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ABSTRACT

Breast cancer remains a leading cause of morbidity and mortality worldwide 
yet methods for early detection remain elusive. We describe the discovery and 
validation of biochemical signatures measured by mass spectrometry, performed 
upon blood samples from patients and controls that accurately identify (>95%) the 
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presence of clinical breast cancer. Targeted quantitative MS/MS conducted upon 1225 
individuals, including patients with breast and other cancers, normal controls as well 
as individuals with a variety of metabolic disorders provide a biochemical phenotype 
that accurately identifies the presence of breast cancer and predicts response and 
survival following the administration of neoadjuvant chemotherapy. The metabolic 
changes identified are consistent with inborn-like errors of metabolism and define 
a continuum from normal controls to elevated risk to invasive breast cancer. Similar 
results were observed in other adenocarcinomas but were not found in squamous 
cell cancers or hematologic neoplasms. The findings describe a new early detection 
platform for breast cancer and support a role for pre-existing, inborn-like errors of 
metabolism in the process of breast carcinogenesis that may also extend to other 
glandular malignancies. 

Statement of Significance: Findings provide a powerful tool for early detection 
and the assessment of prognosis in breast cancer and define a novel concept of 
breast carcinogenesis that characterizes malignant transformation as the clinical 
manifestation of underlying metabolic insufficiencies. 

INTRODUCTION

Breast cancer remains a leading cause of morbidity 
and mortality throughout the world [1, 2]. Earlier diagnosis 
through the application of mammography and magnetic 
resonance imaging has improved the detection of smaller 
volume disease providing physicians the opportunity 
to intervene at earlier stages when the cancers are most 
curable [3]. 

The advent of molecular technologies, widely 
applied in prognostic determinations, have evolved into 
diagnostic tools that utilize circulating tumors cells and 
cell free DNA for earlier detection, prognosis and where 
applicable response prediction. Numerous clinical trials 
are now exploring the clinical utility of these approaches 
[4, 5]. 

We now recognize that human cancers evolve in 
an environment of metabolic stress. Rapidly proliferating 
tumor cells deprived of adequate oxygen, nutrients, 
hormones and growth factors up-regulate pathways that 
address these deficiencies to overcome hypoxia (HIF), 
vascular insufficiency (VEGF), growth factor deprivation 
(EGFR, HER2) and the loss of hormonal support (ER, PR, 
AR) all to enhance survival and proliferation [6]. 

Many oncogenes are now known to regulate 
metabolic pathways that are critical for cell survival in 
the inhospitable tumor micro-environment, where oxygen 
and nutrient sources are highly limited. Indeed RAS, 
PI3K, TP53 and MYC among others are now recognized 
to be important metabolic regulators whose functions are 
fundamental for tumor cell survival [7].

Based upon the growing recognition that cancer 
cells differ from their normal counterparts in their use 
of nutrients, synthesis of biomolecules and generation 
of energy, we applied quantitative mass spectrometry 
to the blood and tissue of patients with breast cancer 
and compared the results with those observed in normal 
controls. To explore commonalties, we extended these 

studies to include other cancers of glandular and non-
glandular ancestries and to non-malignant disease states 
associated with metabolic stress including poly cystic 
ovary syndrome and advanced metabolic syndrome. 

The findings led to a murine model of insulin/
glucose mediation of metabolic stress and finally to an 
exploration of the secretome of human embryos prior to 
implantation to examine the “stemness” of the signals 
observed. 

RESULTS

Breast cancer identification through blood 
biochemical phenotyping

The search for metabolic intermediates, the blood 
concentrations of which (µM/L) could be utilized as breast 
cancer biomarkers led to the assembly of an exploratory 
data set that compared plasma samples from women at low 
risk of breast cancer (n = 31) with plasma samples from 
patients with treatment-naive stage III (T3N2M0) invasive 
disease (n = 59). Targeted quantitative MS/MS analysis 
[8] coupled with unsupervised clustering analysis (Online 
methods) identified clear metabolic differences between 
cases and controls (Figure 1A). Validation was then 
undertaken (statistical power = 0.8) that compared 169 
population-based control samples, against results obtained 
in 154 cases from an independent and earlier reported 
disease cohort the “Risk Prediction of Breast Cancer 
Metastasis Study” (Italy and Austria) (Supplementary 
Information) (Figure 1D–1L).

Results demonstrated that breast cancer women 
exhibited at least one up- or down-regulated metabolite 
from amongst 5 of the principal 7 classes of metabolites 
that we quantified in blood (Supplementary Table 1A–1C)  
as exemplified in Figure 1A (arrows). Figure 1D–1L 
show the statistical analysis depicting the individual 
validation (dark and light blue bars) of nine of these 
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metabolites, originally identified in the exploratory phase 
(red and green bars) including glutamine (Gln), aspartate 
(Asp), glutamate (Glu), lysophosphatidylcholine acyl 
C26:1 (lysoPC a C26:1), Sphingomyelin C18:0 (SM 
C18:0), 3-Hydroxytetradecenoylcarnitine (C14:1-OH), 
phosphatidylcholine acyl-alkyl C38:3 (PC ae C38:3), 
methionine sulfoxide (Met-SO) and taurine.

Among the observations in both, the exploratory 
and the validation sets, was the finding that glutamine 
concentrations in the cancer patients were reduced 
to nearly 1/8 of the levels observed in the normal 
population (~800 µM/L) (p = 7.8e-53, FDR = 2.7e-52) 
(Figure 1D) while blood concentrations of aspartate (p = 
1.7e-67, FDR  = 8.3e-67) (Figure 1E) and glutamate (p 
= 6.4e-96, FDR = 6.2e-95) (Figure 1F) were nearly 10 
fold higher than the normal ranges of 0–5 µM/L and 40 
µM/L, respectively. 

As glutamine consumption associated with parallel 
increases in glutamate and aspartate (Figure 1A red arrows) 
is considered a hallmark of MYC-driven “glutaminolysis” 
[9], these findings led an examination of other MYC-
associated phenomena to interrogate the observations. 

Blood quantification of MYC activity and its 
connection to metabolic syndrome, breast cancer 
risk, response and survival 

Hepatic glutamine (Gln) metabolism regulates the 
level of amino acids in the circulation and Glutamate 
(GLU) through its role in numerous trans-deamination 
reactions is central to this process [9].

As MYC activation is associated with measureable 
changes in blood levels of specific metabolites including 
glutamine, glutamate, the ratios thereof and others, we 
used targeted quantitative MS/MS to evaluate (µM/L) 
these intermediates as surrogate markers for MYC 
activation. We then assembled metabolite ratios measured 
directly in blood to serve as “proxies” for MYC-
coordinated metabolic functions (Online methods). 

In agreement with our hypothesis the Gln/Glu 
ratio, a negative surrogate for glutamine metabolism, 
i- discriminated breast cancer cases from controls 
(Figure 2A, and 2D); ii- inversely correlated (Correlation 
= –0.54, p = 3.67e-6 FDR = 3.06e-5) with elevated 
breast cancer risk (Figure 2B) iii. correlated with the 
risk of 5-year mortality in pathological stage I patients 
and iv-inversely correlated with the failure to achieve 
pathologic complete remission (pCR) after neo-adjuvant 
chemotherapy (NAC) (Correlation = –0.81, p = 1.15e-81, 
FDR = 2.13e-80) (Figure 2C). 

Parallel analyses found that the Gln/Glu ratio 
inversely correlates with i- late stage metabolic syndrome 
and with ii- increased chance of death in both the 
retrospective and prospective arms of the European cohort 
(Correlation = –0.68, p = 2.30e-38, FDR = 1.59e-37)  

(Figure 2F). Where applicable, T Test, ANOVA and 
posthoc analysis are highlighted by * in all figures. 

Theoretically, changes in glutamine consumption, 
reflected by the Gln/Glu ratio could provide a metabolic 
link between breast cancer initiation and diabetes, 
reflective of a systemic metabolic reprogramming from 
glucose to glutamine as the preferred source of precursors 
for biosynthetic reactions and cellular energy [9]. 

We found the same changes in the Gln/Glu ratio 
in nearly 100% of breast cancer patients, independent of 
intrinsic subtype (Figure 2A, 2D and 2E). These breast 
cancer patients revealed systemic MYC-associated 
biochemical shifts, previously described in vitro [9], 
associated with glutamine utilization over glucose for 
the synthesis of structural phospholipids, as measured by 
the ratios (Structural Lipids/Gln) and (Structural Lipids/
Hexoses) respectively (Supplementary Figure 1D and 1E). 
The MYC signatures in breast cancer patients and their 
similarity to diabetes mellitus raised the question whether 
metabolic re-programming might be identified through the 
measurement of other bio-chemical intermediates. 

