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ABSTRACT
Human breast cancers comprise a complex and highly heterogeneous population 

of tumor cells. Intratumor heterogeneity is an underlying cause of resistance to 
effective therapies and disease recurrence. To explore prognostic factors based on 
intratumor heterogeneity, we analyzed genomic mutations in breast cancer patients 
registered in The Cancer Genome Atlas. We calculated the variant allele frequency 
(VAF) at each mutation site and evaluated the associations of VAFs with the prognosis 
of breast cancer. VAFs of HMCN1 correlated with the prognosis and lymph node 
status. Although the detailed function of HMCN1 remains unknown, it is located in 
extracellular matrix and the mutation in the gene might be associated with cancer cell 
invasion and metastasis. This finding suggests that HMCN1 is a potential metastatic 
factor and can be a candidate gene for targeted breast cancer therapy. 

INTRODUCTION

Breast cancer is the most common type of cancer 
affecting women worldwide. In 2012, approximately 
1.7 million cases of breast cancer were newly diagnosed 
[1]. Changes in dietary habits and a reduced birth rate 
can increase the risk of breast cancer. Breast cancer is 
a clinically heterogeneous disease for which four basic 
therapeutic or molecular subtypes have been classified 
based on the expression status of three receptors: estrogen 
receptor, progesterone receptor, and human epidermal 
growth factor receptor 2 [2, 3]. Immunohistochemistry is 
used to classify these four tumor subtypes and ensure that 
effective treatment is provided to each patient. 

Despite recent therapeutic advances, tumor 
recurrence and drug resistance remain major challenges 
in the field of breast cancer. These challenges are mainly 
attributed to intratumor heterogeneity [4], which is 
characterized by subclonal diversity within a tumor that 
originates from the accumulation of various somatic 
mutations during cell division and proliferation [5–7]. 
Intratumor heterogeneity has already been identified in 
several types of cancer, including breast, prostate, kidney, 
brain, liver, and lung cancers [8]. Drug-resistant subclones 

may develop via clonal evolution and reside at low 
frequencies within a tumor; after drug therapy, however, 
these subclones become the main population, leading to 
recurrence [9–11]. 

Intratumor heterogeneity can be most directly 
evaluated from DNA sequences using next-generation 
sequencing (NGS). One of the commonly used methods 
to analyze heterogeneity is the sequencing of samples 
from multiple regions of the same tumor [10, 12]. Ultra-
deep sequencing can also be used to detect mutations with 
extremely low allele frequencies. Variant allele frequency 
(VAF), calculated as the proportion of reads with mutations 
at the variant site, is used as an index of heterogeneity [13, 
14]. VAFs in a tumor can be used to determine the cellular 
prevalence of a mutation within a sample and estimate 
subpopulation frequencies and the tumor evolutionary 
process [15–17]. For example, deep sequencing was used 
to evaluate mutational processes of 21 breast cancers, 
leading to the finding that every tumor harbored a distinct 
subclonal lineage [10]. The use of NGS and analytical 
methods to define clonal heterogeneity has also provided 
insights into the genetic processes underlying breast 
cancer metastasis [18]. Recent studies also showed that 
clonal distribution based on VAF correlated with prognosis 
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[19, 20]. Additionally, heterogeneity can be evaluated 
using large datasets generated by The Cancer Genome 
Atlas (TCGA) or the International Cancer Genome 
Consortium [21, 22]. Despite these advances, it remains 
highly challenging to identify tumor genetic factors 
associated with tumor growth or metastasis, as tumors 
exhibit considerable heterogeneity. 

Several recent studies based on TCGA data have 
focused on the identification of driver genes and identified 
pathways containing potential drug targets [23]. These 
studies have accelerated the development of pathway-
specific inhibitory drugs. Although mutations in breast 
cancer driver genes such as TP53, PIK3CA, and GATA3 
have been extensively investigated, somatic alterations 
in other genes are also believed to be associated with 
breast cancer [24]. To gain better insights into the extent 
of intratumor heterogeneity, we analyzed breast cancer 
genome sequencing data from TCGA. In this study, we 
focused on genes associated with breast cancer prognosis.

