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AbstrAct:
Dysregulation of phosphatidyl inositol signaling occurs in many cancers and other 
disorders. The lipid and protein phosphatase, PTEN (Phosphatase and Tensin 
homology protein on chromosome 10), is a known tumor suppressor whose function 
is frequently lost in various malignancies due to mutations in the coding region 
or genomic deletions. Recently, another lipid phosphatase, Inositol Polyphosphate 
4-phosphatase type II (INPP4B), has emerged as a potential tumor suppressor 
in prostate, breast, and ovarian cancers and possibly in leukemia. We will review 
its structure and function, crosstalk with androgen receptor signaling, and 
regulation of INPP4B expression, as well as existing data about its role in cancer.

INPP4b structure ANd fuNctIoN

INPP4B is one of many enzymes maintaining 
tight homeostasis of phosphoinositides in the cell. 
Phosphoinositides are produced by a large number of 
phosphatidylinositol kinases and dephosphorylated by 
lipid phosphatases with specific activities for phosphates 
at different positions of the inositol ring. INPP4B 
contains an N-terminal C2-lipid binding domain, internal 
NHR2 (Nervy Homology 2 domain), and a C-terminal 
phosphatase domain (Figure 1A). Human and mouse 
INPP4B C2 lipid binding domains exhibit over 91% 
identity. It has been shown that mouse INPP4B C2 
domain preferentially binds phosphatidic acid and 
phosphatidylinositol 3,4,5-trisphosphate PI(3,4,5)P3 [1]. 
The NHR2 domain is a hydrophobic repeat that has been 
shown to mediate oligomerization and protein-protein 
interaction [2-4]. Although a role for this domain has 
yet to be determined it may mediate some interactions 
of INPP4B with other proteins. The C-terminal lipid 
phosphatase domain contains a CKSAKDRT (aa 842-849) 
motif conserved between type I and type II phosphatases 
that contains the catalytic active site (C(X)5R) of Mg2+ 
independent phosphatases such as protein tyrosine 
phosphatases, acid phosphatases, and notably dual 
specificity phosphatases capable of dephosphorylating 
both lipids and proteins. Mutation of the cysteine residue 
at position 842 to alanine in this motif renders INPP4B 
unable to dephosphorylate phosphatidylinositols [5].

The main substrate for INPP4B is 
phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) 
which it dephosphorylates on the D4 position generating 
phosphatidylinositol 3-phosphate (PI(3)P). Both the 
substrate and product of INPP4B lipid metabolism are 
important second messengers in the cell whose levels are 
controlled by a number of kinases and phosphatases.