Similar changes in glutamine consumption had 
previously been reported in the Framingham Heart Study 
where the follow-up of more than 1000 participants 
showed that lower Gln/Glu ratios inversely correlated with 
insulin resistance and the risk of diabetes [10]. 

Assembling biochemical equations for breast 
cancer identification by incorporating elevations 
in oncometabolites

To examine breast cancer against other disease 
states, we compared our results with those obtained from 
other cancers (30 liver; 23 lung; 85 colon; 58 head & neck 
and 65 hematologic) and from individuals with various 
metabolic conditions including late stages of metabolic 
syndrome [2] (n = 70), HCV-induced cirrhosis (n = 30); 
hyperthyroidism (n = 8); hypothyroidism (n = 8); HIV 
infection (n = 18); polycystic ovary syndrome (n = 49); 
auto immune disease (n = 86) and with those from women 
at elevated risk for breast cancer (n = 33).

We measured biochemically-active metabolites, 
that had previously been described in large metabolomics 
and genome-wide association studies [11, 12] (Online 
methods) to examine established single metabolite and 
metabolite ratios related to: i- liver function (Val/Phe, 
Xle/Phe), ii- lipid desaturase activity (PC aa C36:6) and 
iii- serine palmitoyltransferase (SPTLC3) activity (PC aa 
C28:1 and C10:2). These measures were used to develop 
algorithms for the interrogation of our data sets (Online 
Methods). 

Results, as multivariate Receiver Operator Curve 
(ROC) analyses, using the equation {[PC aa 36:6/[(Val/
Phe)/Taurine]/C10:2} and the lipid PC aa C28:1, were 
found to segregate breast cancer from controls, irrespective 
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of stage (I to III) and intrinsic subtypes, in both the 
exploratory [AUC = 0.987 (95% CI: 0.964-1), sensitivity =  
96.72%, specificity = 96.78%, positive predictive 
value  =  98.33%, negative predictive value = 93.94%, 
average accuracy (100-fold cross validations) = 0.95 
and predictive accuracy statistics (1000 permutations) =  
p < 2.04e-05] and validation sets [AUC = 0.995 (95% CI: 
0.991–0.998), sensitivity = 98.09%, specificity = 96.18%,  
positive predictive value = 82.35%, negative predictive 
value = 99.64%, average accuracy (100-fold cross 
validations) = 0.96 and predictive accuracy statistics (1000 
permutations) = p < 1.28e-06] (Figure 1B and 1C).

To confirm these associations we conducted 
Pearson’s r correlations (www.metaboanalyst.ca) that 
compared the described ratio values with levels of the 
oncometabolites fumarate, succinate, lactate, glutamine 
and hexoses [13, 14] measured in the blood of our 154 
European breast cancer patients. The highest positive 
correlations were found with lactate (p = 1.42e-08, FDR 
= 3.24e-07), lactate/pyruvate (p = 7.96e-06, FDR = 7.47e-
05) (Figure 3A) (Supplementary Table 1), fumarate/
hexoses (p = 0.0004, FDR = 0.002), succinate/hexoses (p  
= 0.0001, FDR = 0.0007) and the glutaminolysis-related 
ratio (Ala+Asp+Glu/Gln) (p = 0.0004, FDR = 0.002) 
(Figure 1M). When the (Lac/Pyr) values were applied to 
the logistic regression equation  logit(P) = log[P/(1–P)] = 
–12.24 + 1.80 Lac/Pyr, where P is Pr(y = 1|x), elevations in 
this ratio were associated with an increased risk of 5-years 
death (Odds = 6.08 [Pr (>IzI) = 0.001]) when analyzing 
patients with primary tumors not bigger than 2.0 cm  
(n = 103) (Supplementary Figure 1). 

The highest negative correlations were observed for 
hexoses/lactate (p = 5.88e-08, FDR = 1.11e-06); hexoses 
(p = 0.002, FDR = 0.007); and the liver gluconeogenesis 
ratios (hexoses/PHGDH Act) (p = 0.002, FDR = 0.007); 
and (hexoses/Ala+Gly+Ser) (p = 0.0014, FDR = 0.005); 
[hexoses/(C14:1/C4)] (p = 0.003, FDR = 0.009); [hexoses/
(C18:1/C8)] (p = 9.94e-05, FDR = 0.0006); (hexoses/
CPTII) (p = 0.0007, FDR = 0.003); [hexoses/(C16/C3)]  
(p = 0.001, FDR = 0.004); (hexoses/AcylC-DC) (p = 
0.002, FDR = 0.007) (Figure 1M) (Supplementary Table 
2A, 2B). 

Correlations with other tumors of glandular 
ancestries

When the metabolic profiles of patients with 
different tumors (lung, colon, liver, leukemias, lymphomas 
and squamous cells carcinoma of head and neck) were 
examined, the results again demonstrated enhanced 
glutamine consumption, particularly in patients harboring 
tumors of glandular ancestries (Figure 2G).

Extending these studies to include patients with 
polycystic ovary syndrome (PCOS) (Black Arrow), 
cirrhosis (Blue Arrow), high-risk of breast cancer and 
stage 5 metabolic syndrome revealed that these cancer-free 

participants manifested glutaminolytic profiles that were 
very similar to those found in adenocarcinoma patients 
(Red) (Figure 2G).

The ratio (Glu/Hexoses) was assembled by us 
following the in vitro demonstration of the “glutamate 
pulling effect” (15) where glucose starvation in malignant 
cells culture leads to elevations in glutamate through a 
MYC-coordinated reaction. 

This effect was clearly identified in the blood of 
patients harboring adenocarcinomas, those at higher risk 
of breast cancer (Red bar) and individuals with PCOS 
(Light orange bar) (Figure 3C). Noteworthy, neither of 
the control groups composed of population-based normal 
controls or patients with non-glandular tumors (leukemias, 
lymphomas, multiple myelomas and squamous cell 
carcinomas) revealed marked changes in this ratio 
particularly squamous cell carcinomas that revealed 
similar levels to controls (Figure 3C).

Increases in the “glutamate pulling effect” have been 
described under conditions of metabolic stress induced 
by glucose deprivation [15]. In agreement, we found a 
significant (p = 0.003, FDR = 0.009) inverse correlation 
between patient blood hexoses concentrations and the 
values of our breast cancer equation {[PC aa 36:6/[(Val/
Phe)/Taurine]/C10:2} (Figure 1M). 

In line with the premise that glandular cancers are 
promoted under conditions of relative hypoglycemia, 
measured as the “glutamate pulling effect”, our results 
suggest that the isolated determination of blood glucose 
levels may not be as informative as the measurement 
of hexose levels in relation to other metabolic 
intermediates including: i) the mitochondrial carnitine 
palmitoyltransferase II (CPT-2) deficiency ratio (C16/C3)  
(Figure 4A) ii)-the peroxisomal impairment biomarkers 
lysoPC a C26:0, lysoPC a C26:1 and lysoPC a 
C28:1 (Figure 4B, 4D and 4E) or iii)- its relation to 
glutaminolysis [Phe/(Gln/Glu)/Asp] (Figure 4C). 
Importantly, both CPT-2 and peroxisomal deficiencies, 
well known inborn errors of metabolism, are associated 
with hypoglycemia in afflicted patients [16–18]. 

If a state of relative hypoglycemia were to occur 
in breast cancer as the result of inborn-like errors of 
metabolism then hyperinsulinemia associated with chronic 
hypoglycemia would constitute a powerful metabolic 
stressor capable of systemically up-regulating glycolysis 
and glutaminolysis, even in the absence of cancer.

