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INTRODUCTION

Integrins are heterodimeric receptors consisting 
of alpha and beta subunits. 18 α- and 9 β-subunits 
are transmembrane glycoproteins that combine non-
covalently to form 24 distinct receptors. Integrins mediate 
cell adhesion to the extracellular matrix (ECM), and 
interact with distinct ECM proteins to remodel, migrate 
and respond to extracellular changes. Integrins function 
to regulate important biological processes such as 
proliferation, gene expression, cell survival and motility. 
The distribution of integrin proteins on the cell surface 
determines the type of ECM proteins able to bind to the 
cell and therefore impacts how a cell senses and responds 
to its microenvironment [1]. Different tissue types 
typically express a unique set of integrins on their cell 

surface. Integrin expression varies across cancer types and 
is associated with diverse extracellular milieu, migratory 
properties, and growth requirements of different tumors. 

The myriad of cellular responses initiated by integrin 
signaling stem from their ability to differentially recognize 
distinct sets of ligands. In normal tissues, cell migration 
and morphogenesis are regulated by interactions of cell 
surface integrins with the extracellular matrix proteins, 
such as collagen, fibronectin, laminin, osteopontin, 
vitronectin, tenascin, fibrillin and VCAM-1 [1]. Tumors 
take advantage of integrin signaling in order to break 
adhesion-dependent movement and increase their invasive 
potential. Cancer cells exploit integrin-mediated processes 
to construct a microenvironment that promotes tumor 
invasion and metastasis. Integrins interact physically with 
various growth factors on the cell membrane [2, 3]. This 
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ABSTRACT

Integrins are contributors to remodeling of the extracellular matrix and cell 
migration. Integrins participate in the assembly of the actin cytoskeleton, regulate 
growth factor signaling pathways, cell proliferation, and control cell motility. In 
solid tumors, integrins are involved in promoting metastasis to distant sites, and 
angiogenesis. Integrins are a key target in cancer therapy and imaging. Integrin 
antagonists have proven successful in halting invasion and migration of tumors. 
Overexpressed integrins are prime anti-cancer drug targets. To streamline the 
development of specific integrin cancer therapeutics, we curated data to predict 
which integrin heterodimers are pausible therapeutic targets against 17 different 
solid tumors. Computational analysis of The Cancer Genome Atlas (TCGA) gene 
expression data revealed a set of integrin targets that are differentially expressed in 
tumors. Filtered by FPKM (Fragments Per Kilobase of transcript per Million mapped 
reads) expression level, overexpressed subunits were paired into heterodimeric 
protein targets. By comparing the RNA-seq differential expression results with 
immunohistochemistry (IHC) data, overexpressed integrin subunits were validated. 
Biologics and small molecule drug compounds against these identified overexpressed 
subunits and heterodimeric receptors are potential therapeutics against these cancers. 
In addition, high-affinity and high-specificity ligands against these integrins can serve 
as efficient vehicles for delivery of cancer drugs, nanotherapeutics, or imaging probes 
against cancer. 

www.oncotarget.com                               Oncotarget, 2018, Vol. 9, (No. 53), pp: 30146-30162

           Research Paper



Oncotarget30147www.oncotarget.com

pronounced interplay with growth factors and receptors 
are crucial towards regulating tumor progression and 
proliferation. 

Ligated integrins enhance cell survival through 
several mechanisms, some of which include activation of 
the PI3K-AKT pathway, NF-κB signaling cascade, and 
p53 inactivation [4, 5]. Conversely, disrupting integrin-
ligand interactions can induce apoptosis via integrin-
mediated death (IMD), which is mediated by recruiting 
and activating caspase-8 [5]. Integrins expressed on tumor 
cells lead to tumor metastasis and progression, often by 
upregulating the activity of metalloproteinases (MMPs) 
and urokinase-type plasminogen activators [6, 7]. By 
interacting with the extracellular matrix of the secondary 
sites, tumor cells are able to establish residence and 
receive mitogenic input to continue their proliferation. 
Integrins are involved in regulating endothelial cell 
survival during angiogenesis and creating leaky vessels 
[8]. Therefore, antagonists against integrins facilitating 
these processes are essential to halting tumor metastasis 
and growth. Additionally, growth factors (e.g., fibroblast 
growth factor) concurrently bind both growth factor 
receptors (e.g., fibroblast growth factor receptor) and 
integrins (e.g., integrin αvβ3), resulting in the promotion 
of tumor growth [2]. Antagonists against integrins will 
inhibit downstream signaling of growth factor dependent 
pathways due to the dynamic interplay between growth 
factor receptors and integrins [3]. 

