
Oncotarget33278www.oncotarget.com

Metabolite quantification of faecal extracts from colorectal 
cancer patients and healthy controls

Gwénaëlle Le Gall1,*, Kiran Guttula2,*, Lee Kellingray1,*, Adrian J. Tett3, Rogier 
ten Hoopen2, E. Kate Kemsley1, George M. Savva1, Ashraf Ibrahim2,* and Arjan 
Narbad1,*

1Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
2Division of Molecular Histopathology, Department of Pathology, University of Cambridge, Cambridge, UK 
3Centre for Integrative Biology, University of Trento, Trento, Italy
*These authors contributed equally to this work

Correspondence to: Gwénaëlle Le Gall, email: gwenaelle.legalln@gmail.com
Keywords: NMR; colorectal cancer; markers; metabolite; metabolomics

Received: February 07, 2018    Accepted: August 10, 2018    Published: September 07, 2018
Copyright: Le Gall et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 
3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

ABSTRACT

Colorectal cancer (CRC), a primary cause of morbidity and mortality worldwide is 
expected to rise in the coming years. A better understanding of the metabolic changes 
taking place during the disease progression is needed for effective improvements 
of screening strategies and treatments. In the present study, Nuclear Magnetic 
Resonance (NMR) metabolomics was used to quantify the absolute concentrations 
of metabolites in faecal extracts from two cohorts of CRC patients and healthy 
controls. The quantification of over 80 compounds revealed that patients with CRC had 
increased faecal concentrations of branched chain fatty acids (BCFA), isovalerate and 
isobutyrate plus valerate and phenylacetate but diminished concentrations of amino 
acids, sugars, methanol and bile acids (deoxycholate, lithodeoxycholate and cholate). 
These results suggest that alterations in microbial activity and composition could 
have triggered an increase in utilisation of host intestinal slough cells and mucins 
and led to an increase in BCFA, valerate and phenylacetate. Concurrently, a general 
reduction in the microbial metabolic function may have led to reduced levels of other 
components (amino acids, sugars and bile acids) normally produced under healthy 
conditions. This study provides a thorough listing of the most abundant compounds 
found in human faecal waters and presents a template for absolute quantification 
of metabolites. The production of BCFA and phenylacetate in colonic carcinogenesis 
warrants further investigations.
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INTRODUCTION

The global burden of colorectal cancer (CRC), 
which accounted for about 1.4 million new cases and 
almost 700 000 deaths in 2012, is expected to rise by 
60% by 2030 [1]. Although the incidence is decreasing 
in countries with high human development index (HDI) 
where around two-thirds of cases and deaths worldwide 
are occurring, rapid increases in incidence and mortality 

are now seen in many medium HDI countries [1, 2]. 
The risk of colorectal cancer increases with age, high 
consumption of red or processed meat or alcohol, low 
intake of fruit and vegetables, smoking, high body mass 
index and low physical activity [2]. Early detection is 
key to a favourable 5-year survival rate [3]. Screening 
programs in many countries are based on a combination 
of non-invasive clinical markers (faecal occult blood and 
faecal immunochemical tests) and endoscopic techniques 
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(flexible sigmoidoscopy, colonoscopy and computed 
tomographic colonography) but due to the variable 
sensitivity of existing non-invasive tests, new non-
invasive procedures are still urgently needed. DNA-based 
stool [4] and serum-based tests such as carcinoembryonic 
antigen and carbohydrate antigen 19-9 [5, 6] hold promise 
but low sensitivity remains an issue. The widespread use 
of colonoscopy has resulted in a significant decrease in the 
mortality of colorectal cancer due its high rate sensitivity 
[7] but is invasive, costly and associated with bleeding and 
perforation.