MYC-insulin hypoglycemic stress recapitulates 
biochemical disturbances associated with breast 
cancer

To examine the hypoglycemia premise, we 
developed an experimental murine model in which insulin 
was administered to mice under normo- and hypoglycemic 
conditions [19, 20]. In this murine model only the 
hypoglycemic mice that received insulin (light blue) 
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Figure 1: Breast cancer discriminative performance of the top 50 individual metabolites quantified in blood (μmol/L), during exploratory 
set, using unsupervized clustering analysis with heatmap (A). Arrows are pointing to metabolites whose concentrations in blood (μmol/L) 
were analyzed by ANOVA during exploratory (Expl) (Red and Green Bars) and confirmed after validation (Valid) set (Dark and Light 
Blue Bars). The first red arrow at the top (a) show glutamine (Gln), the most abundant amino acid in healthy population (Cnt), whose 
concentrations, however, became very low in blood of breast cancer women (B, C) (D). On the other hand, the two red arrows at the bottom 
(A) are pointing to glutamate (Glu) and aspartate (Asp) whose concentrations are high in the blood of the same patients (E and F). This 
description completely fullfils the concept of “Glutaminolysis” where glutamine is consumed and transformed in glutamate and aspartate. 
The increased concentrations of sphyngomielins (SM C18:0) (G) and ether lipids (PC ae C38:3) (H) are suggestive that a systemic 
metabolic shift favoring biosynthesis is predominant in cancer patients. Accumulations, in blood, of acylcarnitines and lipids containing 
very-long chain fatty acids (C14:1-OH) (I) (lysoPC a C26:1) (J) are common metabolic features of mitochondrial and peroxisomal fatty 
acids oxidation deficiencies (FAOD) that are, usually followed, by disturbances in ReDOX homeostasis with elevations in oxidative stress 
and consequent damage to proteins as demonstrated by significant elevations in methionine sulphoxide residues (Met-SO) (K). Elevations 
in taurine (L), as will be demonstrated ahead, are directly related to increases in blood levels of oncometabolites succinate and fumarate. 
Figure 1A and 1B are showing the breast cancer discriminative performance during exploratory (A) and validation (B) sets using the equation 
{PC aa C36:6/[(Xle/Phe)/Tau]}/C102 and the lipid PC aa C28:1 whose absolute concentrations in blood were applied to multivariate ROC 
curve analysis. Increasing values generated by this metabolic signature were able to accurately segregate breast cancer from controls either 
during training [AUC = 0.987 (95% CI: 0.964-1), sensitivity = 96.72%, specificity = 96.78%, positive predictive value = 98.33% negative 
predictive value = 93.94%, average accuracy (100-fold cross validations) = 0.95 and predictive accuracy statistics (1000 permutations)  
= p < 2.04e-05] or validation sets [AUC = 0.995 (95% CI: 0.991-0.998), sensitivity = 98.09%, specificity = 96.18%, positive predictive 
value = 82.35%, negative predictive value = 99.64%, average accuracy (100-fold cross validations) = 0.96 and predictive accuracy 
statistics (1000 permutations) = p < 1.28e-06]. (M) depicts the positive (orange arrows) and negative (blue arrows) correlations among 
the increasing values of our ratio (Y-Axis) and the oncometabolites succinate, fumarate, lactate and hexoses as well as glutaminolysis 
(Ala+Asp+Glu/Gln) and structural lipids measured in different metabolic groups (X-Axis): (1)-grade zero metabolic syndrome; (2)-grade 
1 metabolic syndrome; (3)-grade 2 metabolic syndrome; (4)-grade 3 metabolic syndrome; (5)-grade 4 metabolic syndrome; (6)-grade 5 
metabolic syndrome; (7)-High Risk (RR 1.4) Breast Cancer; (8)-High Risk (RR 1.6) Breast Cancer; (9)-High Risk (RR 1.8) Breast Cancer; 
(10)-Polycistic Ovary Syndrome; (11)-Colon Cancer; (12)-Lung Cancer; (13)-Hepatocarcinoma; (14)-Breast Cancer; (15)-Hematological 
Malignancies (Baseline); (16)-Hematological Malignancies (Transplant); (17)-Hematological Malignancies (Engraftment); (18)-Head and 
Neck Cancer; (19)-Cirrhosis; (20)-Juvenile Arthritis; (21)-Autoimmune Hemolityc Anemia; (22)-Paroxysmal Nocturnal Haemoglobinuria 
and (23)-Human Immunodeficiency Virus. *** Indicates p < 0.001.
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recapitulated the MYC-dependent shifts that had been 
observed in cancer patients, characterized by the insulin/
MYC-dependent reactions of i: glutaminolysis (Gln/Glu), 
(Ala/Glu) and [(Gln/Glu)/Asp] as well as glycolysis (Ser/
C2) and the combination of both (Ser/C2)/[(Gln/Glu)/Asp] 
ii: glutamate pulling effect (Glu/Hexoses) iii: arginine 
methyltransferase activity [Total DMA/[(Gln/Glu)/Asp] 
and [Tau/[(Gln/Glu)/Asp] iiii: liver function [BCAA/
(Phe+Tyr)], ornithine decarboxylase activity (Spermidine), 
iiiiii: liver neoglucogenesis [Hexoses/(Ala+Gly+Ser)] and 
iiiiiii: peroxisomal impairment (lysoPC a C26:0) (Figure 
5A–5J) (Red arrows).

 To confirm these findings in humans, we examined 
whether blood concentrations of hexoses correlated with 
peroxisome dysfunction, as represented by the elevation 
of specific lipids containing very long chain fatty acids 

(VLCFA). We conducted “Pearson r” correlations to 
compare women at low risk of cancer (n = 31), to women 
at elevated relative risk (scoring 1.7 to 1.9) (n = 14), 
women with non-invasive (in situ) carcinoma (n = 23), 
women with polycystic ovary syndrome (n = 49) and those 
with invasive breast cancer both luminal (n = 118) and 
non-luminal (n = 36). 

Results, from the ratios of hexoses to lysoPC a 
C26:1 (Correl. = –0.73, p = 3.41e-49, FDR = 2.89e-48) and 
hexoses to lysoPC a C28:1 (Correl. = –0.60, p = 9.88e-30  
and FDR = 6.29e-29) demonstrated a progressive negative 
correlation beginning with women at high risk and in situ 
carcinoma, to PCOS and finally achieving a nadir in the 
plasma of patients with invasive disease, irrespective of 
intrinsic subtype (Figure 4D and 4E).

Figure 2: The lower values generated by the ratio (Gln/Glu), a negative surrogate for glutamine metabolism, were: i- able to discriminate 
breast cancer cases (BC) from controls (CNTR) (A, and D) independent of intrinsic subtypes (E); ii- inversely correlated with increased 
relative risk (RR) of breast cancer development [RR 1.4 (n = 8) -> 1.5 (n = 11) -> 1.6 (n = 3) -> 1.7 (n = 8) -> 1.8 (n = 3)] (B) and iii- 
inversely correlated with progressive stages (2) of metabolic syndrome Met Syn 0 (n = 18) -> Met Syn 1 (n = 46) -> Met Syn 2 (n = 32) 
-> Met Syn 3 (n = 41) -> Met Syn 4 (n = 20) -> Met Syn 5 (n = 9) and also to women with increased chances of death detected initially 
in the retrospective arm [Alive R. (n = 24) × not Alive R. (n = 8)] with further validation in the prospective setting [Alive P. (n = 67) X 
not Alive P. (n = 7)] of the european cohort (C). This ratio, besides inverse correlation to breast cancer risk (Low Risk n = 31 X High Risk  
n = 33) was also inversely correlated with the highest risk of 5 yrs-mortality among patients harboring tumors of 1.0 cm [BC (2.0 yrs) 
(n = 3) × BC (5.1 yrs) (n = 32)] as well as with the absence of pathologic complete remission (BC pCR, n = 7) when compared to women 
exhibiting residual disease (BC Resid, n = 52) after neo-adjuvant chemotherapy (F). In (G) results demonstrated enhanced glutamine 
consumption not only in plasma of patients harboring different adenocarcinomas such as: breast cancer (BC n = 213), colon cancer (CRC  
n = 85), Lung n = 23 and liver (HCC n = 30), but also in cancer-free subjects with cirrhosis (Cirr. n = 30), polycystic ovary syndrome 
(PCOS n = 49), high risk of breast cancer development (H.Risk n = 33) and late stage metabolic syndrome (Met Syn 3, 4 and 5). Head 
and neck squamous cells carcinomas (H&N n = 57) and hematological malignancies (Hem n = 65), apparently, did not share similar 
glutaminolytic profiles, particularly H&N tumors. *** Indicates p < 0.001.
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Breast cancer as a consequence of a systemic, 
preexistent inborn-like error of metabolism 

The results suggest that breast cancer could 
be preceded by systemic subclinical disturbances in 
glucose-insulin homeostasis characterized by mild, likely 

asymptomatic, IEM-like biochemical changes. The process 
would include variable periods of hyperinsulinemia with 
the consequent systemic MYC activation of glycolysis, 
glutaminolysis, structural lipidogenesis and further 
exacerbation of hypoglycemia, the result of MYC’s known 
role as an inhibitor of liver gluconeogenesis [21].