RESULTS

Identification of genes with high frequencies of 
mutations

We sought genes with one of four types of mutation 
(missense mutations, nonsense mutations, frameshift 
insertions, and frameshift deletions) in ≥ 50 samples 
derived from the 1,044 breast cancer datasets in TCGA. 
We identified 17 such genes (Table 1) and calculated the 
mean VAF for each in the sample containing mutations 
(Figure 1). All VAFs were adjusted for tumor purity taken 
from the previous study [25]. The mean VAFs of already 

known driver genes in breast cancer, such as TP53, 
PIK3CA, and CDH1 were found to be relatively high. 

To examine the association of overall survival 
(OS) with VAFs of these 17 genes, we applied a Cox 
proportional hazards regression analysis with the 
covariates of age, tumor grade, and VAFs. In this analysis, 
the samples were divided into two groups using a VAF of 
0.30 (i.e., 30%) as a cutoff. We used this cutoff because a 
previous study, which focused on samples with high tumor 
purity (≥ 70%), considered that a VAF of ≥ 0.25 was more 
likely to be clonal, whereas lower values were more likely 
to be subclonal [20]. Assuming that average purity is 85% 
(range 70–100%) then the cutoff should be 0.3 (0.25/0.85 
= 0.294). We conducted this analysis without adjusting 
for other covariates just for a screening of genes that are 
possibly associated with breast cancer prognosis. We 
corrected P values for multiple testing using Benjamini 
and Hochberg false discovery rate (FDR) [26]. VAFs of 
HMCN1 was found to be possibly associated with breast 
cancer prognosis (FDR < 0.1) (Table 1), and we focused 
on HMCN1, for which no association with breast cancer 
has previously been reported.

A total of 78 somatic mutations in HMCN1 were 
detected in 6.1% (64/1,044) of samples (Table 2 and 
Figure 2). Among samples with detectable HMCN1 
mutations, 9.4% (6/64) contained two distinct mutations 
and 3.1% (2/64) contained more than two mutations. Of 
the 78 HMCN1 mutations, 82.1% (64/78) were missense, 
whereas 10.3% (8/78) were nonsense and 7.7% (6/78) 
were indels. Furthermore, 69.2% (54/78) of the mutations 
were clustered in the Ig-like C2-type domains of HMCN1. 

To evaluate the existence of any association 
between the mutation type and VAFs, we applied a one-

Figure 1: Frequently mutated genes and mean variant allele frequencies (VAFs). The scatter plot depicts 17 genes harboring 
mutations in > 50 samples. The x-axis indicates the mean VAF, and the y-axis indicates the number of samples with mutations. The plot at 
right is an enlargement of the square area enclosed by dotted lines in the left plot.
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way ANOVA to the data and found that the mean VAF 
values did not significantly differ among the four types 
of mutations (P = 0.430) (Supplementary Figure 1). We 
further evaluated the associations of the four molecular 
breast cancer subtypes with VAFs of HMCN1. However, 
an ANOVA indicated that the mean VAF values did not 
significantly differ among the four subtypes (P = 0.060) 
(Supplementary Figure 2). 

Expression of HMCN1

We compared the relative HMCN1 mRNA 
expression levels among samples with higher (VAF of 
≥ 0.30, n = 19) and lower VAFs (VAF of < 0.30, n = 45). 

As a result, we found that HMCN1 expression levels did 
not significantly differ between the two groups (P = 0.343) 
(Supplementary Figure 3A). Additionally, we compared 
TP53 and PIK3CA expression levels between the VAF 
groups and found no significant differences in either 
(P = 0.515 and 0.300, respectively) (Supplementary 
Figure 3B and 3C). We also found no significant 
differences in the relative HMCN1 mRNA expression 
levels between HMCN1 mutant and wild-type samples 
(P = 0.984) (Supplementary Figure 3D).

