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ABSTRACT

For prostate cancer detection on prostate multiparametric MRI (mpMRI), the 
Prostate Imaging-Reporting and Data System version 2 (PI-RADSv2) and computer-
aided diagnosis (CAD) systems aim to widely improve standardization across 
radiologists and centers. Our goal was to evaluate CAD assistance in prostate cancer 
detection compared with conventional mpMRI interpretation in a diverse dataset 
acquired from five institutions tested by nine readers of varying experience levels, 
in total representing 14 globally spread institutions.

Index lesion sensitivities of mpMRI-alone were 79% (whole prostate (WP)), 
84% (peripheral zone (PZ)), 71% (transition zone (TZ)), similar to CAD at 76% 
(WP, p=0.39), 77% (PZ, p=0.07), 79% (TZ, p=0.15). Greatest CAD benefit was in 
TZ for moderately-experienced readers at PI-RADSv2 <3 (84% vs mpMRI-alone 
67%, p=0.055). Detection agreement was unchanged but CAD-assisted read times 
improved (4.6 vs 3.4 minutes, p<0.001). At PI-RADSv2 ≥ 3, CAD improved patient-
level specificity (72%) compared to mpMRI-alone (45%, p<0.001).

PI-RADSv2 and CAD-assisted mpMRI interpretations have similar sensitivities 
across multiple sites and readers while CAD has potential to improve specificity and 
moderately-experienced radiologists’ detection of more difficult tumors in the center 
of the gland. The multi-institutional evidence provided is essential to future prostate 
MRI and CAD development.

INTRODUCTION

Men with suspected or known prostate cancer are 
increasingly evaluated with prostate multiparametric MRI 
(mpMRI) because it aids in the detection of clinically 
significant disease [1–4]. However, mpMRI has been 
criticized because of variability in quality of exams and 
inconsistent interpretations across clinical centers and 
physicians. Interpretation can be affected by many factors 
including relative visibility of tumors, tumor location, 
and inter-observer variation. To address some of these 
issues the Prostate Imaging-Reporting and Data System 
version 2 (PI-RADSv2) was introduced in 2015 as a set 
of guidelines outlining standard acquisition parameters 
and a categorization system for cancer detection [5]. PI-
RADSv2 has been widely adopted and can achieve cancer 
detection rates up to 80-90%; however, it is associated 
with a steep learning curve and exhibits a high degree 
of inter-reader variability, likely reflecting inherent 
ambiguities in the classification scheme. Moreover, many 
centers report a mpMRI miss rate up to 16-30% [6–11]. A 
large scale, prospective, multicenter trial of PI-RADSv2 
has not yet been performed.

Machine learning is a highly touted method of 
improving feature recognition in images. Computer-
aided diagnosis (CAD) systems have shown promise 
in the identification of prostate cancer on mpMRI in 
several single institution studies [12–17]. For instance, we 
previously developed a CAD system based on in-house 
images with readers from outside our institution and 
showed excellent results [18]. However, for a CAD system 
to be truly useful it must be trained with a much more 
diverse set of data, crossing vendors and institutions, and 

interpreted by multiple readers with varying experience to 
validate its performance.

The purpose of this study was to test a new prostate 
CAD on a highly heterogenous, “real-world” data set 
from 5 institutions against mpMRI interpretations with PI-
RADSv2 using a diverse set of readers, varying in location 
and experience.

RESULTS

Patient and lesion characteristics

Patient and lesion characteristics are given in Table 
1, stratified by institution. The final study population 
consisted of 144 case patients and 72 control patients. In 
case patients, there were a total of 285 pathologically-
proven tumors, of which 10/285 were found spanning 
both peripheral (PZ) and transition (TZ) zones, 187/285 
were PZ lesions, and 88/285 were in the TZ. Institution 1 
had the highest proportion of Gleason score 3+3, at 57% 
(27/47), whereas Institutions 2, 3, and 5 most commonly 
reported Gleason 7.

Patient based baseline mpMRI and CAD 
performance

The areas under the receiver operating characteristic 
curves (AUCs) of mpMRI alone (mpMRI) and CAD-
assisted mpMRI interpretation (CAD) for the detection 
of cancer at the patient-level were 81.9% and and 83.1%, 
respectively (p=0.58).

