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ABSTRACT

Lung squamous cell carcinoma (LUSC) is the most common cause of global cancer-
related mortality and the major risk factors is smoking consumption. By analyzing 
~500 LUSC samples from The Cancer Genome Atlas, we detected a higher mutational 
burden as well as a higher level of methylation changes in younger patients. The 
SNPs mutational profiling showed enrichments of smoking-related signature 4 and 
defective DNA mismatch repair (MMR)-related signature 6 in younger patients, while 
the defective DNA MMR signature 26 was enriched among older patients. Furthermore, 
gene set enrichment analysis was performed in order to explore functional effect 
of somatic alterations in relation to patient age. Extracellular Matrix-Receptor 
Interaction, Nucleotide Excision Repair and Axon Guidance seem crucial disrupted 
pathways in younger patients. We hypothesize that a higher sensitivity to smoking-
related damages and the enrichment of defective DNA MMR related mutations may 
contribute to the higher mutational burden of younger patients. The two distinct 
age-related defective DNA MMR signatures 6 and 26 might be crucial mutational 
patterns in LUSC tumorigenesis which may develop distinct phenotypes. Our study 
provides indications of age-dependent differences in mutational backgrounds (SNPs 
and CNVs) as well as epigenetic patterns that might be relevant for age adjusted 
treatment approaches.

INTRODUCTION

Lung cancer is the most common cause of global 
cancer-related mortality and the major risk factors are 
smoking consumption and occupational exposure to 
carcinogens [1]. The two major histological classes are non-
small-cell lung cancer (NSCLC) and small-cell lung cancer 
(SCLC). NSCLCs mostly comprise lung adenocarcinomas 
(LUAD) and lung squamous carcinomas (LUSC) [2], 
characterized by largely distinct mutational patterns [3].

The mutational landscape present in a cancer 
genome is the cumulative result of endogenous and/or 
exogenous mutational processes (e.g., smoking), constant 
or sporadic and with different strengths along patient 
ageing [4–7]. Therefore, multiple mutational processes are 
operative resulting in jumbled composite signatures and 
tumor characteristics vary between patients of different 
ages [7–9]. From the Catalogue Of Somatic Mutations 
In Cancer (COSMIC) which includes 10,952 exomes and 
1,048 whole-genomes across 40 distinct types of human 
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cancer [10], 30 different mutational signatures were 
identified and publicly released (http://cancer.sanger.
ac.uk/cosmic/signatures). Each signature is characterized 
by the contribution of different factor (e.g., smoking, age, 
sex). Signature 1 (SI1) characterized by C>T transitions 
at CpG sites due to the deamination of 5-methylcytosine 
was associated to mutational processes related to the 
ageing [4–6, 11]. While Signature 4 (SI4) associated with 
C>A transversions was found in cancers in which tobacco 
smoking increases risk and mainly in those derived from 
cells directly exposed to the tobacco smoke. According 
to the SI4 pattern, LUSC patients can be classified by 
the “transversion status” in order to study high and low 
mutational rate profiles [3]. Past studies hypothesized 
that chemicals of tobacco smoke increases the speed with 
which these mutations accumulate [12]. Although the 
age at diagnosis of lung tumors is very closely correlated 
with the duration of smoking [13, 14], a previous study 
performed on 34 tumor types of the TCGA dataset [15], 
showed significant negative correlations between SNPs 
and patient age only in LUSC and LUAD. While 29 
tumor types exhibited positive correlations, among which 
the smoking-related tumors such as HNSCC [15, 16]. 
Therefore the hypothesis of the “mutator phenotype”, 
which is a tumor harboring mutations in DNA polymerases 
and DNA repair genes [15, 17], has to be taken into 
account.

Furthermore, Copy Number Variations (CNVs) play 
also important roles in the development of cancer showing 
an association with ageing in terms of longevity, healthy 
aging, and aging-related pathologies [18–20]. Although 
the number of studies about CNVs and ageing are very 
limited, age-related CNVs increase observed in human 
blood cell genomes [21, 22] suggests that CNVs could 
play a key role even in LUSC.