To identify genes for which the expression levels 
were associated with the HMCN1 VAF, we analyzed 
mRNA expression levels of all annotated genes. Among 
the annotated genes, only two significantly exhibited 

Table 1: Frequently mutated genes and mean variant allele frequencies and hazard ratios
Gene Sample count Mean value of VAF Hazard Ratio (95% CI) P-value FDRa

PIK3CA 304 0.471 1.78 (0.729–4.348) 0.206 0.696
TP53 293 0.626 1.276 (0.455–3.581) 0.643 0.994
TTN 193 0.311 1.85 (0.843–4.06) 0.125 0.531

MUC16 113 0.305 1.768 (0.619–5.048) 0.287 0.696
CDH1 104 0.468 1.019 (0.263–3.951) 0.979 0.999
GATA3 102 0.398 0.859 (0.245–3.01) 0.813 0.999
KMT2C 86 0.370 1.327 (0.478–3.687) 0.587 0.994
MAP3K1 77 0.436 0.114 (0.013–0.985) 0.048 0.287
HMCN1 64 0.251 11.441 (2.065–63.406) 0.005 0.090*

USH2A 63 0.283 1.185 (0.245–5.74) 0.833 0.999
RYR2 62 0.291 0.059 (0.003–1.008) 0.051 0.287

SYNE1 56 0.272 1.635 (0.11–24.181) 0.721 0.999
FLG 53 0.264 0.342 (0.04–2.923) 0.327 0.696

SPTA1 52 0.264 1.965 (0.531–7.274) 0.312 0.696
DMD 51 0.261 1.87 (0.396–8.831) 0.429 0.811
NEB 50 0.278 1.124 (0.135–9.342) 0.914 0.999

ZFHX4 50 0.264 - - -

Abbreviations: 95% CI, 95% confidence interval; VAF, variant allele frequency; FDR, false discovery rate. 
aAstarisk indicates FDR < 0.1.
bZFHX4 VAF could not be analyzed because sample size is small.

Figure 2: A schematic of the domains of human HMCN1 (hemicentin-1). The types and positions of 78 somatic mutations are 
indicated above the diagram. 
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different expression in terms of the HMCN1 VAF. A high 
CA9 and CASP14 expression level (P = 0.043 and 0.024, 
respectively) and low MTRNR2L1 and TCN1 expression 
level (P = 0.024 and 0.043, respectively) were found to be 
significantly associated with a higher VAF (Figure 3). CA9 
encodes carbonic anhydrase IX, an endogenous marker 
of hypoxic cells in breast cancers. CASP14 encodes 
caspase14, which is one of the apoptosis-related cysteine 
peptidase. MTRNR2L1 encodes human MT-RNR2-like 1, 

for which detailed functions remain unknown and TCN1 
encodes a member of the vitamin B12-binding protein 
family, named “transcobalamin 1”.

Relationship between intratumor heterogeneity 
and HMCN1 VAFs

To investigate intratumor heterogeneity in 
individuals with HMCN1 mutations, we measured the 

Table 2: Distribution of HMCN1 mutations

HMCN1 Domains Missense 
mutation 

Nonsense  
mutation Deletion Insertion Total

VWFA domain 2 0 0 0 2
Ig-like C2-type domains 45 5 2 2 54
TSP type-1 domains 8 1 0 0 9
Nidogen G2 beta-barrel domain 1 1 0 0 2
EGF-like domains 3 0 0 0 3
Other 5 1 1 1 8
Total 64 8 3 3 78

Abbreviations: EGF, epidermal growth factor; Ig, immunoglobulin; TSP, thrombospondins; VWFA, von Willebrand factor 
type A.

