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Increased plasma levels of galectin-1 in pancreatic cancer: 
potential use as biomarker

Neus Martinez-Bosch1,*, Luis E. Barranco1,2,*, Carlos A. Orozco1,*, Mireia Moreno1, 
Laura Visa3, Mar Iglesias4, Lucy Oldfield5, John P. Neoptolemos6, William Greenhalf5, 
Julie Earl7, Alfredo Carrato7, Eithne Costello5 and Pilar Navarro1,8

1Cancer Research Program, IMIM, Hospital del Mar Medical Research Institute, Unidad Asociade CSIC, Barcelona, Spain 
2Department of Gastroenterology, Universidad Autonoma de Barcelona, Hospital del Mar, Barcelona, Spain
3Department of Medical Oncology, Hospital del Mar, Barcelona, Spain
4Department of Pathology, Universidad Autonoma de Barcelona, Hospital del Mar, CIBERONC, Barcelona, Spain
5Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, 
UK

6Department of General Surgery, University of Heidelberg, Heidelberg, Germany
7Department of Medical Oncology, Ramon y Cajal University Hospital, CIBERONC, IRYCIS, Alcala University, Madrid, Spain
8Institute of Biomedical Research of Barcelona (IIBB-CSIC), Barcelona, Spain
*These authors contributed equally to this work

Correspondence to: Pilar Navarro, email: pnavarro@imim.es

Keywords: galectin-1; pancreatic cancer; chronic pancreatitis; biomarker

Received: August 01, 2018     Accepted: August 16, 2018     Published: August 31, 2018
Copyright: Martinez-Bosch et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 
License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author 
and source are credited.

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) is the most frequent type of pancreatic 
cancer and one of the deadliest diseases overall. New biomarkers are urgently needed 
to allow early diagnosis, one of the only factors that currently improves prognosis. 
Here we analyzed whether the detection of circulating galectin-1 (Gal-1), a soluble 
carbohydrate-binding protein overexpressed in PDA tissue samples, can be used as 
a biomarker for PDA. Gal-1 levels were determined by ELISA in plasma from healthy 
controls and patients diagnosed with PDA, using three independent cohorts. Patients 
with chronic pancreatitis (CP) were also included in the study to analyze the potential 
of Gal-1 to discriminate between cancer and inflammatory process. Plasma Gal-1 levels 
were significantly increased in patients with PDA as compared to controls in all three 
cohorts. Gal-1 sensitivity and specificity values were similar to that of the CA19-9 
biomarker (the only FDA-approved blood test biomarker for PDA), and the combination 
of Gal-1 and CA19-9 significantly improved their individual discriminatory powers. 
Moreover, high levels of Gal-1 were associated with lower survival in patients with non-
resected tumors. Collectively, our data indicate a strong potential of using circulating 
Gal-1 levels as a biomarker for detection and prognostics of patients with PDA.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDA) is the most 
frequent type of pancreatic cancer and presents the worst 
prognosis of all tumors. It is currently the fourth leading 
cause of cancer-related deaths in Western countries and 
is predicted to rise to the second by 2030 [1]. The most 

accepted model for PDA progression is that tumors arise 
through the progressive accumulation of genetic alterations 
in normal cells, starting with non-invasive precursor 
lesions called pancreatic intraepithelial neoplasia (PanINs) 
and ending with infiltrating ductal adenocarcinoma 
[2]. K-Ras activation and telomere shortening are early 
molecular events in this pathway, while inactivation of 
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INK4A/p16 and inactivating mutations of TP53 and 
SMAD4 occurs in intermediate (PanIN-2) or late stages of 
progression (PanIN-3), respectively [2]. Although PanINs 
are the most widely studied and common PDA precursors, 
extensive data indicate that intraductal papillary mucinous 
neoplasms (IPMNs) and mucinous cystic neoplasms 
(MCNs) are also important pancreatic preneoplastic 
lesions [3]. Risk factors associated with PDA etiology 
include smoking, obesity and chronic pancreatitis (CP) 
[4, 5]. CP is a severe disorder with an annual incidence 
ranging from 5–12/100,000 persons, and it leads to a 
significant reduction of quality of life [6]. Pancreatic 
inflammation accelerates PDA initiation and progression 
in mouse models of this disease [7]. As both PDA and 
CP initially display similar vague symptoms, such as 
abdominal pain, digestive symptoms, weight loss and 
inflammation, differential diagnosis between both diseases 
is very difficult at early stages—yet early diagnosis is 
crucial for treatment of PDA. 