Cancer stem cells (CSCs) are therapeutically 
resistant cells that reside within the main tumor 
population, and are responsible for long-term tumor 
survival and proliferation. Integrin signaling is crucial to 
maintaining stem cell properties within CSCs [1, 9]. Paired 
with growth factor receptors and through cooperation with 
tumor-promoting oncogene products (e.g., WNT, MYC, 
AKT), integrins contribute to sustaining this aggressive 
subset of cells and regulating expression of stem cell 
specific markers. Drug resistance is dependent on tumor 
cells utilizing survival-inducing pathways, which can 
relate to ECM-integrin interactions. The integrin-ECM 
drug resistance strategy selects for cells that express 
integrins capable of adhering to the matrix proteins of the 
host organ thereby activating alternative pro-survival anti-
apoptotic pathways. 

Integrins are prime targets for imaging and therapy 
in cancer [10]. We have previously reported the use of  a 
one-bead one-compound (OBOC) combinatorial library 
method to discover ligands against integrins (α4β1, α3β1, 
and αvβ3) that are overexpressed in various cancers, and 
use them as vehicles to delivery of theranostic agents or 
nanoformulated drugs to tumors [11–14]. 

Small-molecule drugs and biologics directed against 
overexpressed cell surface proteins such as EGF receptor 
and HER2 in tumors have been effective in treating 
cancers [15]. In the advancing field of immunotherapy, 
programmed cell death ligand-1 (PD-L1) inhibiting drugs 

are more successful in the subset of patients with their 
tumors overexpressing PD-L1 [16–18]. Similarly, the same 
principle should be applied to integrin-based therapies. 
Identification of integrins overexpressed in various 
tumor types will enable us to focus our drug development 
effort on these targets. To achieve this, curating data 
from large clinical databases will be much more relevant 
than studying integrin expression in a limited number of 
established cancer cell lines. 

In this study, we sought to identify actionable 
integrins in 17 different cancer types by computational 
analyses of the transcriptome data obtained from The 
Cancer Genome Atlas (TCGA). Using RNA-Sequencing 
(RNA-Seq) expression data, overexpressed integrins 
were found, followed by a prioritization scheme 
involving the application of a ranking metric and 
filtering by FPKM absolute expression level. In addition, 
immunohistochemistry data from the Protein Atlas was 
integrated for validation of results and the most prominent 
integrin heterodimers on each cancer were predicted. 

RESULTS

Profiles of integrin gene expression in 17 
different cancers

The strategy that was employed to determine 
integrin anti-cancer drug targets across 17 different 
tumor subtypes is depicted in the flowchart in Figure 1.  
RNA-seq expression data for all integrin genes was 
sourced from The Cancer Genome Atlas (TCGA), and 
differential expression analysis of expressed integrin 
genes was performed with DESeq2. The differentially 
expressed (DE) genes were then prioritized in a ranking 
scheme. Two unique criteria were incorporated into a 
mathematical Metric, namely, the 1) logarithmic fold 
change of expression between cancer and normal samples, 
and 2) false discovery rate. The following sections detail 
the results of the selection process and the outcome 
of the individual targetable integrin subunits as well as 
the obligated integrin heterodimers. Accompanying 
this ranking system, the expressed integrin genes were 
filtered by the total level of expression, denoted by FPKM 
values, also obtained from TCGA. By comparing the 
predicted integrin targets against existing experimental 
immunohistochemistry data obtained from The Protein 
Atlas, the resultant targets were confirmed. Then, using the 
rules of heterodimeric integrin subunit pairing, therapeutic 
target integrins for each cancer were predicted. 