Figure 3: CA9 and MTRNR2L1 mRNA expression according to HMCN1 variant allele frequencies (VAFs). Samples were 
divided into two groups using a VAF cutoff of 0.30 (< 0.30, n = 45 and ≥ 0.30, n = 19). The asterisk indicates statistical significance.
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number of subclones across each sample. We performed 
this analysis using the SciClone [16] with VAFs from 
somatic SNVs and copy number estimates. We compared 
between the higher and the lower HMCN1 VAF groups in 
terms of the number of subclones by Fisher’s exact test. 
The distributions of the number of subclones were not 
significantly different between the two groups (P = 0.347) 
(Supplementary Figure 4A). 

There is another index for intratumor heterogeneity, 
mutant-allele tumor heterogeneity (MATH), which can 
be calculated from VAF distribution in a sample [27]. 
Previous studies have shown that higher MATH score was 
correlated with poor prognosis in head and neck squamous 
cell carcinoma and colon cancer [27, 28]. We compared 
between the higher and the lower HMCN1 VAF groups 
in terms of MATH scores by Wilcoxon signed rank test. 
In the 19 samples with higher HMCN1 VAF, the mean 
MATH was 35.014 (SD = 11.300). Meanwhile, in the 45 
samples with lower HMCN1 VAF, the mean MATH was 
33.919 (SD = 10.557). No significant differences between 
the two groups were detected (P = 0.771) (Supplementary 
Figure 4B). These findings indicate that the prevalence 
of the mutations in HMCN1 might not be involved in the 
status of intratumor heterogeneity.

Associations of HMCN1 with common driver genes

As TP53 and PIK3CA mutations are among the most 
common genetic aberrations in breast cancers [23], we 
compared the VAFs of these two driver genes with those 
of HMCN1. Among the 64 samples harboring mutations 
in HMCN1, 22 and 23 also harbored mutations in TP53 
and PIK3CA, respectively, and five harbored mutations in 
both genes.

In the 22 samples with both TP53 and HMCN1 
mutations, the mean TP53 VAF was 0.697 (SD = 0.249) 
and the mean HMCN1 VAF was 0.288 (SD = 0.201). 
Meanwhile, in the 23 samples with both PIK3CA and 
HMCN1 mutations, the mean PIK3CA VAF was 0.442 
(SD = 0.269) and the mean HMCN1 VAF was 0.230  
(SD = 0.148). A paired t-test showed that VAFs of the two 
driver genes were significantly higher than that of HMCN1 
(TP53; P < 0.01, PIK3CA; P < 0.01) (Supplementary 
Figure 5), indicating that mutations in HMCN1 occurred 
later in the tumor evolutionary process than the mutations 
in TP53 and PIK3CA. This finding suggests that the 
mutations in HMCN1 might be involved in breast cancer 
progression. 

HMCN1 mutations and clinical outcomes

Next, we evaluated the association between HMCN1 
mutation status and clinical variables by χ2 test or Fisher’s 
exact test. We found tumor size (P = 0.028) and molecular 
subtype (P = 0.021) were related with the HMCN1 
mutation (Table 3). To assess the relationship of the 
HMCN1 VAF with prognosis, the 64 samples harboring 

HMCN1 mutations were divided into two groups according 
to VAFs and subjected to an OS analysis. These groups 
were also compared with individuals without HMCN1 
mutations (wild-type; WT). The resulting Kaplan–Meier 
plot shows that a higher HMCN1 VAF significantly 
correlated with poor prognosis (log-rank test: vs. WT;  
P = 0.022 and vs. VAF of < 0.30; P = 0.015) (Figure 4). 
Concordantly, in a multivariate Cox proportional hazards 
regression analysis adjusted for the covariates of lymph 
node status, tumor grade, tumor size, and age, the VAF 
(P = 0.036) and lymph node status (P = 0.012) were 
significantly associated with poor prognosis (Table 4). 