There are currently no effective or specific 
diagnostic methods to detect PDA at early stages. The 
most commonly used tests for diagnosis of pancreatic 
disorders are conventional imaging techniques [e.g., 
computed tomography scans], endoscopic ultrasound-
guided fine-needle aspiration cytology and blood 
biomarkers. Among the different blood biomarkers for 
PDA, only CA19-9 (a sialylated Lewisa antigen present 
in glycosphingolipids and glycoproteins) is approved by 
the US Food and Drug Administration (FDA) for clinical 
use. However, CA19-9 has important limitations, such 
as giving false negatives in patients with Lewis blood 
type negative phenotypes (Lea–b–) and false positives 
in patients with obstructive jaundice [8]. Additionally, 
CA19-9 is elevated in other tumors, some benign diseases 
and non-malignant inflammatory pathologies (including 
pancreatitis) [9]. CA19-9 is therefore not very useful for 
PDA diagnosis; in fact, its use by the clinicians is mostly 
restricted to checking for response to treatment or cancer 
recurrence [10]. Thus, identifying other biomarkers for 
early PDA detection is urgently needed.

Galectins are a family of 15 proteins that bind 
β-galactose–containing glycoconjugates through a highly 
conserved carbohydrate recognition domain (CRD). They 
can bind O- or N-linked glycans containing the basic core 
disaccharide N-acetyllactosamine (LacNAc), but each 
member displays glycan-binding specificities, leading to 
different biological functions [11]. Galectin-1 (Gal-1), the 
first identified member of the family, is a 14 kDa protein 
that can be located in the cell cytoplasm, nucleus, cell 
membrane and extracellular matrix. Gal-1 has a single 
CRD that recognizes preferentially non-sialylated and α2,3-
sialylated complex N-glycans containing poly-N-LacNAc 
residues, although other variables, such as conformational 
changes of glycan motifs and protein-protein interactions, 
may account for its binding specificity [12]. Gal-1 has a 
wide range of biological functions, which are dictated by 

its concentration, cellular location and redox status [12]. 
Extracellular Gal-1 requires homodimerization (via its 
hydrophobic core) for functional activity; through its CRD, 
the homodimer can interact with glycosylated proteins 
to modulate cell adhesion, aggregation and migration 
[12–14]. In contrast, intracellular Gal-1 functions mainly 
as a monomer and, can trigger cell transformation via 
H-Ras protein-protein interactions [15] and modulate 
cellular functions, such as splicing [16]. Remarkably, one 
major role of Gal-1 is regulation of inflammation and 
the innate and adaptive immune responses, leading to its 
immunosuppressive effects [17, 18]. 

In cancer, Gal-1 is overexpressed in several 
tumors [19], including pancreatic cancer [20–23]. We 
have previously reported that this protein plays a pivotal 
role in PDA cancer progression by promoting tumor 
growth, angiogenesis, stroma activation and immune 
evasion [24, 25]. Moreover, Gal-1 has been suggested 
to be involved in resistance to cancer therapies [26–28]. 
Gal-1 is a small soluble molecule that can be secreted 
into the extracellular space through a non-canonical 
secretory pathway [29]. Accordingly, in addition to the 
overexpression of Gal-1 in tumor tissues, increased 
levels of this protein have been reported in plasma or 
serum from patients with different cancer types [30–35]. 
However, blood levels of Gal-1 in pancreatic cancer 
patients have not yet been analyzed.

In this study, we aimed to determine whether 
detection of Gal-1 circulating levels can be used as a 
clinical marker for PDA diagnosis and/or progression. 
We first analyzed the expression levels of Gal-1 by 
immunohistochemistry (IHC) in tissue samples from 
normal pancreas, CPs, preneoplastic lesions (PanINs, 
IMPNs) and PDA. Gal-1 plasma concentrations were 
analyzed via ELISA, using blood samples collected from 
a total 90 patients with PDA, 52 patients with CP and 28 
healthy controls from three different cohorts. We also 
compared Gal-1 and CA19-9 levels as diagnostic markers 
for PDA and/or CP, either individually or in combination. 
Finally, we evaluated whether Gal-1 plasma levels correlate 
with PDA tumor stage, grade, metastasis and/or disease 
outcome. Our data show that circulating levels of Gal-1 are 
increased in pancreatic cancer, suggesting its usefulness as 
a novel biomarker for diagnosis and eventually prognosis 
of this fatal disease. 