Patient-level sensitivity and specificity of mpMRI 
and CAD at each PI-RADSv2 category threshold is 
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given in Table 2. Considering all detected lesions (PI-
RADSv2 category ≥1), moderately experienced readers 
achieved comparable sensitivity with mpMRI vs CAD 
at 93.3% vs 92.8% (p=0.864) while highly experienced 
readers achieved mpMRI sensitivity 96.7% vs CAD at 
90.7% (p=0.007). Overall specificity was similar between 
mpMRI and CAD, at 35% for both (p=0.927).

When considering those lesions classified as 
suspicious (PI-RADSv2 category ≥3), the specificity of 
CAD was higher than that for mpMRI (71.5% vs 44.8% 
for all readers, p<0.001), while the sensitivities were 
comparable across reader experience levels. On mpMRI 
alone, highly experienced readers achieved sensitivity of 
94.4% vs 92.7% for moderately experienced readers; for 
CAD, highly experienced readers achieved sensitivity of 
82.5% vs 79.4% for moderately experienced readers.

Lesion based PI-RADSv2 performance

MRI-only index lesion sensitivity stratified by 
reader experience at each PI-RADSv2 category threshold 
is given for WP, PZ, and TZ in Figure 1A. At PI-RADSv2 
≥ 1, mpMRI sensitivity for all readers was 79% (75% 
for moderately experienced readers and 82% for highly 
experienced readers). For PI-RADSv2 ≥ 3, it was similar 
at 78% for all readers, 74% for moderately experienced 
readers, and 79% for highly experienced readers.

In the PZ, mpMRI sensitivity at PI-RADSv2 
≥ 1 for all readers was 84%, and at PI-RADSv2 ≥ 3 
sensitivity was 82%. Stratified by experience, moderately 
experienced readers achieved 80% sensitivity at PI-
RADSv2 ≥ 1 and 78% at PI-RADSv2 ≥ 3 in the PZ, while 
highly experienced readers achieved 86% at PI-RADSv2 
≥ 1 and 83% at PI-RADSv2 ≥ 3.

In the TZ, mpMRI sensitivity at PI-RADSv2 ≥ 1 
was 71% across all readers and 70% across all readers at 
PI-RADSv2 ≥ 3. Stratification by experience revealed that 
while highly experienced readers achieved sensitivities 
of 73% at both PI-RADSv2 thresholds, moderately 
experienced readers had 67% sensitivity at PI-RADSv2 ≥ 
1, decreased to 64% at PI-RADSv2 ≥ 3.

Lesion based CAD-assisted performance

CAD-assisted index lesion sensitivity stratified 
by reader experience is given for WP, PZ, and TZ in 
Figure 1B. CAD performance followed a similar trend 
to mpMRI-only PI-RADSv2 performance for readers 
of all experience, except achieving a higher detection 
sensitivity in the TZ at lower PI-RADSv2 categorization 
for moderately experienced readers.

In WP, CAD-assisted reader sensitivity at PI-RADSv2 
≥ 1 was 75% across all 9 readers, decreasing to 67.9% at PI-
RADSv2 ≥ 3. Stratification by experience revealed the same 
trend, with moderately experienced readers achieving 77.4% 
sensitivity at PI-RADSv2 ≥ 1 but 66.8% at PI-RADSv2 ≥ 
3 and highly experienced readers achieving sensitivities of 
75.2% vs 68.5% for PI-RADSv2 ≥ 1 vs ≥ 3, respectively.

In zone-based analysis, PZ CAD performance was 
similar to the WP. Moderately experienced readers and 
highly experienced readers achieved similar sensitivities 
at PI-RADSv2 ≥ 1, at 77.7% and 77.2%, respectively. At 
PI-RADSv2 ≥ 3, highly experienced readers achieved a 
slightly higher sensitivity than moderately experienced 
readers, at 73.4% vs 70.8%, respectively.

The use of CAD in the TZ demonstrated better 
performance for baseline detection at PI-RADSv2 ≥1, at 
83.5% for moderately experienced readers and 76.2% for 

Table 1: Patient and tumor demographics by providing institution
Institution 1 Institution 2 Institution 3 Institution 4 Institution 5 Total

Cases Controls Cases Controls Cases Controls Cases Cases Cases Controls p

Patient-
based

N 32 24 36 24 50 24 10 16 144 72

Age 65.6 (51-76) 61.3 (49-78) 61.8 (51-71) 59.9 (49-72) 61.9 (47-79) 62.8 (50-77) 58.5 (42-68) 63.1 (54-76) 62.6 (42-79) 61.3 (49-78) 0.21