Metabolomic analysis consists of measuring and 
comparing the levels of metabolites across samples to 
discover potential biomarkers. This non-invasive approach 
has been applied to tumour and adjacent tissue [8–9], 
blood plasma [10–12], urine [13, 9] and faecal extracts 
[14–20] to search for markers of early diagnosis and for 
staging of CRC. The commonality in the biopsy studies 
was an increase in amino acids and lactate in tumour 
tissue [8–9]. Changes in plasma partly mirrored those 
findings since amino acid levels differed [10–12] and 
lactate levels were found to be higher in CRC samples 
[10]. Additionally, intermediates of purines, pyrimidines 
and the tricarboxylic acid (TCA) cycle were altered  
[11–12]. Variation in amino acids and TCA cycle pathways 
was also observed in urine [13]. The studies on faecal 
metabolomics reported changes in short chain fatty acid 
(SCFA), amino acid, and lipid metabolism. Butyrate levels 
were depleted in many of the studies [14, 16, 19–20] but 
with one exception [18]. Similarly, conflicting results 
emerged on acetate with three studies reporting an increase 
in concentration [16, 18, 20] while two others stated a 
decrease [14, 19]. A more consensual trend of elevated 
amino acid levels was found for most studies [14, 16, 20] 
except for two studies that reported a diminution of the 
level of glutamine [18–19]. Results from metabolomics 
studies typically do not use absolute quantitation since 
the primary aim with this approach is to provide a rapid 
screening for group comparisons. The novelty in the 
present study is two-fold: firstly, the provision of a full 
list of quantified faecal metabolites in a healthy human 
and secondly, detecting the metabolic differences between 
healthy individuals and two independent cohorts of 
CRC patients. Absolute quantification of faecal SCFA 
and amino acids has previously been published [21–22] 
but reports on the amounts of organic acids, sugars, 
nucleosides, and other molecules present in human faeces 
are scarce. Establishing the composition and the expected 
quantity of compounds in faecal extracts would help to 
clarify the role of faecal metabolites in the development of 
CRC and other gastrointestinal tract diseases. In this study, 
we analysed the faecal microbiome of one cohort and the 
metabolomes of two cohorts of CRC patients and healthy 
controls and have identified quantifiable differences in the 
composition and function of the gut microbiomes of CRC 
patients.

RESULTS

Patient demographics and study design

The first set of samples from 20 CRC patients and 
20 healthy controls was analysed in 2012. The second 
cohort consisting of 30 CRC patients and 30 healthy 
individuals were analysed two years later. Hence 50 age 
and sex-matched pairs of stool samples were used for 1H 
NMR profiling of faecal metabolites. One outlier was 
excluded from the second set due to poor spectral quality. 
Metagenomics analysis was also applied to the faecal 
microbiome of the first set (n = 40). Patients and tumour 
characteristics are outlined in Table 1.

Faecal metabolite quantification

The faecal 1H NMR spectra were dominated 
by signals arising from the three main SCFA namely, 
acetate, propionate, and butyrate and characterised by 
low levels of many other metabolites (Figure 1A). Over 
80 compounds were identified with 2-dimensional NMR 
experiments, the literature data [18, 23] and the human 
metabolome database and quantified in an absolute 
manner (Supplementary Table 1). Compounds included 
energy related metabolites such as fatty, organic, and 
amino acids, sugars, osmolytes, amines, alcohols, phenolic 
compounds, nucleobases, nucleosides, nucleotides, 
vitamin B3 and bacterial degradation products. Findings 
prior (Supplementary Table 2) and after (Supplementary 
Table 1) combining the two sets of data did not differ 
substantially. 

Biomarkers of CRC

Visual inspection indicated that a subset of cancer 
profiles was characterised by high levels of isovalerate, 
isobutyrate and phenylacetate (Figure 1A and 1B). 
Principal component analysis (PCA) of the samples from 
both sets showed overlapping but some separation between 
cancer and healthy groups (Supplementary Figure 1).  
However, a large number of principal components were 
needed to account for a significant proportion of variation 
in the dataset.

Conversely, with PLS-DA, cross-validation within 
each set suggested that using two components was optimal 
for prediction. When two components models were 
estimated in each set and applied the predictive power 
was similar in each case (Figure 2A). Using 11-fold cross-
validation within the combined set led to an C-statistic of 
0.80 (Figure 2B). A sensitivity of 80% was achieved at 
a specificity of 70%, while specificity of 80% could be 
achieved with sensitivity of 67%. With a threshold of 50% 
used to identify cases from controls, the PLS-DA model 
classified 74 (75%) of 99 cases correctly. This suggests 
that while it is not possible to completely identify CRC 
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from control patients using faecal metabolites a reasonable 
degree of discrimination is possible, even within a cohort 
that has screened positive using FOBt.

In univariate analysis, twenty metabolites had 
FDR-adjusted p-value lower than 0.05 when values were 
compared between cancer patients and controls. Fifteen 
had significantly lower levels among cancer patients, five 
had significantly higher levels (Table 2). Distributions 
of each metabolite concentration in which a significant 
difference was observed (at FDR < 0.05) are shown in 
Supplementary Figures 2 (raw concentrations) and 3 (Box-
Cox transformed).

While not all identified metabolites show 
statistically significant differences in both sets of patients, 
ratios of effects are largely consistent across sets. The 
distribution of p-values comparing the differences in 
effects across sets was uniform, suggesting that there was 
no difference between sets with respect to associations 
between metabolites and cancer status (Supplementary 
Table 2). Some of the markers were unique to a set 
(succinate for set 1, p-cresol for set 2) but the majority 
showed a consistent trend of increased or decreased levels 
in both sets, although for each circumstance the metabolite 
had a non-significant p value in one of the sets. 