RESULTS

Expression of Gal-1 in normal, inflamed, 
preneoplastic and neoplastic human pancreatic 
tissues 

High Gal-1 tissue levels have been reported in 
pancreatic cancer in human [20, 22, 36] and mouse [23, 24];  
however, its expression in CP and during different steps of 
PDA progression have not been thoroughly investigated. 
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We thus analyzed Gal-1 expression by IHC in normal 
and pathological tissue pancreatic samples, including CP, 
different preneoplastic lesions (IPMN or PanIN) and PDA. 
Gal-1 was highly expressed by pancreatic stellate cells/
fibroblasts associated with desmoplasia in CP, IPMN, 
low- or high-grade PanINs and PDA, but it was not 
detected in ductal cells in any tissue samples (Figure 1A 
and Supplementary Table 1). In the fibrotic stroma, Gal-1 
was expressed in the cytoplasm and/or nuclei of pancreatic 
stellate cells and in the extracellular matrix. Quantification 
of Gal-1 protein expression levels by H-score showed 
similar intensity levels in all pathological samples; 
however, after H-scores were normalized with the 
percentage of stroma in each lesion type, Gal-1 expression 
was significantly higher in CP and PDA samples (Figure 
1B and Supplementary Table 1). Thus, Gal-1 expression 
increased in pancreas during pathological conditions, with 
high levels in PDA and CP, due to the strong desmoplastic 
reaction present in these pathological conditions.

Detection of Gal-1 in plasma from healthy 
controls compared to patients with CP or PDA 

As Gal-1 can be secreted [29], we next analyzed 
circulating Gal-1 in healthy individuals and patients with 
CP or PDA. Three independent cohorts of patients were 
used: Barcelona-HM (n = 61 individuals), Liverpool-UL 
(n = 69 individuals) and Madrid-HURC (n = 40 individuals) 
(see Materials and Methods for breakdown of each cohort, 
and Supplementary Table 2 for clinicopathological data of 
patients). To avoid deviations due to sample handling and 
processing, each cohort was analyzed separately.

Notably, the median value of plasma Gal-1 levels 
(measured by ELISA) significantly increased for PDA 
patients as compared to healthy controls in all three cohorts 
(Barcelona-HM, 37.34 ng/ml compared to 21.62 ng/ml; 
Liverpool-UL, 25.36 ng/ml compared to 17.10 ng/ml;  

and Madrid-HURC, 21.6 ng/ml compared to 16.00 ng/ml, 
for PDA patients and controls, respectively) (Figure 2 
and Table 1). We also found that Gal-1 levels increased 
in patients with CP as compared to controls (Barcelona-
HM, 34.17 ng/ml compared to 21.62 ng/ml; Liverpool-
UL, 20.34 ng/ml compared to 17.10 ng/ml), although 
significance was only reached for Barcelona-HM (note that 
the Madrid-HURC cohort comprised only 2 patients with 
CP and was not considered for statistical analysis) (Figure 
2 and Table 1). Moreover, we detected significantly 
decreased levels of Gal-1 in patients with CP (20.34 ng/ml)  
as compared to those with PDA (25.36 ng/ml)  
for Liverpool-UL (Figure 2 and Table 1). Neither age nor 
sex was associated with circulating Gal-1 levels in healthy 
controls (Supplementary Tables 3 and 4). 

High bilirubin concentrations are frequently 
found in serum/plasma of PDA patients (normally due 
to obstruction of the common bile duct during tumor 
growth) and can interfere with different assays [37]. 
However, we observed no significant differences in 
plasma Gal-1 levels in PDA patients with normal or high 
blood bilirubin levels (Supplementary Table 5). We also 
tested plasma Gal-1 levels in the context of diabetes, as 
this condition is frequently associated with PDA [38, 39], 
and Gal-1 levels are increased in type 2 diabetes [40]. 
However, we found no significant differences in plasma 
Gal-1 expression levels between non-diabetic and diabetic 
patients (Supplementary Table 5). 