PI(3,4)P2 medIAted sIgNAlINg

PI(3,4)P2 is synthesized from the most abundant 
phosphatidylinositols in the cell, PI(3)P and PI(4)P, 
by Class I PI3K and PIP4K, respectively. In addition, 
the lipid phosphatase SHIP produces PI(3,4)P2 by 
dephosphorylating PI(3,4,5)P3 on the 5th position (Figure 
1B). The murine C2 domain of INPP4B preferentially 
binds to phosphatydic acid and PI(3,4,5)P3 in vitro [1]. 
However, despite the strong affinity for PI(3,4,5)P3, 
INPP4B fails to dephosphorylate this lipid. Gewinner 
et al reported that INPP4B is able to dephosphorylate 
PI(3,4)P2 in vitro and overexpression of INPP4B depleted 
PI(3,4)P2 in cells [5]. Similar to PI(3,4,5)P3, PI(3,4)P2 
binds to the pleckstrin homology (PH) domains of both 
Akt and PDK1 and recruits them to the plasma membrane 
(Figure 1C). Depletion of PI(3,4)P2 in bone marrow 
derived mast cells, and stimulation of PI(3,4,5) production 
led to the recruitment of Akt to the cell membrane but 
failed to fully stimulate Akt activity [6]. Conversely, 
intracellular delivery of PI(3,4)P2 to SHIP-/- cells 
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increased phosphorylation of S473, but not T308 of Akt 
[6]. In B-cells PI(3,4,5)P3 also contributes predominantly 
to T308 phosphorylation and membrane-associated 
activation of Akt, whereas PI(3,4)P2 contributes mostly to 
S473 phosphorylation and cytoplasmic activation of Akt 
[7]. Phosphorylation of Akt at T308 is associated with co-
recruitment of Akt and PDK1 to PI(3,4,5)P3 at the plasma 
membrane and S473 phosphorylation has been attributed 
to the activity of mTORC2 [8]. In agreement with this 
data we observed that in prostate cancer cells depletion 
or overexpression of INPP4B regulated phosphorylation 
of S473 more strongly than T308 [9]. The PH domain of 
TAPP (tandem PH-domain containing protein) 1 and 2 
proteins have also been shown to specifically bind PI(3,4)
P2 [10]. TAPP1 is recruited to the plasma membrane 
following growth factor stimulation and has been 
implicated in actin cytoskeletal remodeling associated 
with cell migration [11]. Thus, INPP4B likely modulates 
cellular motility through the suppression of both Akt and 
TAPP1 activity. In addition, both TAPP1 and TAPP2 have 
been shown to be involved in the regulation of cellular 
insulin sensitivity [12]. Therefore these proteins may 
mediate and contribute to the intracellular responses to 
insulin that are coordinated by PI3K signaling and the 
synthesis of PI(3,4)P2 and PI(3,4,5)P3.

PI(3)P medIAted sIgNAlINg

The INPP4B metabolite, PI(3)P, is significantly 
more abundant than PI(3,4) in quiescent cells. Synthesis 
of PI(3)P is predominantly regulated by class II and class 
III PI3K and is typically associated with endosomes, 
multivesicular bodies, and phagosomes [13]. Class III 
PI3K has been implicated as a potential tumor suppressor 
through its critical roles in autophagy and the prevention 
of genomic instability, endosomal sorting, lysosomal 
down regulation of mitogenic receptors, and regulation 
of cytokinesis during cell division [14-16]. Although 
the intracellular levels of PI(3)P are thought to remain 
relatively static, synthesis of PI(3)P at the plasma 
membrane has also been shown to be stimulated through 
extracellular signaling [13].

Similar to other plasma membrane associated 
phosphoinositides, PI(3)P is thought to act as a second 
messenger molecule. PI(3)P is recognized by FYVE 
(conserved in Fab1, YOTB, Vac1 and EEA1) and PHOX 
homology (PX) domains with high specificity (Figure 1C). 
FYVE and PX domain containing proteins are believed 
to mediate most of the downstream functions of PI(3)P. 
The recruitment of PI(3)P interacting proteins to specific 
cellular compartments is coordinated through both PI(3)
P interaction and its associated proteins. It is possible that 
INPP4B locally regulates membrane PI(3)P content and 

figure 1: INPP4b structure and function. A. Functional domains of INPP4B: C2 lipid binding domain amino acids 25-149, NHR 
domain amino acids 510-544, and putative Dual Phosphatase domain with the catalytic region C(X)5R. B. Network of kinases and phosphatases 
modifying inositol mono- and polyphosphates. Kinases are depicted in green and phosphatases in blue. C. The substrate and product of INPP4B 
enzymatic activity interact with various proteins changing their localization and activity.
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the recruitment of effector proteins to specific cellular 
membranes. A Golgi specific isoform of INPP4B has 
been identified [1], but it remains to be determined what 
specific functions this isoform performs within the cell.