To exclude the possibility that this significant 
association is not attributable to bias in the impact of 
mutations in the two groups, we evaluated the impact 
of single nucleotide variants in HMCN1 on protein 
structure and function using PolyPhen-2 scores [29]. 
The Pearson correlation coefficient between VAFs and 
PolyPhen-2 scores of HMCN1 was −0.204 (P = 0.151), 
indicating no significant correlation. To analyze the 
relationship between prognosis and PolyPhen-2 scores, 
the 64 samples were divided into two groups using a 
PolyPhen-2 score of 0.85 as a cutoff (higher, n = 27 and 
lower, n = 24); this score ranges from 0 to 1 and yields 
predictions of “probably damaging” (> 0.85), “possibly 
damaging” (0.85–0.15), or “benign” (< 0.15). We found 
that the Polyphen-2 score of nonsynonymous HMCN1 
mutations did not significantly associate with breast 
cancer prognosis (PolyPhen-2 scores of < 0.85 vs. WT; 
P = 0.801 and PolyPhen-2 scores of ≥ 0.85 vs WT; P = 
0.671) (Supplementary Figure 6). 

These results suggest that the HMCN1 VAF is an 
independent prognostic factor for OS, such that a higher 
VAF may be associated with poor survival in patients with 
breast cancer. 

Correlations with potential prognostic factors

We next evaluated the association of the HMCN1 
VAF with individual clinical characteristics (lymph node 
status, tumor grade, tumor size, and age) in the 64 tumor 
samples, which were divided into three groups by lymph 
node status: N0, N1, and N2–N3. Samples were also 
divided into three groups by tumor grade: grades 1, 2, and 
3–4. Regarding lymph node status, tumor grade, and tumor 
size, we examined whether a higher VAF was associated 
with significantly higher stages of clinical features using 
the Cochran–Armitage trend test. We found a significant 
association of a higher VAF with a much higher lymph 
node status (P = 0.029) (Figure 5A). By contrast, the 
tumor grade (P = 0.151) and tumor size (P = 0.283) were 
not significantly associated with the HMCN1 VAF (Figure 
5B and 5C). The mean ages of patients (n = 64) in the 
higher and lower VAF groups were 58.05 (SD = 17.95) 
years and 61.41 (SD = 11.85) years, respectively. A t-test 
revealed no significant difference in the mean age between 
the groups (P = 0.461) (Figure 5D).
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We also used other 15 types of cancer dataset 
from TCGA and examined the association between 
HMCN1 VAFs and OS. In the 15 types of cancer, only 
cervical squamous cell carcinoma and endocervical 
adenocarcinoma (CESC) samples showed significantly 
poorer OS in the samples with higher HMCN1 VAFs  
(n = 7, VAF ≥ 0.30) than those with lower VAFs (n = 15, 
VAF < 0.30) (log-rank test: P = 0.048) (Supplementary 
Figure 7). Although, we applied a Cox proportional 
hazards regression analysis with the covariates of age, 
tumor grade, and HMCN1 VAFs, the VAFs were not 
associated with poor prognosis (HR = 5.436, 95% CI: 
0.543–54.432, P = 0.150).

DISCUSSION

Breast cancers are known to exhibit a large degree 
of genetic heterogeneity. In this study, we analyzed 
intratumor heterogeneity using VAFs calculated from a 
set of breast cancer cases registered in TCGA. Through a 
VAF-based analysis of mutations, we showed that VAFs 
of HMCN1 was possibly associated with breast cancer 
prognosis. Although the detailed function of HMCN1 in 
humans remains unknown, mutations in HMCN1 might be 
associated with cancer cell invasion and metastasis. Using 
the data of the DRIVE dataset, the CIMBA dataset, and 
the Foundation One dataset from breast cancer patients, 

Table 3: Clinical data of 1,044 breast cancer patients
Overall WT MT

n = 1,044 n = 980 n = 64
Variables No. (%) No. (%) No. (%) P-valuea

Lymh node status 0.175
Negative 485 (46.5) 450 (45.9) 35 (54.7)
Positive 540 (51.7) 513 (52.3) 27 (42.2)
Unknown 19 (1.8) 17 (1.7) 2 (3.1)