The overall goal of this study was to define 
potentially targetable integrins present in each of 17 types 
of solid cancer, using clinical data sets obtained from  a 
public database. Our approach to selecting and prioritizing 
actionable integrins was based on satisfying the following 
criteria: 1) overexpressed in cancer (relative to normal 
tissue), 2) high ranking Metric score, and 3) having at 



Oncotarget30148www.oncotarget.com

least a moderate level of absolute expression. As described 
in the Introduction, the complete repertoire of integrin 
receptors is constituted of 27 integrin genes encoding for 
18 α- and 9 β-subunits. These α- and β-subunits form 
24 different known obligated heterodimers of integrins 
(Figure 2A). RNA-Seq transcriptome data (transcript 
counts) was sourced from the respective TCGA studies 
and computational analyses performed to identify integrin 
genes that were overexpressed in tumor samples and then 
to prioritize integrins and predict the heterodimers that 
would most likely be present in each cancer. Accordingly, 
as the first step, the expression of the 27 integrin genes 
in each of the studies’ datasets were analyzed to define 
integrin transcripts that were differentially expressed 
in each cancer (i.e., relative to normal tissue controls,  
FDR < 0.05) (Supplementary Table 1). Integrin genes 
that did not exhibit statistically-significant differential 
expression (i.e., FDR > 0.05) are indicated by blank, or 

white boxes (Figure 2B, Supplementary Table 1). The 
results were consolidated and presented as a heatmap 
matrix to depict the relative level of differential expression 
(i.e., fold changes) (Figure 2B). 

As shown, the profile and magnitudes of integrin 
differential expression varies considerably across the 
different cancer types. However, similarities in integrin 
expression across the cancer types are evident. Tumors 
reveal several distinct patterns in alteration of integrin 
expression. For instance, ITGA9 is the most widely 
underexpressed subunit across the 17 profiled cancers, 
ranging from −1.41 to −5.89 fold reduction in cancer 
compared to normal. In contrast, ITGAX is the most 
widely overexpressed subunit among the profiled cancers 
(1.54 to 8.11 linear fold change). Aggressive carcinomas 
with low 5-year survival rates display unique and diverse 
expression patterns. For example, cholangiocarcinoma 
(CHOL) overexpresses a large variety of subunits 