Table 2 shows the ratios of concentrations of 
metabolites that are statistically significantly higher or 
lower between groups (at FDR corrected p-value < 0.05). 

Cancer patients are characterised by higher concentrations 
of iso short-chain fatty acids (valerate, isobutyrate, 
isovalerate), phenylacetate and, a sugar-phosphate whose 
signals arise at 5.61 ppm, and lower concentrations of 
methanol, amino acids (glutamine, ornithine, isoleucine, 
taurine, and b-alanine), sugars (glucose, galactose and 
xylose), and bile acids (deoxycholate, lithodeoxycholate 
and cholate). There is some evidence for differences in 
many other metabolites with individual p values of less 
than 0.05 although their statistical significance may arise 
through the large number of hypotheses being tested. 
(Supplementary Table 1). Correlations between selected 
metabolites are shown in Supplementary Figure 4.  
The highest levels of isoacids, phenylacetate and 
phenylpropionate were all associated with the same five 
cancer patients.

Gut microbiota composition of set 1 

The gut microbiota composition of the first cohort 
(20 CRC patients versus 20 age and sex matched healthy 
controls) was assessed using 454 pyrosequencing and the 
QIIME pipeline. This analysis produced 167 572 sequence 
reads, with an average of 4189 ± 1476 reads per sample, 
which clustered into 5762 operational taxonomic units at 
97% identity. PCoA plots were generated to investigate 
whether the microbiota of patients with CRC were more 

Table 1: Patient demographics and tumour characteristics   
  set 1 set 2

Patients  Colorectal cancer Healthy Colorectal cancer Healthy

  N = 20 N = 20 N = 30 N = 29

Age, years Mean 67 67 66 66

 Range 61–72 60–74 60–74 60–74

Sex Women 8 8 9 9

 Men 12 12 21 21

Tumour site caecum 2  3  

 ascending 2  2  

 transversal 3  0  

 descending 1  2  

 sigmoid 4  17  

 rectum 6  6  

Cancer size, mm Mean 35  24  

 Range 12–70  15–40  

Dukes’s stage A 3  3  

 B 7  2  

 C 5  11  
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similar to one another than those obtained from healthy 
controls. The unweighted analysis, whose results are based 
on which taxa are shared between samples, suggested a 
difference in the composition of the microbiota between 
the two groups (Figure 3A). However, these differences 
were less clear following the weighted analysis, which also 
takes the relative abundances of taxa into consideration 
(Figure 3B). At the family level it was observed that, on 
average, CRC patients had a larger relative abundance of 
Ruminococcaceae (32.65% ± 8.72% vs 20.35% ± 13.34% 
(P = 0.001)) and a lower proportion of Lachnospiraceae 
(30.34% ± 11.49% vs 42.57% ± 18.33% (P = 0.016)). 
Of the seven bacterial families that were significantly 
different between CRC patients and healthy controls, 
five are members of the Clostridiales order (unclassified 
Clostridiales (P = 0.027), Christensenellaceae (P = 0.002), 
Mogibacteriaceae (P = 0.017), and Lachnospiraceae & 
Ruminococcaceae), as well as Porphyromonadaceae 
(Bacteroidales) and an unclassified family member of the 
order RF39 (P = 0.006) (Table 3). Interestingly, although 
only present as a small proportion of the microbiota, the 
Archaeal family Methanobacteriaceae were found in 
50% (10/20) of CRC patients compared to 10% (2/20) 
of healthy controls (P = 0.009). Bar charts depicting 
the taxonomic composition of each faecal sample at the 
genera level did not suggest a community profile that 
may be a signature of CRC (data not shown). However, 
some statistically significant differences in the relative 
proportions of certain genera were observed between the 
two groups, with 14 of the 17 taxa identified found at a 
higher proportion in the CRC samples (Table 3). Further 
statistical analysis of the microbiota composition of the 
subset of CRC patients, which were identified as outliers 
through metabolomic analyses, produced a list of taxa that 
were present at significantly different proportions to the 
remaining CRC cohort (Supplementary Table 3). 

A canonical correlation analysis on the metabolite 
data and the matching microbiota data I set 1 
(Supplementary Figure 5) showed there was a weak but 
significant link between the two microbiota and NMR data 
sets but no separation between the two groups of samples 
(cancer vs controls). No good correlation was found in the 
heap map correlating individual metabolite with individual 
microbial trait (not shown).