Tumor grade 0.080 
1 172 (16.5) 163 (16.6) 9 (14.1)
2 582 (55.7) 536 (54.7) 46 (71.9)
3 239 (22.9) 231 (23.6) 8 (12.5)
4 20 (1.9) 19 (1.9) 1 (1.6)
Unknown 31 (3.0) 31 (3.2) 0

Tumor size (cm) 0.028*

< 2 267 (25.6) 255 (26.0) 12 (18.8)
2–5 603 (57.8) 556 (56.7) 47 (73.4)
≧ 5 171 (16.4) 166 (16.9) 5 (7.8)
Unknown 3 (0.3) 3 (0.3) 0

Molecular subtype 0.021*

Luminal A 401 (38.4) 385 (39.3) 16 (25.0)
Luminal B 171 (16.4) 163 (16.6) 8 (12.5)
HER2-enriched 65 (6.2) 58 (5.9) 7 (10.9)
Basal-like 132 (12.6) 123 (12.6) 9 (14.1)
Normal 23 (2.2) 19 (1.9) 4 (6.3)
Unknown 252 (24.1) 232 (23.7) 20 (31.3)

Age (year) 0.450 
Median (range) 59 (27–90) 59 (27–90) 59 (34–90)
< 50 276 (26.4) 261 (26.6) 15 (23.4)
≧ 50 743 (71.2) 649 (66.2) 49 (76.6)
Unknown 25 (2.4) 25 (2.6) 0 (0)

Abbreviations: 95% CI, 95% confidence interval; MT; HMCN1 mutant, VAF; variant allele frequency; WT, wild-type.
aAstarisk indicates statistical significance.
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we could not validate our result because the HMCN1 
VAF and survival time information could not be obtained. 
In cervical cancer from TCGA, however, survival time 
between the two groups of HMCN1 VAF values were also 
significantly different. Cervical cancer, like breast cancer, 
is known to associated with hormone estrogen. Therefore, 
this result may support the prognostic impact of HMCN1 
on breast cancer. It will be possible to further evaluate the 
validity of our results by accumulating more cohorts.

HMCN1 encodes a large extracellular protein 
belonging to the immunoglobulin superfamily and 

comprises several distinct domains, including the von 
Willebrand factor and Ig-like C2-type domains [30]. 
HMCN1 mutations are believed to correlate with age-
related macular degeneration [31]. According to another 
recent report, HMCN1 acts as a suppressor of gallbladder 
cancer metastasis [32] and is commonly mutated in certain 
samples of head and neck squamous cell carcinoma [33]. 
There are at least three possible functional implications 
of the mutations in HMCN1 in breast cancer metastasis. 
First, HMCN1 is also known as FBLN6 (fibulin 6) and one 
of the extra cellular matrix (ECM) proteins [34, 35]. The 

Table 4: Multivariate Cox proportional hazards regression analysis of overall survival according 
to the clinical characteristics of 64 breast cancer patients
Variables Hazard Ratio (95% CI) P-valuea

Lymph node status
  Positive vs Negative 97.931 (2.709–3539.805) 0.012*

Tumor grade
  3–4 vs 1–2 9.468 (0.042–2147.487) 0.417
Tumor size, cm
  2–5 vs ≤ 2 1.281 (0.159–10.302) 0.816
  > 5 vs ≤ 2 29.032 (0.284–2966.692) 0.154
Age
  ≥ 50 vs < 50 0.114 (0.011–1.169) 0.068
VAF
  ≥ 0.30 vs < 0.30 17.950 (1.216–264.976) 0.036*

Abbreviations: 95% CI, 95% confidence interval; VAF, variant allele frequency.
aAstarisk indicates statistical significance. 