Figure 3: The MYC-coordinated and malignancy-associated increase in glutamate production, after in vitro shortages 
of glucose, was previously described as the “glutamate pulling effect” [11]. The ratio (Glu/Hexoses) was adopted here as a 
proxy for this metabolic shift that, in fact, was clearly replicated in the blood (Red eclipse) of patients harboring adenocarcinomas (BC, 
CRC, Lung and HCC) as well as in women at higher risks of breast cancer development (R.R. = 1.5 H.Risk 1) and (R.R. = 1.8 H.Risk 2) 
and in individuals with PCOS (C). Of note, neither in the population-based controls depicting progressive metabolic syndrome (0 to 5) or 
in patients harboring non-glandular tumors such as leukemias, myelomas and lymphomas (Hem) as well H&N squamous cells carcinomas 
revealed significant changes in the ratio (Glu/Hexoses) (C). Since the results generated by the Fischer’s quotient (A) were persistently 
suggesting liver dysfunctions in patients harboring glandular malignancies, we also compared our findings to well established conditions 
of liver dysfunctions such as cancer-free patients with HCV-induced cirrhosis (Cirr), patients with hypo (HypoT) and hyperthyroidism 
(HyperT), as thyroid dysfunction is very frequently associated with liver metabolic abnormalities as well as to increased risks of breast 
cancer [23–25]. Similarly, we also analyzed HIV patients due to increased risks of cancer development and because of the direct HIV 
influence on liver function (26). Results revealed concordance between the blood phenotypic profiles of cancer-free patients with cirrhosis, 
thyroid dysfunction and HIV infection with study participants at elevated relative risks of cancer, those with polycystic ovary syndrome 
(PCOS) and patients harboring glandular malignancies (A–C Red ellipses). To explore in more details the relations among malignancy, 
thyroid and liver function, we further divided our cancer-free groups according to: i- increasing relative risks of breast cancer (from 1.4 
to 1.8) (D), ii- rising levels of gamma-GT (from 33 to 392 U/L) (E) and iii- cumulative values of free-thyroxin (from 0.1 to 5.5 ng/mL) 
(F) and compared the findings to women at lower risks of breast cancer (L.Risk) as well as participants with stage III invasive disease 
(Breast Cancer). Results revealed that the same pattern generated by the ratio (Gln/Glu) when applied to cancer-free high risk participants 
(D), could be precisely recapitulated in blood of cancer-free women according progressive values of gamma-GT (E) and free-T4 (F).  
*** Indicates p < 0.001 (H&N: Head and Neck Cancer).
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Under normal conditions hypoglycemia results in 
the recruitment of fatty acids from storage pools. However, 
individuals who carry a primary inability to utilize fatty 
acids as an energy source, as seen in Fatty Acids Oxidation 
Defects (FAOD), would be prone to the accumulation of 
toxic oncometabolites as well as carnitine and fatty acid 
derivatives with increased ROS production and further 
mitochondrial disarrangement [22]. 

In this context, the metabolic dependencies of cancer 
characterized by excessive glycolysis, glutaminolysis 
and malignant lipidogenesis, previously considered a 
consequence of local tumor DNA aberration [23] could, 

instead, represent a systemic biochemical aberration that 
predates and very likely promotes tumorigenesis. 

Furthermore these metabolic disturbances would be 
expected to remain extant after therapeutic interventions 
which is consistent with the recent observation that breast 
cancer relapse rates remain unaltered up to 24 years 
following initial treatments [24].

In support for our hypothesis and consistent with 
the definition of IEM [22], we detected the accumulation 
of very long chain acylcarnitines such as C14:1-OH  
(p = 0.0, FDR = 0.0), C16 (p = 0.0, FDR = 0.0), C18 
(p = 0.0, FDR = 0.0) and C18:1 (p = 1.73e-322, FDR = 

Figure 4: Our results suggest that the isolated determination of blood hexoses levels is not as informative as the measurement of hexoses 
levels in relation to other metabolic intermediates and ratios including: i) the mitochondrial carnitine palmitoyltransferase II (CPT II) 
deficiency ratio (C16/C3) (B Grey elipse) ii)-the peroxisomal impairment biomarkers lysoPC a C26:0, lysoPC a C26:1 and lysoPC a 
C28:1 (A Grey elipse) and D–E or iii)- its relation to glutaminolysis [Phe/(Gln/Glu)/Asp] (C). Importantly, both CPT II and peroxisomal 
deficiencies are well known metabolic conditions associated with hypoglycemia in patients afflicted with these rare metabolic disorders. 
BC, Breast Adenocarcinomas; CRC, Colon Adenocarcinomas; Lung, Lung Adenocarcinomas; HCC, Liver Adenocarcinomass; H.Risk  
(n = 33), women depicting 1.5 to 1.8 relative risks of breast cancer development; L.Risk, women at lower risks of breast cancer development; 
PCOS, Polycystic ovary syndrome; From 0 to 5, population-based controls depicting progressive stages of metabolic syndrome; Hem, 
patients harboring non-glandular tumors leukemias, myelomas and lymphomas; H&N, patients harboring squamous cells carcinomas of 
head and neck; BC-Lum (n = 104), patients harboring luminal breast tumors; BC-non Lum (n = 50), patients harboring non-luminal breast 
tumors; In situ (n = 23), patients harboring non-invasive in situ carcinoma *** Indicates p < 0.001.
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1.16-321) and lipids containing VLCFA (lysoPC a C28:0)  
(p = 1.14-e95, FDR = 1.65e-95) in the blood of breast 
and colon cancer patients. Strikingly these same profiles 
were identified not only in the colon tumor tissues but 
also in the adjacent normal colonic mucosa removed at 
the time of surgery from these same colon cancer patients  
(Figure 6F–6K). 

The metabolic changes we describe in breast cancer 
arise in concert with IEM-like changes in oxidative 
phosphorylation as detected by increased values of the 
ratio lactate/pyruvate (Supplementary Table 2A, 2B) 
characteristic of Ox/Phos deficiency [25]. In our study, 76% 
(70/92) of the European breast cancer patients had lactate/
pyruvate ratios values higher than the normal value of 25.8. 

Recent reports have identified a four-fold higher 
frequency of cancer (including breast) in patients with 
energy metabolism disorders [26] and IEMs are associated 
with elevated hexose/insulin disorders and gonadal and 
thyroid dysfunction that are themselves associated with 
high lactate/pyruvate ratios [18].

Defects in oxidative phosphorylation can occur as a 
result of primary fatty acid oxidation deficiencies (FAOD) 
as they are associated with the systemic mitochondrial 

accumulation of toxic fatty acid and carnitine derivative 
intermediates [27]. 

Blood and normal tissues from cancer patients 
accumulate toxic metabolites that correlate with 
breast and colon cancer outcomes

To determine whether excessive glutaminolysis 
and glycolysis, as quantified in the current study, reflect 
systemic rather than local events, we hypothesized that the 
identified oncogenic disturbances should be present in the 
normal tissues, other than blood, of patients who harbor 
malignancies. 

If true, then the biochemical profiles identified 
in these normal tissue biopsies should provide similar 
prognostic information with regard to response and 
survival to the data generated directly from tumor biopsy 
material. 

Among the most powerful metabolic equations 
for MYC-activation is that which links the widely used 
MYC-driven desaturation marker ratio of SFA/MUFA to 
the MYC glutaminolysis-associated ratio of (Asp/Gln)  
[28, 29]. Our prior experience in 213 breast cancers and 200 

Figure 5: In this murine model, a proxy for human hyperinsulinemia/insulin resistance, only the hypoglycemic mice that received 
insulin (Hipo Ins) (Light blue bar) recapitulated the MYC-dependent shifts that had been observed in cancer patients, characterized by 
the insulin/MYC-dependent reactions of i: glutaminolysis and glycolysis (Gln/Glu), (Ser/C2)/[(Gln/Glu)/Asp] and (Ala/Glu) ii: glutamate 
pulling effect (Glu/Hexoses) iii: arginine methyltransferase activity [Total DMA/[(Gln/Glu)/Asp] and [Tau/[(Gln/Glu)/Asp] iiii: liver 
function [BCAA/(Phe+Tyr)] (Fischer’s Quotient), ornithine decarboxylase activity (Spermidine), iiiiii: liver neoglucogenesis [Hexoses/
(Ala+Gly+Ser)] and iiiiiii: peroxisomal impairment (lysoPC a C26:0) (A–J) (Red arrows). Notably, insulin was able to decrease liver 
function (Fischer) independent of glucose levels (G), however, decreases in ALT activity (H), neoglucogenesis (D) and peroxisomes 
function (J) were, exclusivelly seen in hypoglycemic mice that received insulin (Hipo Ins). AdL, ad libitum-feeded mice that did not 
receive insulin; AdL Ins, ad libitum-feeded mice that received insulin; Hipo No Ins, hypoglycemic mice that did not received insulin; Hipo 
Ins, hypoglycemic mice that received insulin; *** Indicates p < 0.05.
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controls revealed that the metabolic deviation underscored 
by this equation [(SFA/MUFA)/(Asp/Gln)], is one of the 
most robust breast cancer discriminants (AUC = 1.0,  
p = 1.32e-127) (Figure 6A and 6B). 