PSA 8.4 (3.3-23) 10.9 (3.5-24) 9.3 (3.4-26.1) 6.6 (0.3-11.5) 6.7 (1.2-27.3) 6.9 (1.3-24) 11 (3.7-31.9) 7.5 (3.5-17.8) 8.1 (1.2-31.9) 8.2 (0.3-24) 0.5

Mean # 
lesions/ 
patient

1.47 2.06 1.98 3.3 2 1.98

WP PZ TZ WP PZ TZ WP PZ TZ WP PZ TZ WP PZ TZ WP PZ TZ

Lesion-
based 
by 
Gleason 
score

Total 47 35 14 74 54 22 99 65 38 33 19 16 32 24 8 285 197* 98*

3+3 27 19 8 18 9 9 10 6 4 17 8 9 0 0 0 72 42 30

3+4 9 6 3 42 34 8 64 42 23 11 6 5 19 17 2 145 105 41

4+3 5 5 1 5 5 2 14 7 8 3 3 1 10 5 5 37 25 17

4+4 3 3 0 5 4 1 2 2 0 0 0 0 0 0 0 10 9 1

>4+4 3 2 2 4 2 2 9 8 3 2 2 1 3 2 1 21 16 9

Lesion-based data is given for whole prostate (WP) and by zone (peripheral (PZ), transition (TZ)). *10 lesions located in both PZ and TZ.
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highly experienced readers. Performance at PI-RADSv2 
≥ 3 showed a similar trend to WP and PZ, with sensitivity 
65.5% for moderately experienced readers and 64% for 
highly experienced readers.

Lesion based comparison

Averaged across all readers at PI-RADSv2 ≥ 1, CAD 
showed similar index lesion sensitivities to mpMRI-alone 
in WP (p=0.39), PZ (p=0.07) and TZ (p=0.15). Notably 
for moderately experienced readers the CAD showed a 
trend toward improved sensitivity in the TZ compared to 
mpMRI-alone for PI-RADSv2 ≥1 (83.8% CAD vs 66.9% 
MRI, p=0.055). Figure 2 shows an example of how CAD 
can benefit the detection of a TZ lesion. Similar results 
were observed for clinically significant cancer detection 
as shown in Supplementary Figure 1. In the WP, CAD 
lesion detection at PI-RADSv2 ≥ 1 was comparable to 
mpMRI-alone within experience levels (moderate: p=0.63, 
high: p=0.09); in the PZ, CAD detection was comparable 
to mpMRI-alone for moderately experienced readers 
(p=0.646) but not for highly experienced readers (p=0.02).

Investigation of image quality in the data set 
is reported in Supplementary Materials. Across all 
institutions’ images, 24% (35/144) of case patients and 
24% (17/72) of control patients were classified as low 
quality based qualitative criteria of motion and rectal gas. 
CAD sensitivity at PI-RADSv2 ≥ 1 did not vary between 

high quality and low quality images at 54.6% vs 51.5%. 
However, fewer false positives were seen in higher quality 
images compared to lower quality images, resulting in 
CAD-assisted positive predictive value (PPV) difference 
of 9.4% at PI-RADSv2 ≥ 1 (57.6% for high quality vs 
48.2% for low quality) and 7.5% at PI-RADSv2 ≥ 3 
(76.8% for high quality vs 69.7% for low quality).

Reader agreement

Reader agreement for lesion detection is given in 
Table 3 , stratified by reader experience levels. Overall 
agreement was not different with CAD assistance 
(mpMRI-alone index of specific agreement (ISA) 90% 
vs CAD-assisted 92%, p=0.401), and this pattern was 
consistent across comparisons between readers of each 
experience level.

Image interpretation times

For all readers, the average time to interpret mpMRI 
alone and with CAD assistance was 4.6 minutes and 
3.7 minutes, respectively (p<0.001). Both moderately 
experienced readers and highly experienced readers had 
reduced read out times with CAD assistance compared to 
mpMRI alone (moderate: mpMRI 6.3 minutes vs CAD 
assisted 4.4 minutes; high: mpMRI 3.5 minutes vs CAD 
assisted 2.7 minutes, p<0.001).