Determination of plasma Gal-1 cut-off values for 
PDA detection 

Receiver operating characteristic (ROC) curves 
were used to: i) calculate the usefulness of Gal-1 as a 
diagnostic marker (with area under curve [AUC]); and 
ii) determine the optimal cut-off value of Gal-1 levels in 
plasma for PDA detection. In the Barcelona-HM cohort, 

Figure 1: Gal-1 immunohistological expression in normal and pathological human pancreatic tissue samples.  
(A) Immunostaining of Gal-1 in normal pancreas, CP, IPMN, low and high PanIN lesions and PDA. (B) Box-and-whisker plots showing 
H-scores corrected by the percentage of stroma in the tissue for normal pancreas, CP, PanINs, IPMN and PDA. Scale bars, 200 µm.
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significant ROC curves with AUC values of 0.932 and 
0.880 were derived from control (Ctl) and CP/PDA data, 
respectively (Figure 3A and Supplementary Table 6). 
We found similar cut-off values (maximizing Younden 
index) [41] of 28.16 ng/ml (82.6% sensitivity and 100% 
specificity) for the Ctl-CP comparison, and of 28.15 ng/ml  
(77.4% sensitivity and 100% specificity) for the Ctl-PDA 
comparison (Figure 3A and Supplementary Table 6). 
In the Liverpool-UL cohort, significant ROC curves 
were obtained from Ctl-PDA data (AUC, 0.837; cut-off 
22.83 ng/ml, with 75% sensitivity and 85.7% specificity) 
and from CP-PDA data (AUC, 0.669; cut-off 22.4 ng/ml, 
with 75% sensitivity and 63% specificity) (Figure 3A and 
Supplementary Table 6). Due to the low number of CP 
patients in the Madrid-HURC cohort, ROC curves were 
only used to compare values between PDA patients and 
healthy individuals; this showed an AUC of 0.783 with a 
maximum Youden index at 21.3 ng/ml (54.8% sensitivity 
and 100% specificity). However, a cut-off value of 17.7 
ng/ml balanced sensitivity and specificity (at 77.4% and 
71.4%, respectively) (Figure 3A and Supplementary  
Table 6). 

Levels of CA19-9 and Gal-1 in plasma from 
healthy individuals as compared to patients with 
CP or PDA 

Detection by ELISA of CA19-9 antigen in blood 
is the only blood biomarker approved by the FDA for 
PDA diagnosis. Notably, CA19-9 has a poor-to-moderate 
sensitivity (70%–80%) and specificity (68%–91%) for 
PDA, and it is only recommended for monitoring patient 
therapy response but not for primary diagnostics [10]. To 
investigate whether detection of plasma Gal-1 is more 
sensitive than that of CA19-9, we measured the plasma 
levels of CA19-9 in healthy control individuals and 

patients with CP or PDA from Barcelona-HM. CA19-
9 antigen was significantly elevated in PDA patients 
(405.1 U/ml) as compared to healthy controls (9.0 U/
ml) or CP patients (13.3 U/ml) (Supplementary Table 7). 
We next compared sensitivity and specificity of CA19-9 
versus Gal-1 levels in plasma for CP and PDA detection 
using ROC curves. Samples from control individuals or 
patients with CP or PDA from Barcelona-HM were used 
to generate ROC curves and to determine the optimal 
cut-off value of CA19-9 for PDA detection. CA19-9 
serum levels of 70.5 U/ml showed 82.8% sensitivity 
and 100% specificity for PDA samples (Figure 3B and 
Supplementary Table 6). Interestingly, AUC sensitivity 
and specificity values for both Gal-1 and CA19-9 markers 
were comparable, and the number of false negatives 
was greatly reduced when both biomarkers were used 
together, with an increase up to 96% sensitivity and 100% 
specificity. Gal-1, but not CA19-9, was able to identify CP 
patients from the healthy population in the Barcelona-HM 
cohort (Figure 3 and Supplementary Table 6).  

These data indicate that measuring Gal-1 levels in 
patient plasma presents a novel independent biomarker 
for PDA detection, and that Gal-1 could be used as a 
complementary blood marker in PDA diagnosis; notably, 
combining Gal-1 and CA19-9 detection could drastically 
decrease cases of false-negative diagnoses of PDA after an 
initial CA19-9 test.