Figure 1: Schematic flowchart depicting the strategy for selecting integrin drug targets. Transcriptome profiling data for 
17 cancer types from the TCGA was used for analysis. RNA-seq data (raw counts) were retrieved from the Genomic Data Common using 
TCGAbiolinks. Target prioritization was then accomplished by applying Metric to define integrin subunit genes significantly overexpressed 
in tumor samples (logarithmic fold change, FDR < 0.05). Subsequently, viable, individual subunit drug targets were selected by filtering the 
results for integrin transcripts passing a minimum threshold of expression (FPKM values) and by comparison with immunohistochemistry 
data (IHC) for protein-level expression expression of the corresponding subunits. Through rules-based pairing of subunits, possible protein 
integrin drug targets are proposed. See Materials and Methods for more detailed descriptions of each step.
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Figure 2: Representation of expression of 27 integrin subunits across 17 cancer types. (A) Possible combinations of integrin 
subunits to form 24 biologically functional integrin heterodimers. The different possible combinations of alpha and beta subunits capable 
of forming heterodimeric integrin proteins are displayed. 24 unique heterodimeric receptors can be formed from 9 beta subunits and  
18 alpha subunits. The integrin beta-like 1 subunit has been characterized, but thus far an alpha subunit binding partner has not been 
identified, and is represented by a question mark. (B) Diagrammatic visualization of all integrin subunits across surveyed cancer types. 
Differential expression of integrin subunit genes was determined by comparing the expression of a subunit in tumor samples versus normal 
samples as outlined in Materials and Methods. The gradient from blue to red represents the magnitude of differential expression of tumor 
versus normal; darkest blue and the darkest red indicates the most underexpressed and overexpressed gene in each cancer type, respectively. 
The relative log fold change expression of each integrin subunit within each cancer type is depicted in the heatmap matrix above. White 
boxes represent void values due to the false discovery rate being greater than 0.05. RNA-Seq data (transcript counts) was obtained from 
TCGA and differential expression analysis was performed in R (as detailed in Materials and Methods). The cancer types examined and 
their abbreviations (Supplementary Table 1) are as follows (https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-
abbreviations): Urothelial Bladder Carcinoma (BLCA), Breast Invasive Carcinoma (BRCA), Cervical Squamous Cell Carcinoma and 
Endocervical Adenocarcinoma (CESC), Glioblastoma Multiforme (GBM), Head and Neck Squamous Cell Carcinoma (HNSC), Kidney 
Chromophobe (KICH), Kidney Renal Cell Carcinoma (KIRC), Kidney Renal Papillary Cell Carcinoma (KIRP), Liver Hepatocellular 
Carcinoma (LIHC), Lung Adenocarcinoma (LUAD), Lung Squamous Cell Carcinoma (LUSC), Pancreatic Adenocarcinoma (PAAD), 
Paraganglioma and Pheochromocytoma (PCPG), Prostate Adenocarcinoma (PRAD), Rectum Adenocarcinoma (READ), Stomach 
Adenocarcinoma (STAD). 
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(e.g. ITGAV, ITGA1, ITGA4, ITGA5, ITGA11, ITGB1, 
ITGB2, ITGB6), whereas, the equally deadly pancreatic 
adenocarcinoma (PAAD) overexpresses a very limited 
set of integrins, including ITGA6 and ITGB4. Although 
both CHOL and PAAD have low 5-year survival rates, 
they display completely different integrin expression 
profiles. Interestingly, tumors originating from the same 
organ such as kidney chromophobe (KICH), kidney renal 
cell carcinoma (KIRC) and kidney papillary renal cell 
carcinoma (KIRP) share few integrin expression features 
with one another (Figure 2B). 

As examples, the linear fold change in expression 
levels (tumor vs. normal) for the integrin subunits are 
displayed for glioblastoma multiforme, hepatocellular 
carcinoma, and pancreatic adenocarcinoma (Figure 
3). The range of expression ratio (tumor vs normal) 
varied across the three depicted cancer types, and was 
determined to be 8.79, 4.26, and 3.27 for glioblastoma 
multiforme, hepatocellular carcinoma, and pancreatic 
adenocarcinoma, respectively. Interestingly, 25 of the 
27 surveyed integrin subunit genes, i.e. 93% of the 
total surveyed integrin genes, exhibited elevated levels 
of expression in glioblastoma multiforme compared 
to normal brain tissue. However, only 52% of the  
27 surveyed genes reached statistical significance (FDR 
< 0.05). Pancreatic adenocarcinoma, on the other hand, 
was found to overexpress 51% of the surveyed integrin 
subunits yet only 7.4% (2 of the 27 genes) reached 
statistical significance. 

Ranking overexpressed genes using a scoring 
system to determine best potential targets

A ranking system for determining the best 
potential integrin drug targets was developed (Figure 4);  
the following elements were considered: statistically 
significant differential expression (FDR < 0.05), 
and magnitude logarithmic fold change. For ranking 
overexpressed genes, the scoring system used consisted 
of a weighted average of logarithmic fold change for 
that gene in that specific cancer. The resulting ranks are 
reported on a scale with a lower boundary of zero and no 
forced upper limit. Higher values correspond to the more 
optimal targets (Figure 4). At least two subunits – one α, 
one β – in each surveyed cancer were identified as potential 
drug targets. Although liver hepatocellular carcinoma 
(LIHC) had 24 overexpressed genes, only 15 were ranked 
when considering the false discovery rates (Figure 3).  
Promising targets, represented by colored boxes, had 
high logarithmic change values, with FDR < 0.05  
(Figure 4). This ranking system is a mathematical screen 
and the biological basis for selecting targets will be 
introduced in the following sections and includes FPKM 
levels, subunit pairing rules, and immunohistochemistry 
results.