DISCUSSION

In the present study, we have presented a 
comprehensive list of faecal metabolites expressed in 
concentration units among 50 CRC patients and 49 
controls, recruited through a national screening programme 
who had screened positive using FOBt. 

NMR quantification, an approach widely applied to 
urine and blood samples [24, 25] has not yet been applied 
to faecal water extracts. We have used our expertise in 
metabolite identification of faecal waters by 1H NMR [26] 
to prepare a thorough list and used a specialised software 
to quantify the metabolites detectable in faecal extracts.

Previous faecal metabolomics studies on CRC 
have qualitatively detected metabolites such as short 
chain fatty acids and amino acids [14–20], but to our 
knowledge this is the first time that faecal absolute 
concentrations in healthy and cancer patients have been 
determined. The concentrations of SCFA, amino acids, 
lactate, phenol, p-cresol, and bile acids are consistent 
with those reported in the literature [21–22, 27, 28]. The 
absolute concentration of the other compounds has not 
been reported before. Dietary polysaccharides/fibre that 
reach the large intestine are broken down by bacteria into 
end-products such as SCFA, mainly acetate, propionate, 
and butyrate, lactate, ethanol, methane, hydrogen, and CO2 
[29]. Colonic health is associated with a diet rich in non-

Figure 1: Typical 600 MHz 1H NMR spectra of aqueous faecal extracts from 4 CRC patients and age and sex matched 
controls. High and mid (A) and low (B) field regions of the 1H NMR spectra. Key: *, 3-hydroxyphenylpropionate; ** p-cresol.
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Figure 2: (A) The predicted probability of cancer estimated by PLS-DA predictive power using each set and validated by applying to the 
other. AUC = area under the receiver operator characteristic (ROC) curve, and reflects the probability that a randomly selected CRC patient 
has a higher predicted probability of cancer than a randomly selected control. (B) Left panel shows the predicted probability of cancer 
estimated by scaled PLS-DA models using Box-Cox transformed metabolite concentrations, stratified by cancer status. 11-fold cross-
validation was used, hence each predicted probability is estimated independently of the true cancer status of the patient. Right hand panel 
shows the ROC curve estimated using the same data (AUC = 0.8) with solid lines indicating sensitivity and specificity of 80%.
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digestible starch and is reflected by fairly high levels of 
butyrate, acetate, and propionate [30–31]; however, the 
presence/absence of other elements from the metabolite 
composition also contribute to the maintenance of a 
healthy gut [29–31]. Host derived glycans notably mucins, 
dietary amino acids and proteins are other major nutrient 
sources for gut bacteria [29, 32]. In this study, findings 
from two independent sets of CRC patients and healthy 
controls consistently showed an elevation of isovalerate, 
isobutyrate, valerate and phenylacetate levels in CRC and 
a diminution in the concentrations of amino acids, sugars 
and methanol. 

Two previous studies have reported an increase of 
isovalerate, isobutyrate and valerate levels in CRC faecal 
extracts [16, 20], one study reported a decrease [33] and 
another one no differences [34]. Straight-chain SCFA 
(butyrate, propionate, acetate and valerate) are products 
of saccharides and amino acids while branched SCFA 
(BCFA), isobutyrate, isovalerate and 2-methylbutyrate 
are specifically attributed to the degradation of branched 

amino acids (BAA, valine, leucine and isoleucine) [35]. 
In the past, BCFA and valerate have been associated with 
an augmented risk of developing CRC principally because 
protein fermentation has been tied in with a high protein 
intake [29]. However, contrary to other microbial and 
chemical products such as hydrogen sulphide, p-cresol, 
phenol, haem iron, N-nitroso compounds, polycyclic 
aromatic hydrocarbons, and heterocyclic amines which 
are reported to be detrimental [29, 31, 36], the isoacids 
although indicative of putrescible fermentation, are not 
associated with cell toxicity [35]. The World Health 
Organization recently classified red meat and processed 
meat as carcinogens however no mechanisms or causal 
link have yet been established [36]. Additionally, a recent 
publication showed an increase in faecal BCFA after 
a high protein intake but no toxicity [37]. Moreover, 
the presence of a small amount of branched SCFA and 
valerate (2–4 mmol/kg) is of normal occurrence in healthy 
adult individuals [38] and neonates [39]. Increased 
transit time in the GI tracts has also been associated 

Table 2: The ratio of metabolite concentrations between CRC patients and controls

Metabolite Mean concentration ratio 
(CRC/control) t-statistic p-value (t-test) p-value (FDR adjusted)