Moreover, epigenomic alteration is now increasingly 
recognized as part of aging and its associated pathologic 
phenotypes as cancer [23]. There is ample evidence 
for changes in DNA methylation patterns at CpG sites 
during development and aging, driving essential somatic 
functions. A general demethylation is linked with aging 
which may reflects some deficiency in maintenance re-
methylation. The epimutation rate appears to be almost 
100,000 times the mutation rate and aberrant DNA 
methylation can predispose to malignancy [22, 24, 25].

This study aims to provide better insight into the 
underlying genetic and epigenetic patterns of LUSC in 
relation to patient age. To this end, we investigated the 
relationships between patient age and the average number 
of SNPs, CNVs and methylation changes as well as 
the SNPs profiling and the respective correlation to the 
previously defined signatures in COSMIC. Furthermore, 
we performed gene-specific correlation analysis in relation 
to patient age with a particular focus on the significantly 
mutated genes in LUSC [3] and the most frequently 
mutated DNA repair genes in lung cancer [26]. Finally, 

gene set enrichment analysis was performed in order to 
explore functional effect of somatic alterations in relation 
to patient age.

The current study may pave the way for future 
studies of molecular tumorigenesis in relation to human 
ageing and underlines the need to consider age-adjusted 
treatments not only based on age and morbidity of older 
patients, but also on differences in tumor biology.

RESULTS

Somatic alterations and patient age

Genome-wide mutations and epigenomic changes 
are expected to varying among tumor subtypes showing 
a different distribution across age. To characterize these 
distinct distribution patterns, we firstly estimated the 
global number of SNPs, CNVs, and methylation changes 
at CpG sites for 504 samples across LUSC cancer cohort 
available through The Cancer Genome Atlas (TCGA). 
We used the Spearman’s rank correlation coefficient to 
explore the relation between the number of SNPs, CNVs 
and methylation changes with patient age.

The global SNPs load showed a slightly negative 
correlation with patient age (Table 1), which indicated a 
higher mutational rate among younger patients (Figure 
1A). Then, we classified SNPs according to their expected 
biological effect as low, moderate, or severe (as shown in 
Supplementary Table 1) and we identified the genes with at 
least a severe or moderate mutation. We reported a lower 
correlation between the age and the number of genes with 
disruptive mutations (rho=-0.08, p=0.077, FDR=0.26). The 
global CNVs load showed no correlation with patient age 
(Figure 1B). While methylation changes were negatively 
correlated with patient age (rho=-0.11, p=0.030, FDR=0.23) 
displaying a higher level of methylation at CpG sites among 
younger patients (Figure 1C).

We repeated the analysis on patient sub-cohorts 
established according to the tobacco exposure data (i.e., 
tobacco smoking history indicator), tumor staging (i.e., ajcc 
pathologic tumor stage), and mutational rate profile (i.e., 
transversion status) in order to explore the influence of patient 
features on the relation among SNPs, CNVs, and methylation 
changes with patient age. The analysis of sub-cohort with a 
high mutational load (i.e., transversion-high status) showed a 
negative correlation between the SNPs load and patient age 
while no correlations were detected in the low mutational 
load sub-cohort (i.e., transversion low status) (Table 1). The 
results regarding CNVs and methylation changes were fully 
reported in Supplementary Table 2.

Gene-specific alterations enrichment along 
patient ageing

The Spearman’s rank correlation was computed 
between SNPs, CNVs, and methylation changes in 
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each gene and patient age, we reported the results in 
Supplementary Table 3. A special focus was placed on 
the 20 significantly mutated genes previously found 
in LUSC [3] (Supplementary Table 4, Figure 1D–1F). 
A negative correlation between patient age and both 
CNVs (rho=-0.13, p=0.005, FDR=0.16) and methylation 
changes (rho=-0.14, p=0.006, FDR=0.06) was detected 
on NOTCH1, while no SNPs correlation was displayed. 
A significantly higher level of methylation at CpG sites 
in younger patients was as well exhibited in RASA1 
(rho=-0.19, p=0.0002, FDR=0.01), ARID1A1 (rho=-
0.22, p=0.00005, FDR=0.006), PASK (rho=-0.11, p=0.04, 
FDR=0.16) and NSD1 (rho=-0.13, p=0.02, FDR=0.09).