ANOVA and unsupervised clustering comparisons 
were assembled to compare the blood metabolic 
phenotypes from controls (n = 200), breast cancer (n  
=  213) and colon cancer patients (n = 85) with signatures 
obtained from both normal colonic epithelium (n = 85) and 
colon cancers removed surgically from the same 85 CRC 
patients. 

These results demonstrate virtually identical 
biochemical phenotypes, revealed by this equation in the 
blood of breast (Green bar) and colon (Dark blue bar) 
cancer patients that are quantitatively indistinguishable 

from the phenotypic deviations detected in the normal 
(Light Blue) and colon tumor (Salmon) tissues (Figure 6B 
and 6C). When compared with the control group  
(n = 200), the results from blood or tissue (both normal 
mucosa and tumoral) of the cancer patients are so 
concordant as to represent virtually indistinguishable 
biological samples.

Interestingly, the biochemical disturbances found 
in the normal colonic mucosa reflected in the ratio 
{(Ser/C2)/[(Gln/Glu)/Asp]}, significantly (p = 1.63e-33,  
FDR  = 2.21e-33) correlated with the risk of relapse at 
5 years indistinguishable from the results obtained with 
the colon tumors from these patients. (Figure 6E). This 
ratio not only clearly distinguished breast cancers from 
controls as well as women at low and high risk of cancer 

Figure 6: ANOVA and unsupervised clustering comparisons were assembled to compare the blood metabolic phenotypes from controls 
(Cnt blood n = 200), breast cancer (BC blood n = 213) (A and B) and colon cancer patients (n = 85) (CRC blood) with signatures 
obtained from both normal colonic epithelium (n = 85) (CRC NL Tissue) with respective colon cancer tissues (CRC TU Tissue) removed 
surgically from the same 85 CRC patients (B and C). These results demonstrate virtually identical biochemical phenotypes, evidenced 
by the ratio (SFA/MUFA)/(Asp/Gln), in the blood of breast (Green bar) and colon (Dark blue bar) cancer patients that are quantitatively 
indistinguishable from the phenotypic deviations detected in the normal colonic epithelium (Light Blue) and its respective colon tumor 
(Salmon) tissues (B and C). Interestingly, the biochemical disturbances found in both the normal (NL Tissue) and the tumor tissue (TU 
Tissue) samples from the same colon cancer patients and revealed by the ratio {(Ser/C2)/[(Gln/Glu)/Asp]}, additionally (p = 1.63e-33, 
FDR = 2.21e-33) identified those with the highest risk of relapse at 5 years (Rel) either after analyzing the normal (NL Tissue Rel) or tumor 
tissue samples (TU Tissue Rel) (E). This ratio in addition, clearly distinguished breast cancers from controls during exploratory (Expl) 
and validation (Val) sets as well as women at low (L.Risk) and high risk (RR = 1.8) (H.Risk) of cancer (D). In addition to the blood-based 
identification of cancer patients, the biochemical deviation identified by this same equation also distinguished i- women with shorter (BC 
2.1 yrs) vs. longer (BC 5.1 yrs) relapse-free survival, and ii-women who achieved complete pathological response (pCR) vs. patients with 
residual disease (Residual Dis) after NAC (p = 3.73e-108, FDR = 2.31e-107) (E). Support for our hypothesis and consistent with the 
definition of IEM (18), we also detected the accumulation of very long chain acylcarnitines such as C14:1-OH (p = 0.0, FDR = 0.0), C16 (p 
= 0.0, FDR = 0.0), C18 (p = 0.0, FDR = 0.0) and C18:1 (p = 1.73e-322, FDR = 1.16-321) and lipids containing VLCFA (lysoPC a C28:0) 
(p = 1.14-e95, FDR = 1.65e-95) not only in the blood of breast and colon cancer patients but, importantly, in both the normal tissues and the 
tumor tissues from colon cancer patients (F–K). SFA, Sum of saturated acyl-alkyl phosphatidylcholines containing more than 36 carbons; 
MUFA, Sum of monounsaturated acyl-alkyl phosphatidylcholines containing more than 36 carbons.
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(Figure 6D) but also distinguished i- women with shorter 
(2.1 years) vs. longer (5.1 year) relapse-free survival, and 
ii-women who achieved complete pathological response 
(pCR) vs. patients with residual disease after NAC  
(p = 3.73e-108, FDR = 2.31e-107) (Figure 6E). 

Liver and thyroid dysfunctions are analogous 
to the metabolic disturbances seen in glandular 
malignancies

Additional observations in the present study found 
that liver dysfunction shares many features with both IEM 
and cancer suggesting a role for hepatic dysfunction in 
carcinogenesis. 

 Lower values of Fischer´s quotient [(Ile+Leu+Val)/
(Tyr+Phe) (Figure 3A) and ALT activity (Ala/Glu) (Figure 
3B), were found in cancer-free women with PCOS, those 
with elevated risks of cancer development and those with 
established glandular malignancies (liver, breast, colon, 
lung). These recurring biochemical deviations include 
transamination and gluconeogenesis frailties and the 
incapacity to properly metabolize branched chain (BCAA) 
and aromatic amino acids (Figure 3A and 3B). 

The metabolic shifts evidenced by lower values 
in Fischer’s ratio were not detected in any metabolic 
syndrome participant reflecting an accumulation of BCAA 
in blood, mainly in later stage disease wherein the Fischer’s 
ratios were found to be higher. In adenocarcinoma patients 
the lower values of Fischer’s ratio seem to reflect a 
deterioration of liver function resulting in a simultaneous 
diminution in BCAA and the accumulation of aromatic 
amino acids. Indeed, phenylalanine levels in breast cancer 
patients were found to be greater on average 89.3 µM/L 
(75 to 128 µM/L) than the normal expected values  
(40 to 74 µM/L) in 55% (85/154) of European breast 
cancer patients. Women scoring relative risks of 1.8 for 
breast cancer development also revealed elevated levels at 
82.8 µM/L (64.6 to 98.8 µM/L) especially when compared 
to low risk women 70.3 µM/L (46.5 to 97.9 µM/L) and 
late stage metabolic syndrome with an average of 68 µM/L  
(47 to 95 µM/L). Patients with thyroid dysfunctions 
also exhibited higher levels of phenylalanine 94.6 µM/L  
(49.5 to 142 µM/L). As expected, cancer-free participants 
with cirrhosis exhibited the highest levels averaging  
114.3 µM/L (84.4 to 163 µM/L).

To confirm these findings as liver-function related 
we included cancer-free patients with HCV-induced 
cirrhosis (n = 30) and patients with hypo (n =  8) and 
hyperthyroidism (n = 8), as thyroid dysfunction is 
frequently associated with liver dysfunction [30, 31] and 
with increased risk of cancer including breast [25]. We 
also analyzed HIV patients due to their increased risk 
of cancer and the direct effect of HIV infection on liver 
function [32].

Results revealed concordance between the blood 
metabolic profiles of cancer-free patients with cirrhosis, 

thyroid dysfunction and HIV infection and the study 
participants at: 1- elevated relative risks of breast cancer 
development, 2- those with PCOS and 3- patients 
harboring known glandular malignancies (breast, colon, 
lung and liver) (Figure 3A–3C). 