Lower among cancer patients
Cholate 0.13 −5.06 0.00000 0.0002
Taurine 0.39 −4.59 0.00001 0.001
Glutamine 0.67 −4.24 0.00005 0.002
ß-Alanine 0.35 −4.13 0.00008 0.002
Glucose 0.38 −3.91 0.00018 0.003
Lithodeoxycholate 0.01 −4.02 0.00015 0.003
Xylose 0.38 −3.31 0.00134 0.012
Deoxycholate 0.44 −3.28 0.00145 0.012
Ornithine 0.59 −3.33 0.00124 0.012
Glycerol 0.68 −3.20 0.00189 0.015
Guanosine 0.21 −3.16 0.00248 0.018
Isoleucine 0.70 −3.01 0.00339 0.021
Methanol 0.62 −2.77 0.00679 0.040
Galactose 0.61 −2.66 0.00913 0.048
4-Aminohippurate 0.39 −2.61 0.01058 0.050
Higher among cancer patients
Isovalerate 1.75 3.59 0.00052 0.007
Hexose-phosphate* 2.02 3.37 0.00107 0.012
Phenylacetate 1.73 3.01 0.00335 0.021
Isobutyrate 1.54 2.74 0.00741 0.041
Valerate 1.42 2.62 0.01029 0.050

T-statistics and p-values are calculated using Box-Cox transformed concentrations. Adjusted p-values are calculated using 
the false discovery rate method of Benjamini and Hochberg to correct for the large number of hypotheses being tested.
*signal at 5.61 ppm, most likely glucose- or galactose-1-phosphate.
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with a high concentration of putrefactive products [27]; 
however contrary to BCFA, the levels of putrescine, 
N-acetylputrescine, cadaverine and p-cresol were not 
increased suggesting no enhanced protein putrefaction 
in our study. Interestingly, Andrieux and colleagues [40] 
proposed an alternative source of BCFA production. They 
reported an increase in isobutyrate and isovalerate levels 
with age and attributed the differences to a change in 
bacterial mucin degradation. Concomitantly, a high degree 
of correlation exists between the levels of isobutyrate and 
isovalerate regardless of the host species [21, 41] which 
suggests the presence of a universal substrate. In line 
with those findings our data showed strong correlations 
between isobutyrate and isovalerate, isobutyrate and 
valerate and isovalerate and valerate (Supplementary 
Figure 4). There are two main sources of endogenous 
microbial substrate: intestinal sloughed cells and host 
glycan mucins [40, 41]. Production of BCFA from 
sloughed cells is a plausible event since intestinal tissue 
is particularly rich in BAA [42]. It is also tempting to 
speculate that changes in microbial mucolytic activity 
could occur in CRC since an increase in abundance 
of mucinophilic bacteria (Fusobacterium nucleatum 
and Akkermansia spp) has recently been reported  
[31, 43]. A causal link has not yet been determined [43] but 
opportunistic mucin degradation is a theory that has been 
proposed [44]. Proline and BAA are abundant constituents 
of human mucin [45], thus microbial mucolytic activity 
followed by the fermentation of proline, valine and 
leucine could contribute to an increase in valerate [46] and 
BCFA respectively. Phenylacetate which originates from 
phenylalanine is another degradation metabolite associated 
with a high intake of protein [29, 47] but as with BCFA 
no toxicity to epithelial cells has yet been reported [48]. 

Similar to BAA, phenylalanine is an abundant component 
of gut tissue [42]. This infers the possibility that a 
portion of phenylacetate may originate from the bacterial 
degradation of slough cells. The detection of a smaller 
amount of amino acids, sugars, secondary bile acids and 
other bacterial products (alcohols, polyols, amines) in 
faecal extracts is an expected occurrence [14, 18–19, 47]. 

Previous studies reported higher levels of amino 
acids in the extracts from the CRC patients [14, 16, 19–20]  
but we found an inverse trend of lower abundance of 
amino acids, sugars, secondary bile acids and other 
compounds (Table 2). This general metabolic decrease 
may mirror a lower “normal” bacterial activity due to 
the aetiology of the disease which could result in a lower 
concentration of metabolites in stool. 

The beta-diversity analysis of the microbiota of 
CRC patients and healthy controls indicated that although 
it seemed that the faecal samples clustered by health status 
in the unweighted analysis, this separation of samples was 
less distinct when relative abundance of taxa was taken 
into consideration (Figure 3). This may indicate that CRC 
patients share a common pool of taxa, but at varying 
abundances. Further investigation indicated that at the 
family level, CRC patients harboured a greater proportion 
of Ruminococcaceae and a lower relative abundance of 
Lachnospiraceae compared to healthy controls, both of 
which are butyrate-producing members of the Clostridiales 
order. Multiple members of the Clostridiales, including 
Oscillospira, were present at higher proportions in the 
microbiota of CRC patients compared to healthy controls, 
as has been identified previously [49]. A more thorough 
investigation into the Clostridiales and their metabolic 
products may shed light on how important bacteria within 
this order are in colorectal cancer. The methanogenic 