Table 2: Patient-level sensitivity and specificity of mpMRI and CAD at each PI-RADSv2 category threshold

Overall Moderately experienced Highly experienced

PI-RADSv2
Threshold

MRI CAD p MRI CAD p MRI CAD p

1
Sensitivity 95.6%

(92.9-97.7%)
91.4%

(86.5-94.4%) 0.05 93.3%
(88.7-97.1%)

92.8%
(87.3-97.2%) 0.86 96.7%

(94.5-98.5%)
90.7%

(85.3-95.3%) 0.007

Specificity 35%
(27.6-42.6%)

34.5%
(23.2-46.4%) 0.93 44.9%

(34.2-55.6%)
23.8%

(11.9-36.8%) 0.003 30.1%
(21.2-39.1%)

39.9%
(27.3-53.1%) 0.10

2
Sensitivity 95.6%

(92.9-97.7%)
85.4%

(79.8-91%) <0.001 93.3%
(88.7-97.1%)

84.8%
(77.4-91%) 0.005 96.7%

(94.5-98.5%)
85.8%

(79.7-91.6%) <0.001

Specificity 35.9%
(28.6-43.3%)

52.1%
(42.6-62%) <0.001 44.9%

(34.2-55.6%)
46.3%

(33.6-59.2%) 0.85 31.4%
(23-39.8%)

55%
(45.1-65.6%) <0.001

3
Sensitivity 93.9%

(90.8-96.4%)
81.5%

(75-87.6%) <0.001 92.7%
(88.1-96.6%)

79.4%
(71.4-86.9%) <0.001 94.4%

(91.2-97.1%)
82.5%

(75.9-89%) <0.001

Specificity 44.8%
(37.7-51.9%)

71.5%
(63.2-79.6%) <0.001 48.9%

(38.1-59.6%)
71.1%

(58.9-82.6%) 0.001 42.8%
(35-50.9%)

71.7%
(62.6-80.3%) <0.001

4
Sensitivity 88.1%

(83.6-92.3%)
76.5%

(69.6-82.8%) <0.001 85.4%
(79.5-90.8%)

74.1%
(65.8-82%) 0.001 89.5%

(84.4-93.9%)
77.7%

(70.5-84.4%) <0.001

Specificity 61.9%
(53.5-69.7%)

85.2%
(78.2-91.1%) <0.001 58%

(45.3-70.3%)
81.5%

(70-91.4%) <0.001 63.8%
(55.1-72.5%)

87%
(81-92.7%) <0.001

5
Sensitivity 47.7%

(40.1-55.6%)
43.4%

(35.7-51.3%) 0.03 49.8%
(39.8-60%)

44.9%
(35.2-54.6%) 0.16 46.7%

(39-54.8%)
42.7%

(35-50.8%) 0.07

Specificity 92.7%
(89.9-95.5%)

96.5%
(93.6-98.8%) 0.04 88.4%

(82-94.7%)
96%

(89.4-100%) 0.09 94.9%
(91.4-97.9%)

96.8%
(93.8-99.3%) 0.36

For each PI-RADv2 category threshold, sensitivity and specificity are given across all readers and stratified by experience, with 95% confidence intervals 
given in parentheses. p<0.05 was used for significance.
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DISCUSSION

Using moderately and highly experienced readers 
we observed that standardized PI-RADSv2 categorization 
and our CAD system, optimized for quantitative 

parameters that can be extracted from images obtained 
across different manufacturers and institutions, showed 
similar baseline detection rates. The CAD system 
additionally demonstrated improved specificity in 
conjunction with PI-RADSv2 categorization as well as 

Figure 1: Index lesion sensitivity in WP, PZ, TZ for MRI-only (A) and CAD-assisted (B) reads. Sensitivities are plotted for all readers as 
well as by experience level at each PI-RADSv2 category threshold. PI-RADSv2 category ≥1 threshold used for all lesions detected on MRI 
and CAD, while PI-RADSv2 category ≥3 threshold used to represent all lesions considered cumulatively suspicious on MRI and CAD. WP 
= whole prostate, PZ = peripheral zone, TZ = transition zone.
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slightly improved radiologist efficiency. Our findings 
suggest that standardization and interpretive assistance 
strategies such as PI-RADSv2 and CAD systems help 
readers detect cancer with reasonable accuracy, and CAD 
has potential to improve detection performance in the TZ. 
This is a robust result based on multi institutional data and 
a multi-reader study with non-overlapping affiliations.