Although INPP4B has a clear role in regulating the 
activity of Akt in epithelial cells through the turnover of 
PI(3,4)P [5, 9, 17], what role it plays in modulating the 
activity of other PI3K signaling mediators remains to 
be determined. One especially interesting downstream 
mediator of PI3K signaling is serum- and glucocorticoid-
regulated kinase 3 (SGK-3), which binds to PI(3)P via 
its PX domain [18]. Similar to Akt, PI3K activation of 
SGK3 is mediated through PDK1 [18, 19]. SGK3 has 
been implicated in PI3K dependent cancers in an Akt 
independent manner [19]. Expression of both SGK3 and 
SGK1 is induced by androgens in human prostate cancer 

cell lines and SGK3 activity may be stimulated by the 
INPP4B metabolite PI(3)P [18, 20]. Hence, SGK3 is an 
alternative signaling pathway that may compensate for 
inhibition of Akt signaling by INPP4B. 

regulAtIoN of INPP4b exPressIoN

At present, little is known on the specifics of 
INPP4B gene regulation. INPP4B is expressed in a wide 
array of tissue types unlike the related INPP4A, which is 
predominantly restricted to the brain. INPP4B is highly 
expressed in skeletal muscle, heart, brain, and pancreas, 
in addition to the epithelial cells of the breast and prostate 
glands [21]. To date, androgen driven regulation of 
INPP4B expression in human prostate cancer cell lines 
is the only known upstream regulator of INPP4B gene 

figure 2: regulation of the INPP4b expression. A. Interrogation of the AR and ER recruitment sites in the vicinity of the INPP4B 
locus. Note AR recruitment in LNCaP cells upstream of the INPP4B promoter and in intron 2. Recruitment site for ERα in MCF7 cells is over 
200 kb upstream and is immediately upstream of USP36 promoter as marked by the promoter methylation signature (H3K4Me). B. INPP4B 
expression is not hormonally induced in MCF-7 cells. MCF-7 cells grown in 10% charcoal stripped serum (CSS) for 48 hours were treated with 
ethanol (control), 10 nM estradiol (E2), 10 nM R5020, or 10 nM R1881. Cells were harvested 24 hours post-treatment, RNA was extracted, 
and INPP4B and 18S expression was analyzed by quantitative RT-PCR. C. To control for estradiol gene regulation, GREB1 expression was 
analyzed by quantitative RT-PCR (error bars denote ± S. E.) and normalized by 18S expression.
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and protein expression [9]. A nonbiased screen for AR 
recruitment sites in LNCaP cells suggested two sites 
located in an upstream enhancer region and intron 2 
(Figure 2A) that we have confirmed by ChIP assay [9, 
22]. Interrogation of a dataset generated by Dr. Myles 
Brown’s laboratory from a similar screen of ERα genomic 
recruitment in MCF-7 breast cancer cells showed no ERα 
recruitment to the INPP4B locus and corresponding lack 
of up- or downregulation of INPP4B expression (http://
research4.dfci.harvard.edu/brownlab/datasets/index.php) 
(Figure 2A). Indeed, we observe that INPP4B expression 
is not regulated by estradiol, progestin, or androgens at 
the mRNA level in MCF-7 cells (Figure 2B). This is in 
agreement with Fedele et al who showed that INPP4B 
protein levels are not affected by estradiol in MCF-7 cells 
[17]. Although INPP4B does not appear to be hormonally 
regulated in breast cancer cells, its expression appears 
to be tightly associated with hormone receptor status. 
INPP4B LOH is frequently observed in hormone receptor 
negative breast cancers and loss of INPP4B protein is 
associated with loss of hormone receptors and basal-like 
breast cancers [5, 17]. Furthermore, INPP4B protein is 
only detected in ERα positive nonproliferative epithelial 
cells of the normal human breast [17]. Thus, in endocrine 
epithelial cancers, INPP4B may play a significant role in 
suppression and regulation of hormone receptor driven 
proliferation.

crosstAlk betweeN INPP4b ANd Ar 
sIgNAlINg PAthwAys

Several reports have demonstrated a role for INPP4B 
in the regulation of Akt signaling. In addition, numerous 
studies have reported evidence of crosstalk between the AR 
and PI3K/Akt signaling pathways. INPP4B can thus exert 
its effect on AR signaling by inhibiting Akt and affecting 
its immediate phosphorylation targets. There is no clear 
consensus on the effect of Akt activity on AR function; it 
appears to be dependent on the cellular context and passage 