In order to explore the hypothesis of possible 
mutator phenotypes contributing to the high mutational 
rate detected among younger patients, we analyzed 
whether mutations harboring on the top 20 frequently 
mutated DNA repair genes in lung cancer [26] might 
have a significant impact on the SNPs load. For each of 
them, the Wilcoxon test was performed to compare the 
mutational load of the patient sub-cohorts exhibiting the 
somatic alterations against the wild-type patient groups 
(Supplementary Table 5). The percentage of patients 
which have at least one of the genes mutated was >83% in 
each age-group. The mutator phenotype had a significant 
impact on the mutational load in 60-70 and 70-80 age 
classes. Therefore the analysis was repeated grouping the 

patient global cohort in younger and older than 60 years 
old. While only 3 genes were significant in ≤60 years old 
patients, 14 out of 20 genes had a significant impact on the 
mutational load in >60 years old patients.

Age-related COSMIC signatures

Somatic mutation profile is the sum of multiple 
mutation processes, such as the intrinsic infidelity of the 
DNA replication machinery, exogenous or endogenous 
mutagen exposures, enzymatic modification of DNA, and 
defective DNA repair. In order to analyze each mutation 
process separately, we correlated the patient age with 
single nucleotide variants (Supplementary Table 6) and 
COSMIC signatures (Supplementary Table 7) using the 
Spearman’s rank correlation. Additionally, the Wilcoxon 
Rank-Sum test was performed to evaluate the differences 
between each age group (i.e., <50, 50-60, 60-70, 70-80, 
>80) and the rest of the cohort.

The defective DNA mismatch repair (MMR)-
related signature 6 (SI6) was negatively correlated (rho=-
0.13, p=0.004, FDR=0.12) with the patient age (Figure 
2A) while the signature 26 (SI26) as well associated 
with defective DNA MMR, was positively correlated 
(rho=0.11, p=0.013, FDR=0.20) with the patient age 
(Figure 2B). Both signatures showed similar trend in the 
transversion-high sub-cohort. The smoking-related SI4 

Table 1: SNPs loads correlations with patient age

Classification Patients n. rho [95%CI] p-value FDR

Global 480 -0.09 [-0.19 0] 4.53×10-2 1.81×10-1

Transversion Status

 High 387 -0.11 [-0.22 -0.01] 2.60×10-2 1.56×10-1

 Low 84 0.15 [-0.05 0.34] 1.87×10-1 3.21×10-1

Tobacco smoking history indicator

 Lifelong non-smokers 18 0.11 [-0.41 0.61] 6.54×10-1 7.85×10-1

 Current smokers 131 -0.12 [-0.29 0.05] 1.66×10-1 3.21×10-1

 Current reformed smokers for >15 yrs 78 -0.19 [-0.38 0.03] 9.88×10-2 2.96×10-1

 Current reformed smokers for < or = 15 yrs 236 -0.09 [-0.22 0.05] 1.59×10-1 3.21×10-1

 Current reformed smokers, duration not 
specified 5 -0.1 [-1 1] 9.50×10-1 9.50×10-1

Ajcc pathologic tumor stage

 1 233 -0.07 [-0.19 0.06] 3.13×10-1 4.70×10-1

 2 153 0.02 [-0.13 0.19] 7.66×10-1 8.36×10-1

 3 83 -0.35 [-0.53 -0.15] 1.12×10-3 1.34×10-2

 4 7 -0.29 [-0.96 0.62] 5.56×10-1 7.41×10-1

Correlations between the SNPs loads and patient age for each patient sub-group established according to the patient 
characteristic evaluated in our study, such as tobacco exposure data (i.e., tobacco smoking history indicator), tumor staging 
(i.e., ajcc pathologic tumor stage), and mutational rate profile (i.e., transversion status).
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was negatively correlated (rho=-0.11, p=0.02, FDR=0.21) 
with patient age (Figure 2C), showing higher values in the 
≤50 and 51-60 age groups (Supplementary Table 7). No 
correlation was detected for the age-related SI1.