PI-RADSv2 was released to promote global 
standardization of mpMRI and to diminish variation in 
acquisition, interpretation, and reporting [5]. As it is a 
system based on mostly expert consensus, there have 
been numerous post hoc studies validating PI-RADSv2. 
A recent meta-analysis published by Zhang et al. found 
a pooled sensitivity of 85% (range 78-91%) across 13 
studies individually utilizing imaging data within their own 
institutions compared to radical prostatectomy specimens 
[19]. This is in agreement with other studies conducted at a 
single center but with multiple readers [6, 20]. In our study, 
we found an index lesion sensitivity for PI-RADSv2 ≥ 3 of 
78%. PI-RADSv2’s intended aim is to broadly standardize 
interpretation; our findings largely support this aim.

A known weakness of mpMRI is the TZ where 
sensitivity is particularly low. The TZ is difficult because of 
its complex, variable architecture where features of cancer 
overlap with prostatic hyperplasia [21, 22]. Interestingly, 
for lesions scored PI-RADSv2 ≥1, the greatest CAD 
benefit was seen in the TZ where it helped moderately 
experienced readers to achieve 83.8% sensitivity with 
CAD versus 66.9% with mpMRI. Thus far, CAD has 
shown promise in PZ tumor detection but poor diagnostic 
value in the TZ [17, 23, 24]. Our CAD system utilized 
separate TZ segmentation and was precisely trained on TZ 
tumor outlines which may account for the unexpectedly 
good results which held up even at a multi-institutional 
level. The numerous additional true positive lesions 
identified with lower PI-RADS scores suggest that perhaps 
CAD can provide a special utility in identifying these 
difficult-to-see TZ tumors, especially for less experienced 
readers. Additionally, the classification of these tumors to 
PI-RADS 1 and 2 supports growing evidence that current 
PI-RADSv2 TZ criteria does not fully account for the 
spectrum of lesions encountered [25, 26].

Figure 2: Benefit of CAD in TZ tumor identification. CAD (top left) picked up a tumor (arrows) in the right apical anterior 
TZ, identified by more readers on MRI (T2W top right, ADC map bottom left, b-1500 bottom right) with CAD assistance. ND = not 
detected, D = detected; the tumor was found by 5 readers with CAD assistance versus 1 reader with mpMRI alone. Radical prostatectomy 
histopathology mapping revealed Gleason 4+5 prostatic adenocarcinoma within this lesion.
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Reader experience influenced the value of CAD 
compared to mpMRI alone at threshold PI-RADSv2 
category ≥ 1 versus category ≥ 3. A threshold set at PI-
RADSv2 category ≥ 1 represents all subjectively high 
probability spots indicated by the CAD alone without 
radiologist discretion in assigning a final suspicion 
score. Here, CAD in isolation demonstrated comparable 
performance to mpMRI alone. However, when CAD and 
the radiologist were considered a diagnostic team, fewer 
true positive lesions were identified as cumulatively 
suspicious i.e. PI-RADSv2 category ≥ 3 while per-patient 
specificity improved, especially for more experienced 
readers. One possible explanation for this decrease in 

sensitivity is variable trust in the CAD among readers. 
Trust has been identified as a major factor in reducing the 
effectiveness of CAD in radiology [27]. Distrust of CAD 
is more common in radiologists who are independently 
confident in lesion identification, and leads to under-
reliance and subsequent misclassification of true positive 
lesions [28, 29]. Alternatively, over-reliance on CAD occurs 
when readers are uncertain and welcome the assistance 
of the CAD [30]. The prior first-reader CAD study we 
conducted also saw greater benefit at a PI-RADSv2 ≥ 1 
threshold [18]. While neither study was designed for this 
purpose, the consistent pattern supports a complex CAD-
user relationship which should inform future studies.

Table 3: Inter-reader agreement of lesion detection

Reader experience level 
pairing MRI CAD p

Overall 92%
(86.9-95.8%)

89.8%
(83.7-94.9%) 0.401

High-High 92.2%
(86.4-96.3%)

88.7%
(81.7-94.7%) 0.251

Moderate-Moderate 91.7%
(84-97.3%)

91.9%
(84.5-97.4%) 0.963

High-Moderate 92%
(86.8-95.6%)

90.5%
(84.4-95.2%) 0.563

Inter-reader agreement, measured with index of specific agreement (ISA), is given across all reads and between readers of 
each experience level, with 95% confidence intervals given in parentheses. A p-value <0.05 was used for significance.