Plasma Gal-1 levels during PDA progression and 
for prognosis

To explore whether circulating Gal-1 levels is 
predictive for PDA tumor progression, PDA patients were 
stratified by tumor stage following TNM classification 
[42], and Gal-1 plasma concentrations were compared 
between groups. No significant correlations were found 

Figure 2: Plasma levels of Gal-1 from healthy controls, CP and PDA samples from the three different cohorts. Box-and-
whisker plot representation of Gal-1 levels in Barcelona-HM (left), Liverpool-UL (center) and Madrid-HURC (right) cohorts. *p < 0.05; 
**p < 0.01; ***p < 0.001 (Mann–Whitney test).
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between circulating Gal-1 and tumor stage (Figure 4A). 
Similarly, no differences between subpopulations were 
observed in Gal-1 levels when patients were stratified 
by tumor grade (Figure 4B) or presence of metastasis  
(Figure 4C). 

Next, we evaluated whether Gal-1 levels correlate 
with PDA prognosis and patient overall survival. Patients 
with unresectable tumors were classified as short-term (<6 
months) or long-term (≥6 months) survivors, and plasma 
Gal-1 levels were determined for each group. Due to low 
sample number, Gal-1 levels were standardized in the 
three cohorts to allow comparison of Gal-1 ELISA results. 
Although no statistical significance was reached, a trend 
was observed for increased Gal-1 levels in short-term 
survivors as compared to long-term survivors (Figure 5 
and Supplementary Table 8). Thus, testing for plasma Gal-
1 levels may have prognostic value for PDA patients with 
unresectable tumors.

DISCUSSION

PDA is one of the most aggressive tumors, with 
a 5-year survival rate of less than 8% [43]. In contrast 
to other tumors, this cancer has not benefited from any 
significant clinical advances in the last years, and more 
than 80% of patients are diagnosed at advanced stages, at 
which point surgical resection (the only potential curative 

treatment) is not possible. Among the different strategies 
for tumor detection, serum biomarkers offer many 
advantages for inclusion in routine analysis, such as ease 
of sample collection, minimal invasiveness for patients 
and low cost. Currently, the CA19-9 antigen is the only 
blood-based biomarker approved for PDA, although its 
use is only recommended for monitoring patient therapy 
response [10]. Two major concerns have been raised about 
the use of CA19-9 for PDA diagnosis: i) elevated CA19-9 
levels in blood are found for obstructive biliary diseases, 
inflammatory processes and other tumors [9, 10, 44], 
leading to only moderate sensitivity (70%–80%) and 
specificity (68%–91%) for PDA; and ii) CA19-9 cannot 
be used for the Lewisa– population, who represent 5%–
10% of the Caucasian population [8, 45]. These drawbacks 
strongly limit the effectiveness of CA19-9 levels as a PDA 
biomarker due to high rates of false positive results as well 
as (for the Lewisa– population) false negative results.

Gal-1 is a small soluble molecule that is rapidly 
secreted to the extracellular space by a non-canonical 
secretory pathway [29], suggesting that high protein 
levels observed in tissue samples from patients with 
pancreatitis and PDA would also be found in their blood. 
We demonstrate here that ELISA detected plasma Gal-
1 levels that mirrored Gal-1 tissue expression levels, 
making Gal-1 a good biomarker for PDA. While Gal-1 
displayed similar sensitivity and specificity values as 

Table 1: Gal-1 plasma levels detected by ELISA in the three independent cohorts
Barcelona-HM Liverpool-UL Madrid-HUMC

  n Median IQR p n Median IQR p n Median IQR p

Pathology    

 Ctl 7 21.62 15.47  14 17.10 7.43 7 16 5.30

 CP 23 34.17 9.58 <0.001 27 20.34 8.69 ns 2 15.70 - ns

 PDA 31 37.34 18.71 0.001/0.396* 28 25.36 8.38 <0.001/ 0.031* 31 21.60 9.50 0.019/ns*