In order to study the patient sub-cohorts, which 
predominantly exhibit SI26 and SI6, we divided the 
overall LUSC cohort into four subgroups using the 
mean values of SI6 and SI26 as threshold (Figure 2D): 
high-SI6/high-SI26 (77/480=16.0%), low-SI6/high-SI26 
(55/480=11.0%), high-SI6/low-SI26 (223/480=45.8%), 
and low-SI6/low-SI26 (130/480=27.1%). We selected and 
characterized the low-SI6/high-SI26 and high-SI6/low-
SI26 subgroups (Supplementary Table 8). The patients age 
of the low-SI6/high-SI26 cohort was significantly higher 
than the high-SI6/low-SI26 cohort (Wilcoxon Rank-Sum 
test: p=0.005).

Gene set enrichment analysis

On the basis of the previous analysis, the LUSC 
mutation profile in relation to ageing is characterized by 
two major defective DNA MMR-related signatures (i.e., 
SI6 and SI26). To study the molecular effects of these 
signatures independently, we projected the SNPs, CNVs 
and DNA methylation values from the high-SI6/low-SI26 
and low-SI6/high-SI26 subtypes into the space of the 186 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways by means of single-sample gene set enrichment 
analysis (ssGSEA) (Supplementary Table 9) [27].

Using the Wilcoxon Rank-Sum test, we reported 
as major significant differences, that Extracellular 
Matrix (ECM)-Receptor Interaction pathway (p=0.0002, 
FDR=0.04) was significantly enriched of SNPs while 

Figure 1: Correlation between genomic alterations and patient age in global cohort. Number of (A) SNPs, (B) CNVs and 
(C) methylation changes with their relative 95% confidence interval for each patient distributed along patient age. Medians (black line) and 
their relative 95% confidence interval (red area) were calculated locally in a range of ±10 years. (D) SNPs, (E) CNVs and (F) methylation 
changes profile of the 20 significantly mutated genes in LUSC. Significantly positive and negative correlated genes were highlighted in 
red and blue respectively.
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the Nucleotide Excision Repair pathway was enriched 
in CNVs (p=0.0007, FDR=0.14) in high-SI6/low-SI26 
sub-cohort (Figure 3). The Regulation of Autophagy 
pathway (p=0.0006, FDR=0.06) showed an enrichment of 
SNPs in low-SI6/high-SI26 patient sub-cohort. Using the 
Spearman’s Rank Correlation Coefficient, we detected a 
negative correlation between SNPs harboring on ECM 
Receptor Interaction pathway and patient age (rho=-
0.16, p=0.016, FDR=0.73) in high-SI6/low-SI26 sub-
cohort. In Figure 3, the GSEA values of “ECM-Receptor 
Interaction” pathway were reported for both (Figure 3A) 
high-SI6/low-SI26 and (Figure 3B) low-SI6/high-SI26 
patient sub-cohorts in order to visualize the different trends. 
Unsupervised hierarchical clustering of SNPs frequencies of 
genes involved in the “ECM Receptor Interaction” pathway 
(according to the KEGG database) was added in order to 
report the pathway mutation profile (Figure 3C–3D).

When evaluating the global cohort, we detected 
a significant negative correlation between patient age 
and SNPs harboring on “Axon-Guidance” (rho=-0.15, 
p=0.0007, FDR=0.14) and ECM Receptor Interaction 
(rho=-0.13, p=0.003, FDR=0.16) pathways, particularly 
in the 51-60 age group. Furthermore, the Axon-Guidance 
(rho=-0.16, p=0.001, FDR=0.12) pathway was the only 
negatively enriched pathway in transversion-high sub-
cohort (Supplementary Table 10).