Absolute expression level of ranked integrin 
genes

In addition to considering integrin gene differential 
expression as a major selection criterion, candidate 
integrin subunits were further filtered on the basis of 
transcript expression levels. Normalized gene-expression 
level reported in FPKM (Fragments Per Kilobase of 
transcript per Million fragments mapped) values [19] 
for all ranked integrin gene subunits were found in the 
published data housed within the Protein Atlas (Figure 5). 
Integrin subunits having average FPKM values ≥ 10 were 
considered to be actionable by virtue of being expressed at 
an easily detectable level of expression. In the process of 
determining the heterodimeric proteins that serve as prime 
drug targets, the ranked subunits according to the metric 
(Figure 4) were filtered using FPKM values (Figure 5).  
The absolute integrin expression level, ≥10 FPKM cut-
off for moderate expression, determines whether the 
cell expresses a significant amount of the integrin gene 
of interest such that its inhibition would disrupt cellular 
function. Without there being a significant level of 
absolute expression in tumor cells, differential expression 
analysis alone could yield a sub-optimal target. 

Pan-cancer immunohistochemical analysis of 
integrin subunit overexpression

As one approach to validating that the expression 
of the candidate integrins at mRNA level were also 
expressed at the protein level, and elevated, we analyzed 
immunohistochemical data from the Human Protein Atlas 
(https://www.proteinatlas.org/humanpathology). The 
overexpressed integrins can be highlighted by integrating 
the results of RNA-seq differential expression (Figure 4) 
and gene expression level filtering (i.e., FPKM) (Figure 5)  
with IHC data (Figure 6). In the IHC database, groups 
of cancers are not sub-classified, but rather grouped 
together by the organ from which they originate. Thus, 
comparisons of expression between sub-types of cancers 
originating from the same organ (eg., Renal denotes 
KIRC, KIRP, and KICH) is not possible. IHC does not 
discriminate between different cancer subtypes within the 
same organ when pathologically examining samples for 
integrin expression. Extensive similarities between the 
IHC and RNA-seq expression data, however, do exist. In 
both methods of analysis, ITGA6 is overexpressed in head 
and neck, lung, liver, and pancreatic cancers. 

Cholangiocarcinoma is often binned with liver 
cancer; however, IHC data from the Protein Atlas 
does not distinguish or recognize this difference. 
ITGAV, in both IHC and RNA-seq, is overexpressed 
in liver cancers, gliomas, head and neck cancers, and 
lung cancers. Validated with both IHC and RNA-seq, 
ITGB6 is overexpressed in cervical cancer, liver cancer/
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Figure 3: Integrin subunit expression for selected tumor types. Analysis for differentially expressed genes (tumor vs. normal) 
was performed on RNA-Seq expression data obtained for each TCGA cancer site project. Linear fold changes for each integrin in GBM, 
LIHC, and PAAD are presented in the bar graph. The y-axis is the linear fold change in expression, and each bar represents a different 
integrin subunit. The linear fold change threshold represented by the line y = 1 indicates the threshold for differential expression in either 
direction; values below this line are underexpressed in cancer and values above are overexpressed. Asterisks following the annotated value 
represent statistically significant alterations (FDR < 0.05). Source material for these graphs is Supplementary Figure 1. The complete FDR, 
p-value, and logarithmic fold change values can be found in Supplementary Table 2. 
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cholangiocarcinoma, head and neck cancer, and stomach 
cancer. However, differences between the IHC and RNA-
seq data do exist. For example, in the case of ITGB2, IHC 
indicates that ITGB2 is only overexpressed in gliomas 
and prostate cancers whereas RNA-seq identifies ITGB2 
elevation in breast cancer, glioma, head and neck cancer, 
renal cancer and stomach cancer. 