 We divided our cancer-free group according to: 
i-increasing risks of cancer, ii-rising levels of gamma-
glutamyl transferase (GGT) and iii-cumulative values 
of free-thyroxine (Free T4). The results revealed the 
same pattern of Gln/Glu ratios when applied to high 
risk women, was recapitulated in cancer-free women 
by progressive changes in free-T4 and GGT values 
(Figure 3D–3F). Similar to thyroid dysfunctions [32], 
elevations in blood GGT have been found to significantly 
increase the overall cancer risk including breast 
malignancies [33]. To explore the biochemical overlap 
between these conditions we conducted Orthogonal Partial 
Least Squares Discriminative Analysis (Ortho-PLSDA) 
that revealed a high degree of biochemical similarity 
among hyper/hypothyroidism and cirrhosis patients that, 
together, seem to interconnect breast cancer on the one 
side to hematological malignancies on the opposite side. 
(Supplementary Figure 2). 

It has previously been found that IEMs not only 
interfere with liver function but also affect proper 
endocrine physiology resulting in increased risks of 
diabetes, gonadal and thyroid dysfunctions [18]. 

As demonstrated in Figure 3A, 3B, 3D and 3E, 
results identifying liver dysfunction are in agreement with 
the premise that breast cancer arises in an environment 
of fatty acid oxidation defects (FAOD). Among the most 
common laboratory findings in these types of IEM, in 
parallel with hypoglycemia, is liver dysfunction as the 
biochemistry of the liver is so dependent on the normal 
function of hepatocyte mitochondria [16]. 

Our findings, therefore, resemble those associated with 
mitochondrial and/or peroxisomal disorders of ß-oxidation, 
both known to be associated with the accumulation, in blood 
and tissues, of lipids composed of very long-chain fatty 
acids (VLCFA) and carnitine derivatives, the result of the 
inefficient oxidation of fatty acids [16]. 

In line with this concept, when controls (n  =  92) were 
compared with breast cancer patients (n = 63) our untargeted 
mass spectrometry lipidomic data (Supplementary Figure 
3A–3C) showed a global accumulation of phospholipid 
species containing very-long chain fatty acids (VLCFA ≥ 
C40) in the cancer patient specimens. 

Of note are the blood elevations of lysoPC a C26:0, 
a biomarker routinely used in the diagnosis of peroxisomal 
disorders of ß-oxidation [34] which is identified by an 
arrow (Supplementary Figure 3A). Validation of this 
finding was subsequently obtained by specific targeted 
MS/MS (p = 9.07e-71, FDR = 2.81e-70) (Supplementary 
Figure 3B). Further suggestion of peroxisome as a putative 
subcellular location related to these metabolic findings, was 
obtained by quantitative functional enrichment analysis 
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(www.metaboanalyst.ca) that revealed a significant (p = 
1e-121) 250-fold enrichment for peroxisome localization 
using the metabolites L-acetylcarnitine, succinic acid, 
glycine, oxaloacetic acid, pyruvic acid, sarcosine, 
D-arginine and taurine (Supplementary Figure 4).

Elevations in taurine and arginine 
methyltransferase activity are associated with 
breast cancer risk, response and survival

An additional finding was the significant elevations 
of taurine in the blood of breast cancer patients (Figure 1l) 
and its association with cancer risk, response and survival 
(Supplementary Figures 5 and 6) as well as its correlation 
with blood levels of the oncometabolites fumarate (p = 
3.05e-06) and succinate (p = 1.87e-05) (Supplementary 
Table 2A and 2B). 

Both fumarate and succinate are known to increase 
the half-life of HIF-1 gene (hypoxia-inducible factor-1) 
products that sponsor angiogenesis and tumor survival 
[35–38].

These oncometabolites also enhance histone and 
DNA methylation [39, 40] leading to genome-wide 
epigenetic reprogramming [41]. Taurine levels were also 
found to correlate (p = 0.001, FDR = 0.006) with the up-
regulation of arginine methyltransferase activity, measured 
as the total amount of dymethylated arginine residues 
(Total DMA) (Supplementary Table 2A and 2B).

Total DMA levels were also gradually, positively 
and statistically (p = 5.57e-12, FDR = 1.56e-11) 
associated with progressive stages of breast carcinogenesis  
(Supplementary Figure 6C). 

Defining the cancer biochemistry as a 
fundamental “stemness” signature

Arginine methyltransferase activity is directly 
connected to MYC activity and has been reported to be 
associated to the state of cellular stemness [42–46]. 

This led us to question whether our breast cancer 
findings were reflective of a state of cellular biochemical 
stemness, as it has been suggested that there are considerable 
parallels between human embryogenesis and cancer [47–50].

To evaluate this hypothesis, we compared our 
breast cancer metabolomic signatures to those identified 
in the secretome of in-vitro fertilized, developing human 
embryos that were under final preparation for implantation 
(Supplementary Information) 

Results demonstrated strong similarities between 
the metabolic profiles of successfully developed embryos 
and the biochemical phenotypes identified in women at 
high risk of breast cancer, those with insulin resistance 
and those with the shortest relapse-free survival following 
neoadjuvant chemotherapy. (Supplementary Figure 6D).

DISCUSSION 

We describe a new concept of carcinogenesis that 
incorporates our existing understanding of the genomic 
basis of cancer into a fundamentally different paradigm. 
Our findings suggest that cancer “conscripts” the human 
genome to meet its needs under conditions of systemic 
metabolic stress. 

Health and cancer can be seen to reflect underlying 
IEM-like phenotypic states that result from variable 
levels of mitochondrial and peroxisomal dysfunction. 
These dysfunctions over the course of a normal lifespan 
might, or might not, lead to the condition of “metabolic 
insufficiency” that we recognize as cancer. As we age, the 
accumulation of toxic metabolites, onco-metabolites, DNA 
and histone methylation tips us from the state relative 
compensation to one of de-compensation as malignancy 
arises. 

We describe blood biomarker panels based upon 
phenotypic features that are shared by IEM, liver and 
thyroid dysfunctions and cancers of glandular ancestries. 

Using the identified signatures we explored 
correlations with other states of metabolic stress including 
diabetes mellitus and polycystic ovary syndrome and 
showed that we could recapitulate the malignant phenotype 
in a murine model by exposing hypoglycemic mice to 
exogenous insulin. 

These phenotypic signatures share features of human 
cellular metabolic stemness and suggest that the same 
metabolic cascades that sponsor successful embryogenesis, 
a paradigm of stemness, are shared or re-activated, 
systemically, during periods of insulin/glucose imbalance. 

The described metabolic stresses would, in the 
majority of the population, be counteracted by the up-
regulation of gluconeogenesis and fatty acid oxidation. 
However, persons manifesting IEM-like phenotypes may 
be unable to marshal these critical responses, leading to 
the aberrant dependence upon MYC-related metabolic 
reprogramming. 

This would reflect an underlying “tendency” to 
malignant transformation unleashed by stressors, that in 
breast cancer are “uncovered” by exacerbating risk factors, 
such as nulliparity, obesity and lifestyle but which only 
become manifest in those pre-disposed women who carry 
the features of inborn-priming. 

The finding that the metabolic phenotype identified 
in the blood and tumor tissue of colon cancer patients is 
identical to the signature found in those same patients’ 
normal colonic mucosa supports our hypothesis that 
cancer arises as a local manifestation of a state a systemic 
metabolic insufficiency. 

Variable levels of metabolic stress, therefore, would 
be different from individual to individual depending 
on inherited, mild to moderate metabolic deficiencies, 
reminiscent of IEM, but not severe enough to cause disease 
during much of life. 
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These signatures identify clinical breast cancer 
irrespective of stage, histology, intrinsic subtype, BMI, 
menopausal status or age with an accuracy of 95%, and 
are also shown to predict tumor response to neoadjuvant 
chemotherapy and overall survival. 

There could be concern that the results reflect 
algorithms or ratios that were selectively defined to 
achieve desired results. We appreciate that concern and 
have made every effort to use training sets followed by 
confirmatory analyses and have applied well established 
biochemical parameters, previously described in the 
literature (Gln/Glu; Glutamate pulling effect, Fisher’s 
quotient, etc.) in large data sets to statistically support 
our findings. We continue to analyze patients with breast 
cancer and other diseases both benign and malignant to 
further refine and confirm these observations. 

The clinical implications of these findings are several 
and include the development of a new diagnostic test for 
the early detection of breast cancer and its application for 
prognosis and the prediction of response. The findings 
may also apply to other cancers of glandular histology. 
More importantly, the results reflect the application of a 
phenotypic signature that can dovetail nicely with advances 
in genomics, transcriptomics and proteomics as we strive 
for a more global understanding of human illness. 