DISCUSSION

We identified a slightly higher SNPs load among 
younger patients of the TCGA LUSC patient cohort 
confirming a previous study [15]. In particular, the 
correlation was higher in tumors with high mutational 
burden. Since the correlation was not robust, we believe 
that our results must be evaluated in an independent 
cohort to confirm higher mutational rate in younger 
patients. Interestingly, a higher overall methylation 
rate at CpG sites was as well detected among younger 
patients. Although the knowledge is still limited, 
numerous studies showed that CpG methylation plays 
an important role in maintaining gene silencing. Several 
studies have revealed that tumor suppressor gene 
promoter hypermethylation is noted in tumor cells [28]. 
However, normal non-proliferative cells also showed gene 
promoter hypermethylation as age increases [29, 30]. Age-
dependent hypermethylation at CpGs was observed to 
be enriched with DNA binding factors and transcription 
factors, therefore the dysregulation can simultaneously 
affect several biological processes [31, 32]. On the 
contrary Heyn et al. [32] revealed that centenarians 
exhibit lower DNA methylation levels compared with 
newborns. Therefore, the higher methylation level at 
CpG sites among younger patients detected in our study 

Figure 2: Correlation of SNPs profiling and patient age in global cohort. Correlation between defective DNA MMR (A) SI6 
and (B) SI26, and smoking related (C) SI4 with patient age. Medians (black line) and their relative 95% confidence interval (colored area) 
were calculated locally in a range of ±10 years. (D) Classification of the overall LUSC cohort into four subgroups using the mean values 
(dashed red lines) of SI6 and SI26 as threshold: high-SI6/high-SI26, low-SI6/high-SI26 (green circle), high-SI6/low-SI26 (blue circle) and 
low-SI6/low-SI26. The values are converted as log(x+1).
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might comprise both aberrations and normal age-related 
patterns. We detected 5 out of 20 significantly mutated 
genes in LUSC (NOTCH1, RASA1, ARID1A1, PASK, 
NSD1) exhibiting a significantly higher methylation 
levels in younger patients. CNVs enrichment was as well 
detected in NOTCH1 among younger patients. NOTCH1 
is one of the highly significant mutated genes in Cancer. 

Cross-talking with many other critical cancer genes and 
pathways, NOTCH1 is involved in multifaceted regulation 
of cell survival, proliferation, tumor angiogenesis, and 
metastasis. A recent study observed that with long-term 
smoking exposure, the DNA sequence suffers persistent 
miscoding that triggers epigenetic changes in NOTCH1 
[33]. Therefore NOTCH1 aberrations might be involved 

Figure 3: (A) GSEA value of “ECM-Receptor Interaction” pathway in high-SI6/low-SI26 and (B) low-SI6/high-SI26 patient sub-cohorts. 
Unsupervised hierarchical clustering of SNPs frequencies of genes involved in the “ECM Receptor Interaction” pathway (according to the 
KEGG database) in (C) high-SI6/low-SI26 and (D) low-SI6/high-SI26.
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in the peculiar higher mutational burden of younger LUSC 
patients.

Mutator phenotypes might develop in LUSC 
tumorigenesis [15], therefore we evaluated the mutational 
profile of the top 20 frequently mutated DNA repair genes 
in lung cancer [26]. No significant differences in mutation 
frequencies were detected among the age classes. More 
than 83 % of the patients harbored at least one of the genes 
mutated in all age classes. Thus, mutator phenotypes seem 
evenly distributed along patient ageing, contributing to the 
overall high mutational burden in LUSC patients. On the 
contrary, the impact of these mutations on the mutational 
load was significantly higher in >60 years old patients. 
Therefore, mutator phenotypes might have different 
consequences in relation to ageing processes.