Figure 4: Kaplan–Meier analysis of overall survival according to HMCN1 variant allele frequencies (VAFs). Samples 
were divided into three groups using a VAF cutoff of 0.30 (< 0.30, red, n = 45 and ≥ 0.30, blue, n = 19) or WT (black, n = 968). The log-rank 
test was used to evaluate the statistical significance of the difference between the two survival curves (VAF of ≥ 0.30 vs. VAF of < 0.30, 
VAF of < 0.30 vs. WT and VAF of ≥ 0.30 vs WT).
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fibulins are shown to be involved in basement membrane 
and formation of stable cell-to-cell interactions, leading 
to organization and stabilization to ECM structure [36]. 
When HMCN1 does not function properly in cancer 
cell, sufficient cell adhesion might be inhibited and as a 
result of promoting cancer invasion due to instability of 
HMCN1 caused by the variants in the gene. For example, 
previous study reported that epigenetically silenced 
fibulin 5 promotes invasion and metastasis in lung cancer 
[37]. Second, HMCN1, which contains estrogen receptor 
binding site, seems to be associated with postpartum 
depression symptoms [38], and one of its functions is 
suggested to be cell adhesion [39]. Therefore, HMCN1 
mutations may be associated to cancer proliferation and 
metastasis because of the disruption of these functions. 
Finally, other studies have shown that HMCN1 might 
interact with DDX1 [40], a DEAD box protein with RNA 
helicase activity [41, 42]. Notably, the expression of 
DDX1 was reported to decrease under hypoxic conditions 
[43], and intratumor hypoxia is associated with cancer 
metastasis and, consequently, patient mortality [44, 45]. 
Indeed, an earlier report found that DDX1 correlated 
with ovarian tumor metastasis and progression [46]. In 

the current study, we found that CA9, the expression of 
which is also associated with tumor hypoxia [43, 47], was 
expressed at significantly higher levels in patients with 
higher HMCN1 VAFs than in those with lower VAFs. 
Therefore, the HMCN1 VAF may indicate the metastatic 
potential of a breast cancer.

Although metastasis is the main cause of death 
among breast cancer patients, factors involved in 
metastasis remain poorly characterized. It is more difficult 
to identify genetic factors associated with metastasis, 
a complex process, than to identify driver genes [48]. 
Differences in genetic heterogeneity between metastatic 
and primary tumors may affect treatment efficacy and 
thus represent one of the biggest obstacles toward cure 
for breast cancer. Using VAFs to explicitly address 
heterogeneity, we successfully identified HMCN1 as a 
possible metastatic factor. Although further experimental 
validation is needed to determine the involvement of 
HMCN1 in metastasis, this approach could be used to 
screen genes that have not previously been investigated. 

In this study, we focused on nonsynonymous 
mutations and indels. However, intratumor heterogeneity 
may also be caused by copy number variants or mutations 

Figure 5: Associations of the HMCN1 variant allele frequency (VAF) with clinical characteristics of (A) lymph node status, (B) tumor 
grade, (C) tumor size, and (D) patient age. Samples were divided into two groups using a VAF cutoff of 0.30 (< 0.30, red, n = 45 and ≥ 0.30, 
blue, n = 19). Blue and red squares in mosaic plots indicate sample counts from the higher and lower VAF groups, respectively. In the TCGA 
dataset, the lymph node status for two cases were not provided. The asterisk indicates statistical significance.
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in noncoding regions, such as those in cis-regulatory 
elements and splice sites [49–52]. Moreover, epigenetic 
alterations can also promote cancer progression [53]. As 
genome-wide epigenetic datasets from normal cells grow 
rapidly [54], epigenome data analyses of cancer cells will 
allow evaluations of the impacts of epigenetic factors on 
intratumor heterogeneity. 

In conclusion, to our knowledge, this is the first 
study to identify HMCN1 as a potential metastatic factor 
in breast cancer using a comparative analysis of genomic 
and transcriptomic data registered in TCGA. In addition 
to the standard classification of breast tumors based 
on the four molecular types, the use of VAFs, which 
reflect tumor evolution, might provide further genetic 
profile information that can be used to characterize 
tumor samples. Our approach allows us to identify new 
diagnostic markers or candidate genes for targeted therapy 
and is therefore expected to facilitate precision medicine.

