and pCMV-VSV-G-RSV-Rev 
(kindly provided by Dr H Miyoshi).

Transduction of WT1-specific TCR genes

To transduce TCR-encoding lentivirus vector 
into CD8+ T cells, CD8+ T cells were stimulated with 
RetroNectin- and OKT-3-coated 48-well plate in the 
presence of IL-2 (40 IU/ml). On the next day, the 
stimulated CD8+ T cells were spin-infected with lentivirus 
vector in the presence of polybrene (10 μg/ml, Sigma-
Aldrich, H9268) at 1000 g for 2 hours at 32° C. After  
6–12 hours, the culture medium was changed into fresh 
medium supplemented with 10% heat inactivated human 
AB serum and IL-2 (100 IU/ml). To establish WT1235-
specific TCR-transduced 2D3 cells, 2D3 cells were 
transfected with TCR-encoding lentivirus in the presence 
of polybrene. Venus-positive 2D3 cells were sorted and 
used for NFAT-GFP reporter assay as described below.

NFAT-GFP reporter assay

To evaluate the functional avidities of WT1235-
specific TCRs, we used 2D3 cell line. In brief, 1 × 105 T2-
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2402 cells and 1 × 105 TCR-transduced 2D3 cells were co-
cultured in the presence of titrated concentration of WT1 
peptide for 6 hours. The cells were washed with Phosphate 
buffered saline (PBS) (Nacalai Tesque, 14249–95) with 
2% FBS and then measured for the frequency of GFP-
positive cells in venus-positive cells using a FACSAria 
instrument (BD Biosciences). Data were analyzed using 
FlowJo 7.6.5 software (FlowJo, LLC). 

Intracellular cytokine detection assay

One hundred thousand WT1235-speicifc TCR-
transduced CD8+ T cells were co-cultured with 5 × 104 
T2-2402 in the presence of 10 μg/ml of Brefeldin A 
(Sigma-Aldrich) and 1 μg/ml of natural WT1235 peptide 
or modified WT1235 peptide for 4 hours. After cell 
surface marker staining, intracellular cytokine assay was 
performed as described previously [42].

Proliferation assay

CD8+ T cells were transduced with WT1235-specific 
TCRs as described above, and the transduced CD8+ T cells 
(5 × 105) were stimulated by the co-culture with irradiated 
mWT1235 peptide-pulsed autologous PBMCs. Seven days 
later, the expanded cells were harvested, counted by trypan 
blue, and measured for the frequency of WT1235-specific 
TCR-transduced CD8+ T cells using tetramer assay. Five 
hundred thousand cells out of the expanded cells were re-
stimulated and re-expanded as described above. The series 
of experiments was three times repeated. The number of 
WT1235-specific TCR-transduced CD8+ T cells was calculated 
as the number of venus+ WT1235 tetramer+ cells accumulated.

51Cr release assay
51Cr release assays were performed as previously 

described [19]. 

Statistical analysis

The statistical analysis and the calculation of EC50 
values were performed with GraphPad Prism 7 (GraphPad 
Prism Software, San Diego, CA, USA).
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