The overall SNPs mutational profiling and the 
corresponding correlations with COSMIC signatures 
showed an enrichment of the smoking-related signature 
(i.e., SI4) among younger patients. Past studies described 
a similar scenario showing that despite maintained 
carcinogen exposure, tumors from smokers showed a 
relative decrease in smoking-related mutations over time 
[34, 35]. Therefore, younger patients may develop higher 
sensitivity to smoking-related mutations. The defective 
DNA MMR SI6 and SI26 were as well significantly 
correlated with patient age. The SI6, characterized 
predominantly by C>T at NpCpG sites (any nucleotide 
followed by C followed by G), was enriched in younger 
patients. While the SI26, mostly composed of T>C 
transitions, was enriched in older patients. Both SI6 and 
SI26 are found in microsatellite unstable tumors with 
high numbers of small (shorter than 3bp) insertions and 
deletions at mono/polynucleotide repeats [36, 37]. The 
role of MMR system is to recognize and repair erroneous 
insertion, deletion, and mis-incorporation of bases arising 
during DNA replication and homologous recombination, 
as well as repairing some forms of DNA damage. Given 
the importance of these processes in the maintenance of 
genomic stability, DNA MMR deficiency might leads to 
hypermutation [38, 39]. A recent study showed that out 
of a large number of DNA repair deficiencies analyzed, 
MMR deficiency leads to the by far highest mutation 
rate [36]. Our results suggest that different causing 
factors might contribute to MMR system aberrations 
along patient ageing. Therefore we performed gene 
set enrichment analysis in patient sub-cohorts which 
predominantly exhibit SI6 or SI26. We identified the 
SNPs enrichment in ECM-Receptor Interaction pathway 
among younger patients of high-SI6/low-SI26 sub-cohort. 
The ECM-Receptor Interaction pathway is structurally and 
functionally involved in interactions at the ECM which 
lead to a direct or indirect control of cellular activities 
such as cell migration, differentiation, proliferation, and 
apoptosis [40–42]. Aberrant ECM may promote genetic 
instability and might compromise DNA repair pathways 
necessary to prevent malignant transformation [40]. 

Furthermore, we identified an enrichment of CNVs in 
Nucleotide Excision Repair (NER) pathway in high-SI6/
low-SI26 sub-cohort. Since the NER system is primarily 
responsible for detecting and removing bulky DNA lesions 
induced by tobacco smoke in the respiratory tract [43], 
SNPs in NER protein-encoding genes may contribute to 
the higher sensitivity to smoking consumption detected in 
younger patients. Early studies identified associations with 
lung cancer risk in selected mutated NER genes (ERCC1-
6, LIG1, POLE, XPA, and XPC genes) [44–47].

The low-SI6/high-SI26 sub-cohort was enriched in 
SNPs disruptions of Regulation of Autophagy pathway 
involved in lysosome-dependent degradation processes. 
On one hand, autophagy has been shown to regulate 
some of the DNA repair proteins after DNA damage 
by maintaining the balance between their synthesis, 
stabilization, and degradation. One the other hand, 
some evidence has demonstrated that some DNA repair 
molecules have a crucial role in the initiation of autophagy 
[48, 49]. Therefore, disruption of Regulation of Autophagy 
pathway might contribute to the defective DNA MMR 
system in low-SI6/high-SI26 patient sub-cohort.

Considering the “global” cohort, SNPs harboring 
on genes involved in ECM-Receptor Interaction and 
Axon Guidance pathways were enriched among younger 
patients. Intriguingly, in our previous study on HNSCC, 
we detected the same two pathways enriched among older 
patients, which were the higher mutational rate samples 
due to the proportional relation between the HNSCC 
global mutational load and patient age [16]. Therefore, 
although the inverse tendency, Axon Guidance and ECM-
Receptor Interaction pathways seem to show a relation 
with higher mutational rate squamous carcinomas. Several 
studies reported that Axon Guidance pathway is involved 
in lung cancer development and progression through 
interacting with cell survival, migration, and tumor 
angiogenic pathways [50–54]. Further studies are needed 
to determine whether disruptions in these pathways are a 
correlative phenotype to higher mutational rate squamous 
carcinomas or a causative factor.