Figure 3: Beta-diversity analysis of faecal microbiota of healthy controls (grey) and colorectal cancer patients (black). 
The data-points associated with the subset of CRC patients (K13, K15, K21, & K37) identified from the metabolomic analyses are labelled. 
(A) unweighted beta-diversity analysis and (B) weighted beta-diversity analysis were performed using the Unifrac metric in QIIME 1.9.1, 
and visualised as 3D principal coordinates analysis plots using Emperor.
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archaea Methanobrevibacter was found to be present in 
50% (10/20) of the CRC microbiota, compared to 10% 
(2/20) of the healthy controls. This taxon has previously 
been linked to CRC and has been considered a putative 
causal agent of various cancers [49], however further 
studies are required to elucidate the importance of this 
taxon in cancer, and whether gut Eukaryotes, such 
as fungi and protists, may play a role. A subset of 5 
patients were associated to the highest levels of iso short 
chain fatty acids and phenylacetate. Interestingly, the 
bacterial taxa that were present at significantly different 
proportions in the proposed CRC subset (Supplementary 
Table 3), compared to the remaining CRC patients, 
have been associated with the human intestinal mucosa, 
inflammation, and/or an increased risk of CRC [50–51]. 
It was not possible to conclude further as to why those 
values were consistently high for those patients. Linking 
the microbiota and metabolomics data was attempted and 
although there was a weak but significant link between the 
two microbiota and NMR data sets, no further separation 
between the two groups of samples was detected 
(Supplementary Figure 5). Nor was a good correlation 
found in the heap map correlating individual metabolite 
with individual microbial trait (not shown).

Our sample was derived from a population-based 
screening programme and had each already screened 

positive for further investigation using FOBt and were 
scheduled for colonoscopy, hence our findings suggest 
further risk stratification using faecal metabolites might 
be possible within this cohort. The groups were age and 
sex matched, and so this cannot explain any observed 
differences, but we could not control for differences 
in lifestyle including diet which may account for our 
findings.

Problems of data dispersal are often encountered 
with chemical data originating from human samples. The 
1H NMR spectra were characterized by heterogeneous 
profiles within each group (Figure 1) which showed large 
intra-group variability and some large outliers for specific 
metabolites. Nevertheless, strong evidence for differences 
between controls and cases for several metabolites was 
seen. In our cross-validated PLS-DA analysis faecal 
metabolites were able to discriminate between CRC and 
control patients with a C-statistic of 0.8, with sensitivity 
of 74% and specificity of 76% (classification accuracy of 
75% in our sample) when a threshold of probability > 0.5  
was used as a cut-off. This is less powerful than existing 
faecal tests, but our sample had already screened positive 
so we do not know what the discriminatory power would 
be in an unselected population. A 2014 review of faecal 
immunochemical tests (FIT) suggested a combined 
sensitivity of 79% and specificity of 94%, while faecal 

Table 3: Statistically significant taxa that differ between healthy and colorectal cancer patients

Microbial taxa Healthy (%) CRC (%) P value

o_Clostridiales 2.14 ± 2.96 4.66 ± 4.14 0.027

o_RF39 0.20 ± 0.55 1.95 ± 2.26 0.006

o_Clostridiales; f_Ruminococcaceae 1.29 ± 1.62 3.76 ± 2.47 0.001

f_Christensenellaceae 0.12 ± 0.31 0.81 ± 0.75 0.002

f_Mogibacteriaceae 0.13 ± 0.14 0.37 ± 0.26 0.002

f_Coriobacteriaceae 0.20 ± 0.19 0.58 ± 0.49 0.001

f_Erysipelotrichaceae;g_Clostridium 0.45 ± 1.07 0.05 ± 0.15 0.044

f_Ruminococcaceae;g_Ruminococcus 5.98 ± 6.70 11.40 ± 5.23 0.015

g_Methanobrevibacter <0.01 ± 0.03 0.10 ± 0.15 0.01

g_Parabacteroides 1.47 ± 1.77 0.62 ± 0.52 0.014

g_Clostridium 0.37 ± 0.53 0.05 ± 0.07 0.012

g_Peptostreptococcus <0.01 ± 0.01 0.05 ± 0.08 0.029

g_Anaerofilum <0.01 ± 0 0.03 ± 0.05 0.011

g_Oscillospira 1.23 ± 1.07 2.64 ± 1.89 0.006

g_Sporobacter 0 ± 0 <0.01 ± 0.01 0.045

g_Eubacterium 1.58 ± 3.01 4.21 ± 6.21 0.049

g_cc_115 <0.01 ± 0.01 0.07 ± 0.16 0.03

Preceding letter indicates taxonomic level: o = order; f = family; g = genus. Values shown are mean ± SD.
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occult blood tests [52]. Nevertheless, our findings, if 
repeated in larger cohorts, suggest that faecal metabolite 
profiles might augment existing markers to produce a more 
reliable non-invasive tests and that further investigation in 
this area is needed.