TNM      

 I 2 35.97  - 2 24.57 -

 II 10 38.14 33.66 ns 18 25.36 8.90 ns 3 22.80 -

 III 5 37.87 44.05 ns 0 6 19.95 14.55 ns

 IV 14 36.07 24.21 ns 8 26.24 9.22 ns 20 21.50 9.55 ns

N/A 2 - -

Grade      

Low 10 30.86 37.78  5 26.17 7.49 2 28.50 -

 High 3 34.79 49.51  ns 18 23.84 10.36 ns 9 19.70 9.45 ns

N/A 18 - - 5 - - 20 - -

Metastasis

No 17 36.30 17.04 20 25.20 7.16 10 20.65 9.77

Yes 14 37.30 26.28 ns 8 26.24 9.22 ns 21 21.60 10.70 ns

IQR, interquartile range; ns, not significant; *p value of CP compared to PDA; N/A, not ascertained; TNM, tumor–node–metastasis cancer staging system.
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Figure 3: ROC curves for determining specificity and sensitivity values for Gal-1 and CA19-9. (A) ROC curves for Gal1 
in the three cohorts. (B) ROC curves for CA19-9 in the Barcelona-HM cohort.
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CA19-9, the combination of both biomarkers strongly 
reduced the number of diagnosed false negatives in our 
study. Moreover, ROC analysis to discriminate PDA from 
pancreatitis was also significantly improved using Gal-1 
ELISA measurements as compared to using only CA19-9. 
Further, we observed that PDA short-term survivors were 
more likely to have higher Gal-1 plasma levels, suggesting 

that this biomarker could have a prognostic value. 
Altogether, our study identified the detection of circulating 
Gal-1 as a novel biomarker for pancreatic cancer with 
putative translational applications for diagnosis and 
prognosis of this fatal disease.

Our exhaustive IHC analysis of the expression levels 
of Gal-1 in normal pancreas, CP, preneoplastic lesions 

Figure 4: Comparison of the plasma Gal-1 leves with respect to tumor stage, tumor grade and metastasis. (A) PDA 
patients segregated by TNM tumor stage and their respective Gal-1 plasma levels, as shown by box-and-whisker plots. (B) PDA patients 
segregated by tumor grade (low or high) and their respective Gal-1 plasma levels, as shown by box-and-whisker plots. (C) Gal-1 plasma 
levels in patients without (“no”) or with (“yes”) metastasis.
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(IPMN and PanIN) and PDA samples showed similar high 
Gal-1 levels that were mostly restricted to fibrotic stroma 
in all pathological situations. These results contrast with 
previous studies that detected increased Gal-1 expression 
in PDA tissue samples as compared to pancreatitis by 
IHC [46] and by quantitative proteomics and mass 
spectrometry [22]. These discrepancies could be attributed 
to technical reasons, differences in patient tissue samples 
or different quantification scores used in each study. Of 
note, our quantification of Gal-1 expression was restricted 
to pathological lesions (i.e., the surrounding normal 
tissue was discarded) and was calculated by multiplying 
H-scores and stroma percentage. Increased Gal-1 levels in 
pancreatitis and PDA might reflect the higher proportion 
of fibrosis in these diseases as compared to preneoplastic 
lesions (PanINs and IPMNs). 

Importantly, Gal-1 expression levels in tissue 
samples are at least partially mirrored by its levels 
in blood. Gal-1 levels detected by ELISA in plasma 
from patients with PDA were significantly increased 
as compared to healthy individuals (who had values of 
around 18 ng/ml, consistent with previous studies [47]). 
However, we did not find changes associated with TNM 
or differentiation grade of PDA tumors, indicating that 
plasma Gal-1 levels might reflect tumor burden (and 
associated fibrosis) rather than cancer progression. These 
results are in agreement with previous data showing that 
circulating Gal-1 levels were elevated at early stages of 
colorectal cancer as compared to normal tissue but did 
not significantly change during tumor progression [33]. 
Interestingly, Gal-1 expression in colorectal cancer is 
also found in cancer-associated fibroblasts, suggesting 
a similar scenario to pancreatic tumors. Notably, blood 
levels of Gal-1 in patients with CP were higher than those 
for healthy controls, but lower than those for patients with 
PDA (note that the significance of these findings could 
only be verified in Barcelona-HM or Liverpool-UL, 