In conclusion, multiple mutational processes 
appear to be simultaneously operative with various 
dynamic changes due to the endogenous and exogenous 
environments, life style habits and physiological ageing. 
Previous hypothesis of a mutator phenotype concealing 
the effect of age-related accumulation of mutations 
might have different causing factors in relation to ageing 
processes. We hypothesize that a higher sensitivity 
to smoking-related damages and the enrichment of 
defective DNA MMR SI6 may contribute to the higher 
mutational burden of younger patients. A higher overall 
level of methylation was as well detected in younger 
patients. While the defective DNA MMR SI26 showed 
increasing tendency along patient ageing. Therefore, the 
two distinct age-related defective DNA MMR signatures 
SI6 and SI26 might be crucial mutational patterns 
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in LUSC tumorigenesis which may develop distinct 
phenotypes.

The evaluation of somatic genomic alterations 
along patients ageing might be relevant for a better 
comprehension of LUSC tumorigenesis and development 
of age-adjusted treatments.

MATERIALS AND METHODS

TCGA data sets

Multiplatform genomic data sets were generated by 
TCGA Research Network (http://cancergenome.nih.gov/). 
Cancer molecular profiling data were generated through 
informed consent as part of previously published studies 
[55] and analyzed in accordance with each original study’s 
data use guidelines and restrictions. The clinical data of the 
504 LUSC normal paired exome sequences was derived 
via download from the publicly available GDC Data Portal 
(https://portal.gdc.cancer.gov/).

Whole exome analysis

Somatic mutations were obtained from the open 
access MAFs available from the GDC Legacy Archive 
(https://portal.gdc.cancer.gov/legacy-archive). We 
considered three different exclusion criteria for mutation 
data entries. Samples belonging to the same patient share 
a very similar mutational profile. In the first exclusion 
criteria, we considered only once a mutation present in 
different samples belonging to the same patient. The 
mutations not included were equal to the 25.2% (282163 
=>210948).

Some genes can share a similar sequence, such as 
paralogous genes. In presence of a mutation event on a 
sequence shared among different genes, it will not be 
possible to identify the mutated gene. With the second 
exclusion criterion, we decide to remove mutations that 
were associated to more than one gene. In this step we 
removed the 0.1% of mutations (210948 => 210700).

The challenges of repetitive sequence, which 
constitute 50–69 % of the human genome leads to false 
positive variant calls due to systematic sequencing errors 
and local alignment challenges [56]. Therefore, only 
somatic mutations with “ref context” containing less than 
6 continuous single repetitions, less than 4 continuous 
duplets, less than 3 continuous triplets, less than 3 
continuous quadruplets, less than 3 continuous quintuplets 
were kept. With the third exclusion criteria, the mutations 
were reduced from 210700 to 194170 (~8.8%).

The patient TGCA-66-2755 was excluded from the 
following analysis due to the unusual number of mutations.

SNP array-based copy number analysis

DNA from each tumor or germline-derived sample 
had been hybridized to Affymetrix SNP 6.0 arrays [57] 

and processed through GISTIC [58, 59] by the TCGA 
consortium.

High-level copy gain or copy loss events for 
individual genes were inferred using the publicly 
available Firehose’s (Gistic2.Level4) data (http://gdac.
broadinstitute.org/runs/analyses__2016_01_28/data/
LUSC/20160128/) (+2 values being indicative of gains 
greater than 1-2 copies, -2 values being indicative of 
near total copy loss). Global CNV load were calculated 
summing the absolute values from each patients.