Figure 3: Study design. The large multi-institutional framework is shown starting with image acquisition and ending with image 
interpretation across multiple institutions and readers.
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It should be noted that the cases used in this 
study were very diverse in terms of institution-specific 
acquisition, MRI manufacturer, and patient population. 
Single-institution studies designed for parallel training 
and testing of prostate CAD have reported AUCs ranging 
76-95% on 3-Tesla images with biopsy or prostatectomy 
validation [12, 17, 31]. However, a reasonable concern 
in CAD development is whether a system can be used 
beyond the population it is trained to recognize patterns 
on. In our study, we observed AUC of 83% in validation 
of our CAD that was naïve to the variety of machine 
specifications and institutional protocols representative 
of the testing population. This demonstrates that a 
system trained on quantitative parameters extracted from 
standardized images can provide meaningful interpretive 
assistance in a diverse, real-world clinical application.

One potential explanation for the varying mpMRI-
CAD discrepancies was image quality. It is widely 
acknowledged that prostate mpMRI is technically 
challenging due to motion artifact and rectal gas causing 
susceptibility artifacts on diffusion weighted imaging. 
Previously, Caglic et al. demonstrated a 17.5% reduction 
in positive predictive value where there was greater rectal 
gas distention. A significant negative correlation between 
rectal distension and DWI or T2W image quality has been 
noted [32]. In our population, 24% of cases had poor 
quality images based on evaluation of rectal distension 
and inter-slice prostate motion, and CAD pick-ups were 
more likely to be false positives in these patients resulting 
in a 7-10% positive predictive value reduction compared 
to image quality judged to be satisfactory. These issues 
are not helped by the wide variability in technique that has 
been observed in surveys of practices performing mpMRI. 
Esses et al. conducted a survey that revealed a highly 
variable level of adherence to PI-RADSv2 technical 
standards across imaging facilities, suggesting that image 
quality may often be compromised [33]. This problem 
can only be overcome by better training and education. 
However, to expect a CAD system to perform equally well 
on non-standard image acquisitions is unrealistic.

Our study has several limitations. First, a multi-
institutional data set inherently suffers from incomplete 
standardization across institutions in imaging and in 
histopathology. This includes controls, who had negative 
imaging validated by 12 or 24-core biopsy. However, all 
institutions providing images and data were large centers 
with a genitourinary focus in both their radiology and 
pathology departments, and the natural variation seen 
among institutions aligned with the goal of this study 
to mimic real world clinical variability. Additionally, 
while the first-reader design most clearly elucidates 
contribution of CAD to final detection performance, its 
biggest limitation is that it does not capture additional 
reader pick-ups on the mpMRI. Studies in other organ 
systems have found that strict CAD-based decision 
thresholds, such as a focused probability map, may lead 

to less of an effort in identifying other abnormalities [34]. 
Alternatives include a second-reader study design in 
which CAD output is only available as an adjunct after 
the reader has viewed the images, or a CAD providing 
less specific prompting by drawing attention to general 
suspicious regions of the prostate rather than fully 
delineating a lesion. Another limitation of this study is 
that the institutions in this study were likely to be more 
experienced in mpMRI than an average center. Indeed, 
there were no inexperienced readers in the study. The 
readers were, in general, motivated, academic faculty 
which is unlikely to represent the novice general reader 
for which the benefits of CAD may be more striking. 
However, this is a fundamental limitation of clinical trials 
that are often first reported in academic settings. Finally, 
the training population utilized for our CAD system was 
relatively limited in an effort to prevent overlap with 
the study population. It has previously been shown that 
CAD sensitivity can be increased with a larger fraction 
of difficult cases included in the training database [35]. A 
focus on further diversifying the training population might 
improve the results of CAD validation.

In conclusion, when using PI-RADSv2 and a CAD 
system based on heterogeneous imaging acquisitions, 
readers with different experience levels were able to detect 
index lesions with comparable sensitivity to non-assisted 
interpretations. The addition of CAD improved reader 
specificity and provided a time efficiency advantage. In 
order to be robust, CAD systems must be based on diverse 
data sets and be tested by multiple readers with varying 
experience and diversity of location.

MATERIALS AND METHODS

This Health Insurance Portability and Accountability 
Act-compliant retrospective evaluation of prospectively 
acquired multi-institutional data was approved by our 
local ethics committee. Inclusion of outside institution 
anonymized data was approved in accordance with the 
National Institutes of Health’s Office of Human Subjects 
Resources protocol (Protocol #11617). Local ethics 
approvals to share data were obtained as needed.