number and is promoter specific. Akt phosphorylates AR 
in vitro on S215 and S792 [ENST00000374690], and 
interacts directly with endogenous AR in LNCaP cells 
[23-25]. Activation of the PI3K/Akt signaling pathway 
has been shown to increase AR transcriptional activity in 
PSA-driven reporter assays and elevate PSA protein levels 
in LNCaP cells [25, 26]. Various downstream targets of 
Akt signaling can also interact with the AR to regulate 
its function in the prostate. β-catenin is part of the pro-
proliferative Wnt signaling pathway, plays a vital role in 
cell-cell adhesion, and is positively regulated by Akt [27]. 
Activating mutations of β-catenin and/or inactivating 
mutations of its regulators are a common event in PCa as 
well as in other epithelial carcinomas [28-30]. It has been 
shown that β-catenin binds to AR, increasing its agonist 
dependent transcriptional activity [14, 15]. In turn, the 
AR has been shown to suppress β-catenin by limiting 
its interaction with transcriptional co-regulators such as 
TCF4 [31, 32]. In addition, pro-apoptotic Forkhead box 
transcription factors FOXO1a and FOXO3a are negatively 
regulated by Akt and affect AR signaling. FOXO1a 
down-regulation has been implicated in human prostate 
cancer. Ectopic expression of FOXO1a down-regulates 
endogenous levels of PSA and reduces androgen-mediated 
proliferation in LNCaP cells, suggesting that FOXO1a 
reduces AR transcriptional activity [33, 34]. In turn, AR 
negatively regulates FOXO1a transcription by interfering 
with its binding to DNA [35]. Thus, AR and FOXO1a seem 
to be mutually inhibitory. On the other hand, constitutive 
activation of another member of the forkhead box family, 
FOXO3a, can enhance AR transactivation and increase 
endogenous AR protein levels in LNCaP cells [36]. This 
complexity of AR regulation by Akt downstream targets 
may contribute to the differences observed in different 
cellular contexts.

Suppressing PI3K/Akt signaling with the pan-PI3K 
inhibitor LY294002 or exogenous expression of PTEN, a 
negative regulator of Akt activity, can reduce AR signaling. 
PSA protein expression and secretion in PTEN negative 
LNCaP cells were decreased with overexpression of PTEN 
or treatment with LY294002 [37, 38]. In addition, transient 
expression of PTEN with wild-type AR suppresses AR 
activity on androgen-activated MMTV or GRE driven 
reporters in DU145 and PC-3 prostate cancer cell lines 
[37, 38]. Interestingly, the mechanism by which PTEN 
reduces AR activity may not be entirely via suppression 
of Akt signaling. Using coimmunoprecipitation, Lin 
et al showed direct interaction between PTEN and AR 
in LNCaP cells stably transfected with PTEN and that 
this interaction interferes with AR nuclear translocation 
independently of Akt [37]. However, another study found 
that PTEN-mediated suppression of AR function in PC-3 
cells was dependent on protein expression of the Akt target 
FOXO1a [39]. These observations suggest that PTEN may 
regulate AR through both modulating Akt activity and 
direct interaction. Since AR regulates INPP4B expression 

figure 3: INPP4b reduces Ar transcriptional activity. 
A. PC-3 cells were transfected for 24 hours with vector control, 
50 or 100 ng INPP4B, and the androgen-responsive GRE-
luciferase reporter construct. Cells were then treated with 
ethanol or R1881, harvested, luciferase activity measured, and 
normalized for protein concentration. B. Cells were transfected 
as in A and treated with vehicle or R1881 with either DMSO or 
20 nM LY294002. Activity was normalized to total protein. ** 
indicates statistically significant difference with p<0.01.
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and INPP4B in turn regulates Akt phosphorylation, we 
sought to determine if INPP4B modulates AR activity. We 
coexpressed INPP4B with AR and found that it reduces 
androgen dependent activation of GRE-luciferase reporter 
in PTEN-null PC-3 cells (Figure 3A) to a similar extent 
as inhibition of Akt signaling by LY294002 (Figure 3B). 
Using a mammalian two hybrid system we were unable 
to detect any interaction between AR and INPP4B (data 
not shown). This suggests that INPP4B exerts its effect 
at least in part through modulating the Akt pathway. 
Therefore both PTEN and INPP4B are able to modulate 
AR activity in PCa cells.