In conclusion, we provide phenotypic evidence to 
support the hypothesis that cancers of glandular ancestry, 
particularly breast cancer, represent the end result of 
pre-existing metabolic perturbations associated with a 
MYC-induced systemic condition: Cancer as a metabolic 
epiphenomenon. 

MATERIALS AND METHODS

Nested case-control designs

All participants signed informed consent according 
to the applicable institutional human subject committee 
approvals including the Barretos Cancer Hospital 
(ethics approval CEP135/2008), São Paulo, Brazil; the 
Nutrition Department from the School of Public Health, 
University of São Paulo, Brazil; the Department of 
Obstetrics and Gynecology from the University of São 
Paulo; the Department of Obstetrics and Gynecology 
from the Medical University of Innsbruck in Austria; the 
Department of Gynecology from the Federal University 
of São Paulo, Brazil; the Department of Gynecology from 
the Hospital Meran in Meran, Italy and the Department of 
Gynecology from the Hospital Brixen, Brixen, Italy. 

In total 1225 baseline samples were included being 
1055 from blood and 170 from tissue specimens. Samples 
were prospectively collected from 2008 to 2011 and 
were analyzed by the same, fee-for-service, standardized, 
targeted quantitative mass spectrometry technique at the 
same centralized and independent company (Biocrates, 
Austria). 

The cancer group (n = 473) were composed by: 
i-breast cancer volunteers from Brazil and Europe (n = 213)  
comprised in total by pT1pN0 (n = 68), pT1N1 (n = 
77), pT2N1 (n = 8), T2N0M0 (n = 1) and T3N2M0 (n = 
59). Intrinsic subtypes were: i-luminals A (n = 33), B (n  
=  98), B-HER2 (n = 23), triple negatives (n = 37), HER-2  
(n = 14) and RE-/PR- (n = 4). European patients (n  
=  154) were composed by a retrospective (n = 62) and 
a prospective arm (n = 92) in addition to ii- lung (n = 
23), iii- head and neck (n = 56), iiii-liver (n = 30), iiiii-
hematological malignancies (n = 65) and iiiiii-colon 
cancer patients (n = 85) together to respective normal  
(n = 85) and tumor tissues (n = 85). Colon cancer patients 
were T1N0M0 (n = 9), T2N0M0 (n = 15), T3N0M0 (n  
=  20), T3N0M1 (n = 1), T3N1M0 (n = 10), T3N1M1 
(n = 6), T3N2M0 (n = 6), T3N2M1 (n = 7), T4N0M0  
(n = 2), T4N1M0(n = 1), T4N1M1 (n = 3), T4N2M0  
(n = 2), T4N2M1 (n = 3).

The remaining 752 samples were included as 
control groups, out of which: 169 controls (79 women 
and 90 men) were from the São Paulo Population-based 
Health Investigation Project (ISA 2008) that due to 
its population characteristics, allowed us to analyzed 
them according their frequency of metabolic syndrome 
distributed according the 6 progressive stages following 
the recommendation of the Joint Interim Statement of 
the International Diabetes Federation Task Force on 
Epidemiology and Prevention; National Heart, Lung, and 
Blood Institute; American Heart Association; World Heart 
Federation; International Atherosclerosis Society; and 
International Association for the Study of Obesity [2]. 

Controls also included 33 women at elevated 
risks of breast cancer development (Suppl. Note), 23 
participants with histologically proven non-invasive in 
situ carcinoma, 31 women at low risk of breast cancer 
development (Supplementary Note), 49 with polycystic 
ovary syndrome, 18 HIV–infected individuals prior 
of treatment, 34 women with rheumatoid arthritis, 58 
autoimmune hemolytic disorders, 30 participants with 
cirrhosis, 8 with hyper and 8 with hypothyroidism.

Breast cancer patients with locally regional advanced 
tumors T3N2M0 (n = 59), were scheduled to receive 
a neoadjuvant chemotherapy approach comprised of 4 
cycles of doxorubicin (60 mg/m2) and cyclophosphamide  
(600 mg/m2), followed by 4 cycles of paclitaxel (175 mg/m2)  
conducted at the Barretos Cancer Hospital, SP, Brazil.

This part of the study was designed to have as 
an endpoint the identification of predictive signatures 
of tumor response in patients with stage III disease, 
during the accomplishment of the project “Neoadjuvant 
Chemotherapy in Locally Advanced Breast Cancer 
(LABC)” (clinicaltrials NCT00820690). Patients, had 
a baseline assessment within 2 weeks before starting 
chemotherapy, hematological and non-hematological 
toxicities were recorded through complete blood counts, 
liver and kidney function as well as clinical evaluations at 
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each cycle (one every 3 weeks time) and one month after 
the end of treatment. 

Baseline tumor dimensions were calculated using 
clinical and radiological measurements and compared 
to the final tumor diameter that was recorded directly 
on the surgery product by a dedicated pathologist. 
Complete Pathologic Response (pCR) was defined as no 
histopathology evidence of any residual invasive and/or 
non-invasive disease in breast or nodes (ypT0/ypN0).

Targeted quantitative MS/MS analysis

In this study, targeted metabolomic analysis of 
plasma and tissue samples was performed using the 
Biocrates Absolute-IDQ P180 (BIOCRATES, Life Science 
AG, Innsbruck, Austria). This validated targeted assay 
allows for simultaneous detection and quantification of 
metabolites in plasma and tissue samples in a high-
throughput manner. 

Absolute quantification (µmol/L) of blood 
metabolites was achieved by targeted quantitative profiling 
of 186 annotated metabolites by electrospray ionization 
(ESI) tandem mass spectrometry (MS/MS) in 1302 
biological samples, blinded to any phenotype information, 
on a centralized, independent, fee-for-service basis at the 
quantitative metabolomics platform from BIOCRATES 
Life Sciences AG, Innsbruck, Austria. 

The experimental metabolomics measurement 
technique is described in detail by patent US 2007/0004044 
(accessible online at http://www.freepatentsonline.
com/20070004044.html). Briefly, a targeted profiling 
scheme was used to quantitatively screen for fully 
annotated metabolites using multiple reaction monitoring, 
neutral loss and precursor ion scans. Quantification of 
metabolite concentrations and quality control assessment 
was performed with the MetIQ software package 
(BIOCRATES Life Sciences AG, Innsbruck, Austria) in 
conformance with 21CFR (Code of Federal Regulations) 
Part 11, which implies proof of reproducibility within a 
given error range. An xls file was then generated, which 
contained sample identification and 186 metabolite names 
and concentrations with the unit of μmol/L of plasma. 

Data analysis and validation tests

For metabolomic data analysis, log-transformation 
was applied to all quantified metabolites to normalize the 
concentration distributions and uploaded into the web-
based analytical pipelines MetaboAnalyst 3.0 (www.
metaboanalyst.ca/faces/upload/RocUploadView.xhtml) 
and Receiver Operating Characteristic Curve Explorer 
& Tester (ROCCET) available at http://www.roccet.
ca/ROCCET for the generation of uni and multivariate 
Receiver Operating Characteristic (ROC) curves obtained 
through Support Vector Machine (SVM), Partial Least 
Squares-Discriminant Analysis (PLS-DA) and Random 

Forests as well as Logistic Regression Models to calculate 
Odds Ratios of specific metabolites [49–52].

ROC curves were generated by Monte-Carlo Cross 
Validation (MCCV) using balanced sub-sampling where 
two thirds (2/3) of the samples were used to evaluate the 
feature importance. Significant features were then used 
to build classification models, which were validated 
on the 1/3 of the samples that were left out on the first 
analysis. The same procedure was repeated 10-100 times 
to calculate the performance and confidence interval of 
each model. 

To further validate the statistical significance of 
each model, ROC calculations included bootstrap 95% 
confidence intervals for the desired model specificity 
as well as accuracy after 1000 permutations and false 
discovery rates (FDR) calculation [49–52]. 

Metabolite panel

In total, 186 annotated metabolites were quantified 
using the p180 kit (BIOCRATES Life Sciences AG, 
Innsbruck, Austria), being 40 acylcanitines (ACs), 21 
amino acids (AAs), 19 biogenic amines (BA), sum of 
hexoses (Hex), 76 phosphatidylcholines (PCs), 14 lyso-
phosphatidylcholines (LPCs) and 15 sphingomyelins (SMs). 
glycerophospholipids were further differentiated with 
respect to the presence of ester (a) and ether (e) bonds in the 
glycerol moiety, where two letters denote that two glycerol 
positions are bound to a fatty acid residue (aa = diacyl,  
ae = acyl-alkyl), while a single letter indicates the presence 
of a single fatty acid residue (a = acyl or e = alkyl).  
In the same company (Biocrates), the European participants 
had their samples additionally analyzed for the following 
energy metabolism metabolites: lactate, pyruvate/
oxaloacetate, alpha ketoglutarate, fumarate and succinate. 