Study design and statistical powering

A flow diagram illustrating overall study design 
is given in Figure 3. Our goal was to test PI-RADSv2 
interpretation and CAD-assisted interpretation on a large 
scale, utilizing 5 institutions for image acquisition and 
9 different institutions for image interpretation thus 
ensuring no local bias associated with interpreting images 
from one’s own institution. Our primary hypothesis 
was that CAD-assisted mpMRI would have a higher 
sensitivity for cancer detection than mpMRI alone. To 
limit the number of cases each reader would have to 
interpret, a hybrid design was used to test this hypothesis. 
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Randomization stratified by patient disease status was 
carried out such that one sixth of randomly selected 
patients were evaluated by all readers and the remaining 
patients were assigned at random to each pairwise 
combination of readers. With this design the average 
number of interpretations was 76 (range 75-78) with a 
2:1 ratio of cancer vs control patients for each reader. The 
primary endpoint was the difference in average reader-
specific sensitivity between CAD and mpMRI. Based 
on prior results, sensitivity for index lesions was set at 
76% for mpMRI, and an improvement in sensitivity of 
10% was targeted for CAD [18]. The standard deviation 
of the endpoint was estimated using these two sensitivity 
values. The study has 91% power to detect a 10% 
difference in sensitivity using the Z test at the two-sided 
5% significance level.

Patient population

Five institutions were recruited to submit de-
identified data of consecutive patients who underwent 
prostate mpMRI at 3-Tesla without endorectal coil that 
met specified standard sequences as described below. 
Case patients were consecutive men with lesions detected 
on mpMRI, subsequent positive biopsy and radical 
prostatectomy, and whole-mount pathology with lesion 
mapping available. Control patients were those with 
negative mpMRI and subsequent negative standard 12-
core systematic biopsy or 24-core transperineal template 
biopsy. Patients who received any prior treatment, with 
imaging artifact arising from hip prostheses, or with 
incomplete mpMRI scans were excluded. A total of 144 
case patients and 72 control patients were included. Patient 
characteristics are given in Table 1.

MRI technique

All prostate mpMRI scans were acquired on 3T 
scanners without the use of an endorectal coil. Magnet 
brands and models, as well as scanning parameters, varied, 
but all protocols included axial, sagittal, and coronal T2 
spin echo sequences without fat suppression, diffusion-
weighted imaging (DWI) images acquired with at least 
2 b-values to allow for calculation of apparent diffusion 
coefficient (ADC) maps and a high value b-1500 DWI, 
and unprocessed dynamic contrast enhanced (DCE) 
images compliant with PI-RADSv2 standards.

Supplementary Tables 1-5 contain sequences, coil 
information, and MRI acquisition parameters utilized 
in this study. For subsequent CAD processing, a high 
b-value image of b=1500 mm/sec2 was needed, and so 
in cases where this was not available, the high b value 
image was calculated utilizing the mono-exponential 
model [36].

Image de-identification

To comply with the Office of Human Subjects 
Resources guidelines for utilization of external data, 
all images had to be completely de-identified at their 
respective original institutions prior to collection to 
ensure patient confidentiality. This de-identification 
was performed using standard scripts removing patient 
information as well as clearing DICOM tags other than 
those reflecting scanner parameters. Upon our collection 
of the data, an additional de-identification script was used 
to immediately process the images for a second time to 
guarantee patient privacy.

Radiologist profile

Nine radiologists, from 9 different institutions, 
participated in the study. Six were highly experienced 
(>2000 prostate mpMRI cases) and three were moderately 
experienced (500-1000 cases). All had experience with 
PI-RADSv2 at their home institutions prior to this study, 
but none had interpreted studies from the institutions 
providing the images.

Computer aided diagnosis software

The CAD system was closely based on a Random 
Forest classifier system developed and validated for in-
house images acquired at 3T with endorectal coil [37]. 
The system was re-designed for optimal processing of 
non-endorectal coil images. T2W, ADC, b-1500 DWI, and 
segmentations of the whole prostate and transition zone were 
inputs for both training and study data. DCE data was not 
incorporated into the CAD system. Commercial software 
was used for automated segmentation on axial T2W images 
(iCAD, Nashua, New Hampshire), and each automated 
segmentation was further refined by a prostate mpMRI-
focused research fellow with experience in segmenting 
>200 axial T2W prostate scans. The T2W segmentation 
was also used on ADC and b-1500 DWI images, as minimal 
motion was assumed between the consecutively obtained 
sequences. The classifier was trained based on specific 
tumor segmentations in a training population correlating 
with pathologic data from whole mount pathology, given in 
Supplementary Table 6. The training and study data sets had 
no patient or institutional overlap.