INPP4b fuNctIoN As A tumor 
suPPressor

The first evidence of INPP4B involvement in 
tumorigenesis came from analysis of gene expression 
in the leukemic blasts from 132 patients to select for 
highly ranked class discriminators in pediatric acute 
lymphoblastic leukemia (ALL). Comparison of gene 
expression profiles in major subgroups revealed that 
INPP4B expression is increased 12.4 fold in BCR-ABL 
leukemia compared to all other ALL subgroups [40]. 
Two years later INPP4B was identified as a potential 
tumor suppressor in a non-biased screen for transcripts 
that inhibit transformation of human mammary epithelial 
cells (HMEC) [41]. Ninety percent of shRNAs that 
induced epithelial cell transformation were directed 
against 8 genes, including INPP4B [41]. This finding was 
corroborated in subsequent reports that described loss 
of INPP4B in breast and ovarian cancer, and that loss 
of INPP4B is associated with decreased patient survival 
[5]. Loss of INPP4B protein in breast cancer occurs most 
frequently in aggressive hormone receptor-negative basal-
like breast carcinomas, with higher tumor grade, size, and 
increased proliferation. In HMECs and breast cancer cell 
lines INPP4B was able to suppress both basal [17] and IGF 
induced Akt phosphorylation [5], anchorage independent 
growth, invasion, and motility. Interestingly, depletion of 
both INPP4B and PTEN in HMECs resulted in cellular 
senescence, which could be alleviated by knockdown of 
p53 [5]. However, in mammary tumors INPP4B loss is 
observed more frequently in patients who have also lost 
PTEN [17]. 

Using immunohistochemistry we have shown 
highly significant downregulation of INPP4B protein in 
prostate cancers relative to benign prostate epithelium 
in radical prostatectomy specimens from men with 
clinically localized prostate cancer [9]. Of note, patients 
with decreased INPP4B levels in their prostate cancer 
tissues had significantly increased risk of biochemical 
recurrence. Consistent with these findings, a large scale 
analysis of DNA copy numbers, mRNA expression, and 
mutation analysis in 218 prostate tumors highlighted AR 
and PI3K as the most commonly altered pathways in 

primary and metastatic prostate cancers. For INPP4B, loss 
of expression or mutations were found in 8% and 47% 
of primary tumors and metastases respectively, while for 
PTEN similar changes were found in 4% of primary tumors 
and 42% of metastases suggesting a tumor suppressor role 
for INPP4B in prostate cancer [42]. We have shown that 
INPP4B is directly regulated by AR in LNCaP and VCaP 
prostate cancer cells. Somewhat differently from HMECs 
and breast cancer cells, INPP4B inhibits phosphorylation 
of Akt and its downstream target FOXO3a in prostate 
cancer cells with or without PTEN expression [9]. 
Furthermore, INPP4B depletion significantly increased 
proliferation of the PTEN negative prostate cancer cell 
line LNCaP. Thus, based on both clinical and biological 
evidence INPP4B appears to be a tumor suppressor gene 
in prostate cancer and is inactivated at rates similar to the 
classic tumor suppressor gene PTEN.

coNcludINg remArks

Similar to various mouse models of cancer altering 
PTEN or Akt activity, valuable data will be obtained by 
modulating INPP4B expression in the mouse. However, 
there may be some substantial differences in INPP4B 
biology in the mouse compared to human. One of the 
immediate differences is lack of androgen regulation of 
INPP4B in mouse prostate. We tested if supplementation 
with androgen in castrated mice would upregulate Inpp4b 
expression in the prostate and found no significant increase 
(Figure 4A). Androgen signaling is well established in 
mouse prostate and we observed significant induction 
of the AR target gene Msmb in these animals confirming 
that testosterone treatment was successful (Figure 4B). 
Significantly, although the brain contains AR (tissue 
specific patterns of nuclear receptors; http://www.nursa.
org), INPP4B expression in the mouse brain is also not 
affected by testosterone (Figure 4C).