respectively, due to low patient numbers; see Figure 3). 
The apparent contrast of these results and those from our 
tissue samples tested by IHC (in which both CP and PDA 
had similar Gal-1 expression levels) is likely due to the 
differences in severity of disease for patients analyzed 
by the two methods: tissue samples were obtained after 
surgical interventions of severe CP and showed extensive 
fibrotic areas, while blood samples were obtained from 
patients diagnosed with CP by echo-endoscopy, who are 
less likely to require surgery and present less inflammatory 
areas (and, consequently, have lower levels of Gal-1). 
Discriminating between CP and PDA is one of the most 
important challenges for gastroenterologists. PDA is 
frequently asymptomatic at early stages but, after tumor 
progression, patients report symptoms similar to those 
for CP, such that accurate diagnosis requires imaging 
or molecular techniques. Although limited by the small 
sample number in the cohorts, our data suggest that 
measuring Gal-1 plasma levels can discriminate between 
patients with CP and those with PDA. Future studies with 
larger number of patients are required to confirm the 
suitability of Gal-1 as a biomarker for distinguishing PDA 
from CP. Intriguingly, however, CP has a strong link with 
the development of PDA, and around 5% of patients with 
CP develop pancreatic cancer [48], making it tempting to 
speculate that plasma Gal-1 detection would be a valuable 
tool for screening patients with CP to identify risk of 
possible tumor development.

A major function of Gal-1 is modulating the 
immune response, both in physiological and pathological 
conditions. In particular, Gal-1 has anti-inflammatory and 
immunosuppressive effects [17], suppresses recruitment 
and extravasation of neutrophils, induces the macrophage 
switch from M1 to M2 phenotype, promotes tolerogenic 
dendritic cells and induces T-regulatory cell differentiation 
[49, 50]. These roles of Gal-1 are determinant for PDA 
progression [25, 51, 52]. Our immunohistochemical 

Figure 5: Gal-1 plasma levels in PDA patients displaying short-(<6 months) or long-term survival (≥6 months).
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analysis now indicates that Gal-1 expression is an early 
event in pancreatic pathologies associated to stroma 
activation, such as inflammation and preneoplasia. 
Considering the critical role of Gal-1 in driving immune 
evasion, we speculate that expression of this lectin in the 
activated stroma associated to pancreatitis or preneoplastic 
lesions can promote immune privilege, which hampers 
the immune system from recognizing initiating tumor 
cells and thereby promotes immune escape, tumor onset 
and progression. This hypothesis might also explain the 
increased risk of PDA in patients with CP. Moreover, the 
potential of the lectin as a novel target in PDA cannot 
be underestimated, considering that PDA development 
in a Gal-1 knockout background is significantly delayed  
[24, 25], and that its inhibition (using peptides, glycan-
based inhibitors or more specific monoclonal antibodies) 
has a proven efficacy for other tumors [19, 53–60]. 

Increased levels of circulating Gal-1 have been 
reported in several other tumors [30–35]. However, Gal-
1 is expressed by tumor epithelial cells in most of these 
cases, while it is expressed mostly by stromal pancreatic 
stellate cells in PDA. These data indicate that stellate cells 
/ fibroblasts play a relevant role for PDA biology, and 
that proteins expressed by non-epithelial cells could also 
represent useful biomarkers for cancer, which would expand 
the number of proteins to be considered as candidates for 
tumor diagnosis. In fact, most of the previously reported 
biomarkers for PDA (e.g., CA19-9, CEA, α-fetoprotein, 
MMP-7, cathepsin D, integrin B1, HSP27, elastase-1, 
MCSF and CA195) are expressed by epithelial tumor 
cells, while Gal-1 is specifically expressed and released 
by pancreatic-activated fibroblasts. Mounting evidence 
indicates that a “unique” biomarker for a specific cancer 
does not exist; for PDA, a panel of biomarkers would likely 
be a more reliable way of overcoming the limited specificity 
and sensitivity of the PDA biomarkers identified to date. 
Indeed, we found that co-analysis of CA19-9 and Gal-1 
increased sensitivity as compared to using either biomarker 
separately.

Although diabetes is frequent in PDA patients, we 
did not observe any correlation between diabetes and 
increased Gal-1 levels (Supplementary Table 5), despite 
reports of increased Gal-1 levels in type II diabetes 
patients [40]. Increased levels of CA19-9 have been also 
reported in up to 50% of diabetic patients [61] and in 
PDA patients with diabetes [62], suggesting additional 
advantages of using Gal-1 as a PDA biomarker in 
conjunction with CA19-9 rather than CA19-9 alone.