Array-based DNA methylation assay

DNA methylation profiles had been previously 
generated by TCGA using either the Infinium HM450 or 
HM27 assay probe. The level 3 beta value DNA methylation 
scores for individual genes were inferred using publicly 
available data generated by Illumina Human Methylation 
450 platform downloaded from the GDC Legacy Archive 
(https://portal.gdc.cancer.gov/legacy-archive). Methylation 
values were mean centered and scaled to unit variance. 
After the transformation, the rate of methylation changes 
was calculated summing the values of each gene.

Single nucleotide variants and COSMIC 
signatures

The signature profile was evaluated using the 
six subtype: C>A, C>G, C>T, T>A, T>C, and T>G 
(all substitutions were referred to by the pyrimidine 
of the mutated Watson-Crick base pair). Further, each 
of the substitutions was examined by incorporating 
information on the bases immediately 5’ and 3’ to each 
mutated base generating 96 possible single nucleotide 
variants (6 types of substitution x 4 types of 5’ base 
x 4 types of 3’ base). The profile of these 96 single 
nucleotide variants was considered as the results of the 
combination of the 30 different COSMIC signatures. 
The profile of each tumor sample can be represented by 
a unique contribution of each COSMIC signature as the 
following expression:

a1 × SI1 + a2 × SI2 + a3 × SI3 + … + a30 × SI30  (1)

where ai is the coefficient representing the 
contribution of the ith COSMIC signature. The 
coefficients of each tumor samples were calculated 
minimizing the difference between the tumor profile 
and the expression (1). This procedure was implemented 
using the function optim (method “L-BFGS-B” [60]) of 
the R software [61].

Molecular pathway and biological process analysis

Pathway analyses were performed by ssGSEA 
using the GenePattern module ssGSEA Projection (v4) 
(genepattern.broadinstitute.org). ssGSEA enrichment 

http://cancergenome.nih.gov/
https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm
https://portal.gdc.cancer.gov/legacy-archive
http://gdac.broadinstitute.org/runs/analyses__2016_01_28/data/LUSC/20160128/
http://gdac.broadinstitute.org/runs/analyses__2016_01_28/data/LUSC/20160128/
http://gdac.broadinstitute.org/runs/analyses__2016_01_28/data/LUSC/20160128/
https://portal.gdc.cancer.gov/legacy-archive
http://genepattern.broadinstitute.org


Oncotarget32169www.oncotarget.com

scores were calculated from SNPs, CNV, and methylation 
LUSC data sets. The result is a single score per patient 
per gene set, transforming the original data sets into 
a more interpretable higher-level description. For the 
use of ssGSEA software, annotated gene sets reference 
were obtained from the C2 KEGG sub-collection of the 
Molecular Signature database (MSigDB) [62]. Silent 
mutations (point mutations that would not result in a 
change in the amino acid sequence) were not included in 
the analysis.

Statistical analysis

The Spearman’s Rank Correlation Coefficient 
was used to identify correlation between patient age 
and genomic/epigenomic data (e.g., SNP, CNV, and 
methylation loads). For every Spearman’s test performed 
in this study, p-values were computed using algorithm 
AS 89 included in the R function cor.test where the 
permutation distribution was estimated by an Edgeworth 
approximation [63]. The coefficient interval of rho value 
was calculated by bootstraping (with 1000 replicates) 
using the function spearman.ci of the R package 
RVAideMemoire. Fisher’s exact test was used to examine 
the significance of the association between COSMIC 
signature related subgroups (i.e., low-SI6/high-SI26 and 
high-SI6/low-SI26) and clinical/demographic/molecular 
patient features, such as gender, tobacco smoking history 
indicator, and mutated / wild type genes. Fisher’s exact 
test was computed using the R function fisher.test. 
Wilcoxon Rank-Sum test was performed to compare 
continuous variables between two patient subgroups using 
the R function wilcox.test. A p-value <0.05 was considered 
to be significant. To account for multiple testing, a FDR 
of ≤20% was applied to reduce identification of false 
positives [64]. The FDR was calculated using the R 
function p.adjust. All calculations were made using R 
software [61].
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