Metabolites ratios

In addition to individual metabolite quantification, 
groups of metabolites related to specific functions were 
assembled as ratios based on previous observation that 
the proportions between metabolite concentrations 
can strengthen the association signal and at the same 
time provide new information about possible metabolic 
pathways [53–58]. 

Additionaly, groups of AAs were computed by 
summing the levels of amino acids (AA) belonging to 
certain families or chemical structures depending on 
their functions such as the sum of: 1. essential amino 
acids (Essential AA), 2. non-essential amino acids (non-
Essential AA), 3. glucogenic (Ala+Gly+Ser) amino acids 
(Gluc AA), 4. branched-chain (Leu+Ile+Val) amino acids 
(BCAA), 5. Aromatic (His+Tyr+Trp+Phe) amino acids 
(Arom AA), 6. Glutaminolytic derivatives (Ala+Asp+Glu) 
and the sum of total amino acids. 

http://www.freepatentsonline.com/20070004044.html
http://www.freepatentsonline.com/20070004044.html
www.metaboanalyst.ca/faces/upload/RocUploadView.xhtml
www.metaboanalyst.ca/faces/upload/RocUploadView.xhtml
http://www.roccet.ca/ROCCET
http://www.roccet.ca/ROCCET
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Groups of acylcarnitines (AC), important to evaluate 
mitochondrial function, were also computed by summing 
total acylcarnitines (AC), C2+C3, C16+C18, C16+C18:1 
and C16-OH+C18:1-OH). Groups of lipids, important to 
evaluate lipid metabolism, were also analyzed by summing: 
1. Total lysophosphatidylcholines (total LPC), 2. Total acyl-
acyl and 3. Total acyl-alkyl phosphatidylcholines (total PC 
aa and total PC ae, respectively), 4. Total sphingomielins 
(total SM) and 5. Sum of total (LPC + PC aa +PC ae +SM) 
lipids (Structural lipids).

Proportions among sums of saturated, 
monounsaturated and polyunsaturated structural lipids 
were also assembled as proxies to estimate elongases and 
desaturases activities towards ether lipids: 1. Desaturase 
9 [(PC ae C36:1 + PC ae C38:1 + PC ae C42:1) / (PC ae 
C42:0)], Desaturase 6 [(PC ae C44:6 + PC ae C44:5 + PC 
ae C42:5 + PC ae C40:6 + PC ae C40:5 + PC ae C38:6 
+ PC ae C38:5 + PC ae C36:5) / (PC ae C36:1 + PC ae 
C38:1 + PC ae C42:1)].

Clinical indicators of liver metabolism and 
function were obtained by applying either the classical 
(leucine+isoleucine+valine/(tyrosine+phenylalanine) or 
variations (Val/Phe, Xleu/Phe) of the Fischer’s quotient. 
Clinical indicators of isovaleric acidemia, tyrosinemia, 
urea cycle deficiency and disorders of ß-oxidation were 
calculated by adopting the ratios of valerylcarnitine to 
butyrylcarnitine (C5/C4), tyrosine to serine (Tyr/Ser), 
glycine to alanine and glutamine (Gly/Ala, Gly/Gln) 
and lactate to pyruvate (Lac/Pyr), respectively [4, 30]. 
Proxies for enzyme function related to the diagnosis of 
very long-chain acyl-CoA dehydrogenase (VLCAD) and 
type 2 carnitine-palmitoyl transferase (CPT-2) deficiencies 
were achieved by assembling the ratios (C16+C18:1/C2), 
(C14:1/C4), (C14:1-OH/C9), (C14/C9), (C14:1/C9) and to 
the elongation of very-long-chain-fatty acids (ELOVL2) 
(PC aa C40:3/PC aa C42:5) [53–59].

Levels of methionine sulfoxide (Met-SO) alone or 
in combination to unmodified methionine (Met-SO/Met) 
as well as symmetric (SDMA), asymmetric (ADMA) 
and total dimethylation of argine residues (Total DMA) 
were quantified to gain access to ROS-mediated protein 
modifications as well as to systemic arginine methylation 
status [40, 41], respectively. 

To gain access to MYC activity in blood, specific 
quantification of metabolites and ratios resulting from 
MYC-responsive enzymes activities were performed in 
the blood of hypoglycemic mice before and after insulin 
administration. 

Knowing that liver inhibition of gluconeogenesis is 
a bona fide insulin-MYC-dependent biochemical reaction 
[17], a shift from normal to lower values in the ratio of 
glucose to glucogenic amino acids (Glucose/Ser, Glucose/
Gly and Glucose/Ala) after insulin administration, was 
adopted as a measurement of insulin-MYC-related activity. 

The same procedure was then applied to other 
MYC-responsive enzymes [42–44] as follows: arginine 
methyltransferases (ADMA, ADMA/Arg, SDMA, 
SDMA/Arg and Total DMA, Total DMA/Arg), ornithine 
decarboxylase (Glu, Glu/Orn, Pro, Pro/Orn, Orn, Orn/
Arg, Putrescine, Putrescine/Orn, Spermidine, Spermidine/
Putrescine, Spermine and Spermine/Spermidine), alanine 
aminotransferase (Ala), (Ala/Glu), aspartate aminotransferase 
(Asp) and (Asp/Glu), glutaminase (Glu), (Gln/Glu), 
[(Glu+Asp+Ala)/Gln], [(Gln/Glu)/Asp], (Glu/Glucose)/(Ala/
Glu) and [(Glu/Gln)/Glucose]/(Ala/Glu). 

The later 2 ratios were specifically assembled based 
on in vitro experiments related to the “glutamate pulling 
effect” which is defined as the hypoglycemia-induced up-
regulation in the deaminated, rather than transaminated, 
production of glutamate through insulin-MYC-dependent 
glutamate dehydrogenase (GDH) stimulation of 
glutaminolysis with consequent increased amounts of net 
keto acids to anaplerosis [29]. 

We additionally included the ratios of (Ser/C2, 
Ser/Gln, Ser/Thr) and of (PC aa C42:0/PC ae C32:3, 
PC aa C32:2/PC ae C34:2) as proxies for glycolysis-
related phosphoglycerate dehydrogenase (PHGDH) and 
glucokinase regulator (GCKR) activities [6–7].

The later inhibits glucokinase activity in liver and 
pancreas and the former catalyses the rate limiting step of 
serine biosynthesis [6–7].

In parallel, and assuming the ratio values of 
glutamine to glutamate (Gln/Glu) and to aspartate [(Gln/
Glu)/Asp], as proxys for glutaminolytic activity, we finally 
assembled the ratios [(Ser/C2)/(Gln/Glu)], [(Ser/C2)/(Gln/
Glu)/Asp], [(PC aa C32:2/PC ae C34:2)/(Gln/Glu)] and 
[(PC aa C32:2/PC ae C34:2)/(Gln/Glu)/Asp] as theoretical 
equations to gain access to the balance between glycolysis 
and glutaminolysis.

Untargeted shotgun lipidomics MS/MS analysis

It was kindly performed by specialist personel 
(Helinho) in the AB-Sciex Laboratory located in Sao 
Paulo, SP, Brazil. Plasma samples from 59 breast cancer 
patients were compared to control group composed of 93 
healthy menopaused volunteers (Supplementary Note). 
Samples were injected onto a Shimadzu Prominence LC 
system coupled to an AB-Sciex 5600 Triple TOF mass 
spectrometer instrument with an acquisition scan rate of 
100 spectra/sec and stable mass accuracy of ~2 ppm.

Flow Injection Analysis (FIA) was performed 
using isocratic elution with Methanol/Water (90/10) with 
5.0 mM of ammonium formate. Flow rate and injection 
volumes were 0.025 mL/min and 50 µL respectively.

No ion source or declustering potential (50 V and –40 V)  
optimization was performed. The following ionization 
parameters were applied: CUR = 20 psi, GS1 = 20 psi, 
GS2 = 15 psi, Temp = 250oC, IS = 5000 V (–4000V). MS 
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scan ranging from m/z 100 to 1200 with accumulation time 
of 0.25 s and product ion scan from m/z 100 to 1200 and 
accumulation time of 0.03 s were the adopted parameters 
during survey and dependent scans respectively.
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