Image interpretation

For each sequential interpretation session, readers 
were provided their respective assigned patients as full 
sets of de-identified DICOM images and instructed 
to view them on their personal workstations utilizing 
RadiAnt DICOM Viewer [38]. Readers were unaware of 
clinical and pathologic outcomes.
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For Session 1, the sequences provided for each 
patient consisted of T2W, DWI (ADC, b-1500 DWI), 
and DCE. Through a Microsoft Access-designed read-
out form, each reader was provided with patient pseudo-
identifiers in a randomized order. Within this programmed 
form, readers recorded up to 4 detected lesions per 
mpMRI, assigned a PI-RADSv2 category from 1-5 to 
each lesion, recorded the location of each lesion in a 
standardized fashion that included the zone, side of the 
prostate, and an annotated screenshot of the lesion [5]. 
Additionally, the form was built with a timer that recorded 
duration of each interpretation session. All data were 
recorded in a linked Microsoft Access database [39].

A 4-week washout period followed the conclusion of 
Session 1. During the washout, a training packet was sent 
to each reader with 3 examples to familiarize them with 
interpreting the CAD results. For Session 2, readers were 
instructed to view the CAD output first and identify up to 
4 suspicious areas which were markedly red or orange on 
a probability map as shown in Supplementary Figure 2. 
Following CAD output interpretation, readers evaluated 
the full corresponding mpMRI next to the annotated CAD 
output. Readers accepted the finding on CAD if mpMRI 
features were consistent with PI-RADSv2 category ≥ 3; 
otherwise the finding on CAD was rejected (PI-RADSv2 
category ≤ 2) [5]. Each patient was assigned a new pseudo-
identifier and the patient list was randomized from Session 
1 to ensure that studies were interpreted in a different 
order. Readers input data on a similar Microsoft Access 
form that recorded time and linked the data to the database 
[39]. For both sessions, PI-RADSv2 ≥ 1 represents all 
recorded lesions, and PI-RADSv2 ≥ 3 represents those 
lesions classified as appearing more suspicious according 
to PI-RADSv2 guidelines [5].

Histopathologic validation

Each providing institution was instructed to supply 
mapped histopathology of the radical prostatectomy 
specimen spanning from apex to base. Lesion-specific 
locations and Gleason scores were determined by 
a genitourinary pathologist from each institution. 
Pathologists were unaware of mpMRI results. MRI-
histopathology correlation was performed by a prostate 
mpMRI-focused research fellow using visible prostate 
landmarks and lesion morphology.

Statistical analysis

For patient-based analysis, the maximum PI-
RADSv2 score assigned by a given reader was used 
to calculate the sensitivity and specificity at each PI-
RADSv2 threshold and to construct a receiver operating 
characteristic (ROC) curve. For lesion-based analysis, 
reader sensitivity for index lesions was calculated. The 

index lesion was defined as the tumor with highest Gleason 
score and largest volume as designated on histopathology. 
Specificity was not estimated because negative regions 
were not specified. Because true positive lesions detected 
by CAD but rejected by readers would be assigned PI-
RADSv2 categories 1 or 2, the comparison in true 
positives between CAD and mpMRI alone was focused 
on PI-RADSv2 ≥ 1 and PI-RADSv2 ≥ 3. Reader statistics 
were averaged across all readers and by experience level. 
Bootstrap resampling stratified by disease status was used 
to calculate the 95% confidence intervals for sensitivity, 
specificity, and area under the ROC curve (AUC). The 
confidence limits were obtained from the 2.5th and 97.5th 
percentiles of the 2,000 bootstrap samples. The Wald test 
using the bootstrap standard error was utilized to test the 
differences in the estimated sensitivity, specificity, and 
AUC between mpMRI and CAD. All tests were two-sided 
and p-value <0.05 was considered statistically significant.

Inter-observer agreement on lesion detection in 
the same location was assessed by the index of specific 
agreement (ISA), defined as the conditional probability 
that an independent reader detects a lesion in the same 
location as a randomly selected reader [40, 41]. Inference 
for ISA was made based on the bootstrap resampling 
procedure and Wald-test as described above.
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