MATERIALS AND METHODS

Datasets

A total of 1,080 RNA-seq and variant datasets from 
breast cancers were downloaded from TCGA (https://
portal.gdc.cancer.gov/). For variant data, we used VCF 
files generated by comparing matched tumor–normal pairs 
using the Mutect2 software package. We also downloaded 
the associated clinical patient data. Similarly, dataset 
from other 15 types of cancer were obtained from TCGA: 
Bladder urothelial carcinoma (BLCA; n = 416), cervical 
squamous cell carcinoma and endocervical adenocarcinoma 
(CESC; n = 307), colon adenocarcinoma (COAD; n = 
605), glioblastoma multiforme (GBM; n =  938), head and 
neck squamous cell carcinoma (HNSC; n = 512), kidney 
renal clear cell carcinoma (KIRC; n = 697), lower grade 
glioma (LGG; n = 938), liver hepatocellular carcinoma 
(LIHC; n = 378), lung adenocarcinoma (LUAD; n = 
587), lung squamous cell carcinoma (LUSC; n = 503), 
ovarian serous cystadenocarcinoma (OV; n = 443), 
prostate adenocarcinoma (PRAD; n = 503), skin cutaneous 
melanoma (SKCM; n = 472), thyroid carcinoma (THCA; n 
= 504), and uterine corpus endometrial carcinoma (UCEC; 
n = 604).

Mutation analysis

In this study, we only considered mutations with a 
coverage depth of ≥ 20. We extracted gene mutations [i.e., 
nonsynonymous substitutions (missense and nonsense 
mutations) and indels (frameshift insertions and frameshift 
deletions)] observed in ≥ 50 samples. We used this cutoff 
because the lower limit of the average mutation rate for 
significantly mutated genes was approximately 2–4% [23]. 
VAFs were calculated as the proportion of variant allele 
reads to total reads at the mutation site. When a sample 

harbored multiple mutations in the same gene, the larger 
VAF was used as the VAF for the gene. The VAF was 
adjusted for tumor purity estimate. This estimate, which 
was derived from immunohistochemistry analysis, was 
downloaded from the previous study [25].

The number of subclones in a tumor cell were inferred 
by both VCF files and DNA copy number variation data 
using the R package SciClone with default settings [16]. 

Statistical analysis

Statistical analysis was conducted using the R 
software, version 3.3.1 (R Project for Statistical Computing, 
Vienna, Austria), and JMP Pro, version 13.0 (SAS Institute 
Inc., Cary, NC, USA). A χ2 test or Fisher’s exact test (when 
≥ 1 cells had an expected frequency of ≤ 5 in any clinical 
group) was used to evaluate the relationships between the 
mutation status and clinical variables. We also used the test 
for comparison the number of subclones. OS was estimated 
using the Kaplan–Meier method in the R survival package 
(version 2.41–3). For the multivariate analysis, adjusted 
hazard ratios (HRs) with 95% confidence intervals (95% 
CIs) were calculated using a Cox proportional hazards 
regression model. We used edgeR (version 3.16.5), a 
Bioconductor package (http://www.bioconductor.org/
packages/release/bioc/html/edgeR.html), to detect genes 
differentially expressed between two groups. For each 
gene, the R exactRankTests package (version 0.8–28) was 
used to evaluate the difference in both expression levels and 
MATH between groups of samples. For categorical data 
such as tumor grade, tumor size category, and lymph node 
status, we used a one-sided Cochran–Armitage trend test 
to evaluate the existence of a linear relationship in terms of 
VAFs. We used Welch’s t-test to compare continuous data 
between the two groups. An analysis of variance (ANOVA) 
model was used to compare the mean values of more 
than two groups. P-values were considered statistically 
significant at < 0.05 (*P < 0.05, **P < 0.01).
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