In summary, our findings clearly demonstrate 
that there are significant alterations in the metabolite 
composition of faecal extracts from patients with CRC 
compared to controls. As has been reported previously, 
we confirmed an increase in levels of isovalerate, 
isobutyrate and valerate that could originate from an 
increase in intestinal slough cells utilisation or an increase 
in mucolytic activity from a subset of microbes. We 
also reported a decrease in levels of amino acids, sugars 
and various microbial products (amines, alcohols and 
secondary bile acids) that could be attributed to a possible 
generalised reduction in the metabolic activity of gut 
bacteria. The mechanisms underlying the observed changes 
are still unidentified and require further investigation.

MATERIALS AND METHODS

Clinical characteristics of patients

Patients referred to Addenbrookes Hospital in 
Cambridge, UK were enrolled after having received 
information about the study and given their written 
informed consent. Stool specimens were collected as 
part of a study involving the National Health Service 
Bowel cancer screening programme (Cambridge 2 LREC 
reference: 08/H0308/13). The stool samples included in 
the study were collected between 2009 and 2013.

All patients involved in the study had a positive 
Faecal occult blood test (FOBt) and were invited for a 
colonoscopy within the National Health Service Bowel 
cancer screening programme (NHSBCSP). The stool 
samples were collected prior to the patients starting the 
bowel preparation for colonoscopy and stored at −80° C  
immediately on arrival. Patients who had biopsy 
proven CRC were classified as cancers in this study. 
Those classified as healthy had no evidence of CRC on 
colonoscopy. Out of these, two sets of stool samples of 
patients who had colorectal cancer (CRC) and age and 
sex matched normal controls were analysed. The first 
set of samples from 40 individuals (20 CRC patients and  
20 healthy controls) was analysed in 2012. A second 
larger set of samples (n = 60, 30 CRC and 30 healthy 
patients) was then selected and analysed in 2014. Patient 
demographics are shown in Table 1.

Sample preparation

To get an adequate representation of the sample, a 
total of 50 g was collected from 5 different portions of the 
whole frozen stool block and homogenised. Samples were 
aliquoted in duplicates (50 mg ± 1 mg). The first aliquot was 

lyophilised to measure the water content which ranged from 
62–89% of fresh weight for set 1 and 51–93% for set 2. To 
obtain the normalised metabolomics data, each metabolite 
value was multiplied by the ratio obtained by dividing the 
sample water content and the maximum water content found 
in the set it belongs to. The ratio factors ranged between 
0.69 and 1 for set 1 and 0.59 and 1 for set 2. In each set, the 
values of the sample with the maximum water content were 
left unchanged (they were multiplied by 1) and the values 
of the other samples were multiplied by a factor comprised 
between 0.59 and 1 to compensate for their lower water 
content. The data were thus normalised to dry weight. 
The second aliquot was thawed at room temperature and 
prepared for 1H NMR spectroscopy by mixing the faecal 
aliquot with 600 µL NMR buffer (0.26 g NaH2PO4 and  
1.41 g K2HPO4) made up in 100% D2O (100 ml), containing 
0.1% NaN3 (100 mg), and 1 mM sodium 3-(Trimethylsilyl)-
propionate-d4, (TSP) (17 mg) as a chemical shift 
reference. The sample was mixed, centrifuged and 500 µL  
was transferred into a 5-mm NMR tube for spectral 
acquisition. The 1H NMR spectra were recorded at 600 MHz  
on a Bruker Avance spectrometer (Bruker BioSpin GmbH, 
Rheinstetten, Germany) running Topspin 3.2 software 
and fitted with a TCI probe. Each 1H NMR spectrum was 
acquired with 2816 scans, a spectral width of 12300 Hz  
and an acquisition time of 2.7 s and delay time of 3 s. 
The “noesygppr1d” presaturation sequence was used 
to suppress the residual water signal with a low-power 
selective irradiation at the water frequency during the 
recycle delay. Spectra were transformed with a 0.3-Hz  
line broadening, manually phased, baseline corrected, and 
referenced by setting the TSP methyl signal to 0 ppm. Spectra 
were prepared for statistical analysis using the Bruker 
AMIX software v3.9. The “underground removal tool” 
of AMIX was applied to all spectra (filter width = 20 Hz)  
to remove the broad irregular envelope that extends 
from ∼0.7 to 4.5 ppm. Metabolites were identified using 
information found in the literature [18, 23] or on the web 
(Human Metabolome Database, http://www.hmdb.ca/) 
and by use of the 2D-NMR methods, COSY, HSQC, and 
HMBC. The metabolites were quantified using the NMR 
Suite v7.6. Profiler (Chenomx, Inc., Edmonton, Canada).