figure 4: INPP4b expression is not induced by 
testosterone in mice. A. Four month old male castrated 
mice were treated with vehicle (V) (n=5) or 1 μg testosterone 
(T) (n=9). Prostates were isolated 24 hours following treatment, 
RNA extracted and Inpp4b and Krt18 expression was analyzed 
by quantitative RT-PCR. Inpp4b expression was correlated to 
Krt18, an epithelial specific marker and expression normalized 
to the castrated group. B. Brain tissue from the same mice were 
collected in parallel and analyzed for Inpp4b and 18S expression. 
C. To control for testosterone gene regulation, Msmb expression 
was analyzed by quantitative RT-PCR (error bars denote ± S. E.).
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methods

mice and tissue Isolation

Adult male FVB mice were obtained from Jackson 
laboratories (Bar Harbor, ME) and maintained in a 
temperature controlled room, with 12-h light, 12-h dark 
photocycle and fed Teklad global 18% protein rodent 
diet chow (Harlan, Indianapolis, IN) and fresh water ad 
libitum. Prostates were isolated 2 weeks after castration 
immediately following sacrifice using an Olympus SZ61 
stereo microscope (Olympus, Center Valley, PA) and 
stored in RNA Later (Ambion, Austin, TX) at -80°C prior 
to RNA extraction.

castration and testosterone supplementation

To ablate endogenous testicular steroid hormones, 
four-month-old male FVB mice were castrated bilaterally. 
Castrated mice were given a single intrascapular 
subcutaneous injection of sesame oil (control group) 
or 1 µg testosterone in sesame oil two weeks following 
castration and sacrificed 24-h following injections.

rNA extraction and real-time Pcr

Total RNA was extracted from isolated prostates using 
Trizol reagent (Invitrogen, Carlsbad, CA), as described 
by the manufacturer. First strand cDNA was synthesized 
using the SuperScript III First-Strand synthesis SuperMix 
for qRT-PCR (Invitrogen). The Roche Universal Probe 
library and primers were used to amplify the following 
mouse genes: Inpp4b (Forward: tgaccctgaggacattcagtt 
Reverse: attccaactgtggctcgttc, Probe 89), Cytokeratin 
18 (Krt18) (Forward: agatgacaccaacatcacaagg Reverse: 
tccagaccttggacttcctc, Probe 78), and Msmb (Forward: 
cgtggtgttcatgtgacaaaa Reverse: ctcaaaggcctagtagcgttg, 
Probe 62). The following primer and probe sets 
were used for the human genes: INPP4B (Forward: 
gaaagcttccactcgtggtg Reverse: tgtttcgctggtttcaagg, Probe 
63), GREB1 (Forward: tgtggagtgcctgaagtgac, Reverse: 
ctcagcagagacgaagaaagg, Probe 73) and 18S (Forward: 
gcaattattccccatgaacg, Reverse: gggacttaatcaacgcaagc, 
Probe 48). Real-time PCR analysis was carried out on a 
Roche 480 LightCycler.

transactivation of Ar

PC-3 cells (ATCC, Manassas, Virginia) were seeded 
at 1x105 cells / well in 24-well plates (BD Biosciences). 
Cells were transfected in triplicate in serum-free 
media using 1 ul per well Lipofectamine 2000 reagent 
(Invitrogen) with pCR3.1AR or pCR3.1, GRE-Luciferase, 

pCMV3XFLAG-INPP4B or pCMV3XFLAG. Four 
hours after transfection, media was replaced with one 
supplemented with charcoal-stripped serum and treated 
with either 10 nM R1881 or ethanol vehicle. Media was 
also supplemented with LY294002 or DMSO as indicated. 
The next day, firefly luciferase activity was assayed 
with the Dual-Luciferase Assay System (Promega) and 
normalized to total protein levels.
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