In conclusion, our study demonstrates that 
measurement of Gal-1 levels by ELISA is a novel method 
for improving PDA diagnosis, which could eventually 
lead to predicting prognosis of patients with unresectable 
tumors. In addition, high Gal-1 levels in blood from 
PDA patients suggest that it could be a useful marker 
for patient follow-up—e.g., for detecting recurrence 
after surgery and for evaluating tumor response during 

chemotherapy or chemo/radiotherapy, as reported for 
other tumor types [33, 34]. ELISA is easy-to-use and cost 
effective, and blood collection is minimally invasive, 
underscoring the strong potential of these results. Future 
research using multicenter trials with large patient 
numbers is now necessary to establish the clinical impact 
of using circulating Gal-1 levels as novel biomarker for 
PDA diagnosis and follow-up.

MATERIALS AND METHODS 

Patients, tissue samples, and blood plasma 
collection

For histological studies, samples from normal 
pancreas (n = 19), CP (n = 13), preneoplastic lesions 
(IPMNs, n = 7 and PanINs, n = 9), and PDA (n = 30) were 
obtained from Parc de Salut MAR Biobank (MARBiobanc), 
Barcelona; clinicopathological characteristics of these tissue 
samples are summarized in the Supplementary Table 1. 
Blood samples were collected from three different cohorts: 
Barcelona-Hospital del Mar (HM) cohort (comprising 7 
controls, 23 patients with CP, and 31 patients with PDA), 
Liverpool-University of Liverpool (UL) cohort (comprising 
14 controls, 27 patients with CP, and 28 patients with PDA), 
and Madrid-Hospital Universitario Ramón y Cajal (HURC) 
cohort (comprising 7 controls, 2 patients with CP, and 31 
patients with PDA); the clinical data corresponding to the 
plasma samples included in this study are summarized 
(Supplementary Table 2). This study was evaluated and 
approved by the Clinical Research Ethical Committee of 
the Parc de Salut Mar (CEIC-Parc de Salut Mar), Health 
Research Authority (Liverpool), and Ramon y Cajal CEIC, 
Madrid. All individual participants in the study voluntarily 
signed an informed consent allowing the use of their 
samples for research.

Immunohistochemistry (IHC)

Paraffin sections (3 µm) were used for IHC 
analysis, as described [25]. Rabbit α-Gal-1 polyclonal 
antibody (Abcam) or irrelevant IgG (as negative control) 
were used as primary antibodies, and HRP-anti-rabbit-
EnVision (DAKO, EnVision™+ System) as a secondary 
antibody. Immunostainings were analyzed by two experts 
in pancreatic pathology, who recorded intensity and 
percentage of stained cells to calculate the H-scores [63]. 
The percentage of stroma in each sample was quantified 
using Image J software analysis, and its value was used to 
normalize the H-score. 

Measurement of plasma levels of Gal-1 and 
CA19-9 by ELISA

Plasma Gal-1 levels of were quantified with the 
human Gal-1 ELISA kit (R&D systems) according to 
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manufacturers’ protocols. Plasma samples were diluted 
1:10 for the analysis. Gal-1 was detected by absorbance 
determination at 450–570 nm using an ELISA reader 
(200 series, Tecan). Serum levels of CA19-9 were 
measured by ELISA kit (Cobas) at the Laboratori de 
Referència de Catalunya (Barcelona, Spain).

Statistical analysis 

Data analyses were carried out using the SPSS 
software (IBM SPSS statistics version 23). Statistical 
significance was set at p < 0.05 (*p < 0.05; **p < 0.01; 
***p < 0.001). As ELISA measurements of Gal-1 and 
CA19-9 showed skewed distributions, data are described 
as median and interquartile range (IQR), and the 
nonparametric analyses of Mann-Whitney were applied. 
For bivariate correlations, the Spearman test was used. 
Receiver operating characteristic (ROC) curve analysis 
was used to determine the cut-off values to detect 
the predictive power of Gal-1 or CA19-9, in order to 
discriminate PDA from CP or healthy controls. Results are 
given as area under curve (AUC) with 95% confidence 
limits. For survival analysis, data in each cohort were 
standardized using: 

x = −X Mean Ctl
SD Ctl

( )
( )

. 100
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