Statistical analysis

Statistical analysis was conducted for both sets 
of patients concurrently. Data were described as mean, 
standard deviation, median and quartiles for each 
group (CRC and control) and the relationship between 
metabolites as the ratio of means between each group. 

Univariate analysis

The distribution of each metabolite concentration 
across participants was heavily skewed, the presence of 
large numbers of tied values made standard non-parametric 

http://www.hmdb.ca/
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tests impractical and large outliers in some groups made 
permutation tests invalid. Hence a separate Box-Cox 
transformation was applied to each metabolite, adding the 
minimum non-zero value for each metabolite to each value 
to enable zero values to be transformed. Visual inspection 
showed that the Box-Cox transformation removed 
skew for most metabolites well and stabilised variances 
across groups including outliers. Hence t-tests were then 
applied to transformed values in order to calculate the 
statistical significance of differences between metabolite 
concentrations in each group. In cases where there were 
large numbers of zeros the transformation was not able 
to remove skew, but a sensitivity analysis was conducted 
using Fishers exact tests comparing the proportion of non-
zero metabolite values between cancer and control groups; 
p-values from Fishers exact tests in these cases were close 
to p-values from t-tests of transformed data supporting the 
validity of the t-tests. P-values from t-tests are reported 
along with adjusted p-values corrected for multiple testing 
using the procedure of Benjamini and Hochberg.

Multivariate analysis

Scaled principal components analysis of Box-
Cox transformed concentrations was used to estimate 
the relationships between metabolites, and to show the 
relationship between the first two principal components 
and cancer status. 

To test whether metabolite concentrations predict 
cancer status, scaled partial least squares discriminant 
analysis (PLS-DA) of transformed values was then 
conducted. First, cross-validation was used within 
each set to select the number of components to use. 
PLS regression models using the optimal number of 
components were then estimated in each set and then 
validated in the other graphically and using C-statistics. 
A final model was then validated with data from both 
sets combined using 11-fold cross-validation, whereby 
the combined dataset was randomly split into 11 sets 
of 9 observations each, with the predictions for each 
group based on models estimated in the other 10. For 
this validation the Box-Cox transformations were re-
calculated within each group before model estimation. 
All metabolite analysis was conducted using R statistical 
software version 3.5.0. Sensitivity and specificity at 
different thresholds and C-statistics were calculated 
using the pROC package. Transformations and PLS-
DA model estimation were conducted using the caret 
package.

 16S rRNA gene sequencing analysis 

The gut microbiota composition of the first 
cohort (20 CRC versus 20 age and sex matched healthy 
patients) was assessed using 454 pyrosequencing. The 
FastDNA SPIN Kit for Soil (MP Biomedicals, UK) was 

used following the manufacturer’s instructions, with an 
additional bead-beating step, to extract the microbial 
DNA from the collected faecal samples. The quality and 
yield of the DNA was assessed using gel electrophoresis, 
and the NanoDrop ND-1000 UV/vis spectrophotometer 
(NanoDrop Technologies, Inc., USA), respectively. 
The DNA was sent to the Animal Health and Veterinary 
Laboratories Agency (UK), where the V4 and V5 
regions of the 16S rRNA genes were amplified using the 
U515F (5′-GTGYCAGCMGCCGCGGTA) and U927R 
(5′-CCCGYCAATTCMTTTRAGT) primers, prior to the 
amplicons being subjected to 454 pyrosequencing [53]. 
Analysis of the sequencing reads was performed using 
Quantitative Insights Into Microbial Ecology (QIIME) 
1.9.1 software and RDP classifier (version 2.10) 16S rRNA 
gene sequence database [54]. All sequences were filtered 
to meet the following criteria: read length between 200 
and 1,000 bp; maximum of 6 ambiguous bases; minimum 
average quality score of 25 within a 50 bp window; and 
exact match to primer sequences. ChimeraSlayer was used 
to filter the trimmed reads for chimeric sequences, RDP 
classifier enabled microbial taxonomy assignment with a 
confidence value threshold of 50%, and the trimmed reads 
clustered into operational taxonomic units at 97% identity 
level.
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