Identification of cancer type-specific 
therapeutically actionable heterodimeric 
integrin receptors

In previous discussion, individual integrin subunits 
were identified as potential targets (Figure 4); however, the 
actual druggable integrins are the heterodimeric receptors. 
Absolute expression level selection criteria resulted in only 
the subunits highlighted in blue in Figure 5 being considered 
for pairing of integrin subunits. These gene subunits were 
combined using the existing rules of obligated integrin 
pairing (Figure 2A) to determine heterodimeric receptor 
drug targets for each cancer (Figure 7). 

Using the aforementioned selection parameters 
outlined in Figure 1, 10 of the 17 profiled cancers have no 

viable heterodimer options, according to the computational 
analysis seen in blue (Figure 7), as the rules for pairing 
did not allow for any of the FPKM expression-filtered 
gene subunits to interact. Only subunits that were ranked 
highly according to the Metric and higher than 10 FPKM 
were considered viable partners for heterodimer pairing. 
Imposing the rules of integrin pairing (Figure 2A) further 
constrained the possible combinations of therapeutically 
actionable targets identified by the computational analysis. 

The integrin protein drug targets identified through 
the computational method introduced in this study 
were compared against the integrin targets identified 
by immunohistochemistry staining (Figure 6). Since 
immunohistochemistry (IHC) data only stained for 
individual subunits, the rules for subunit pairing were 
observed in determining the integrin protein targets. The 
IHC data, colored red, identified many targets for lung, 
cervical and liver cancer that were not supported by the 
computational analysis of RNA-seq data. Conversely, the 
computational analysis of the RNA-seq data identified many 
targets for brain, stomach cancer and cholangiocarcinoma 
that were not supported by IHC data. It is important to note 
that IHC tissue analysis for ITGA10 and ITGA4 expression 

Figure 4: Metric ranking of the best potential therapeutic integrin targets. A scoring system was developed and applied 
to the RNA-Seq data in order to predict the best integrin drug targets specific to each cancer type (Materials and Methods). The two 
components that comprised Metric were the logarithmic fold change value and the false discovery rate (FDR). In order to generate the 
Metric values, both components were considered for each subunit for each tumor type and applied to a formula described in Materials and 
Methods. Colored on a spectrum from light to dark green, the lowest values are colored lighter shades while the higher values are colored 
darker shades. Higher values indicate more promising drug targets based on the following criteria: high level of differential expression 
(logarithmic fold change), acceptable FDR values (p < 0.05). 
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level are not yet available at this moment in the literature 
and therefore results for these integrins are not possible to 
report at this time. Additionally, IHC data is reported by 
organ, and thus the data from lung and kidney cancers 
were broadly applied to the subtypes profiled by TCGA 
(LUAD, LUSC, KIRP, KIRC, KICH). Both the IHC and 
the computational analysis methods (Figure 6, shown in 
green) however, do agree on all the identified head and neck 
squamous cell carcinoma and pancreatic adenocarcinoma 
integrin targets. 

The actionable integrin receptors charted in Figure 7  
represent the set of possible heterodimers where both 
paired subunits are significantly overexpressed in 
tumor samples compared to normal and have FPKM 
value greater than 10. Overexpression of both subunits 
in a heterodimeric pair may not be needed for a viable 
drug target. It is conceivable that high expression level 
of mRNA encoding an integrin subunit could still drive 
the entire heterodimer to a high level of expression, 
even if the partner chain is at normal level. Using this 
relaxed criteria, many additional plausible therapeutic 
integrin heterodimers emerge. The full-range of possible 
therapeutically actionable heterodimeric integrin receptors 

stemming from the computational analysis are charted in 
Figure 8. 

Red colored integrin heterodimers in Figure 8B 
indicates that there exists prior studies that identify the 
receptor as a valid target. Bolded text (Figure 8B) represents 
subunits with high Metric ranking and FPKM > 10.  
Subunits in normal font indicates standard expression, 
high expression but without a proper FDR value, or 
high expression but FPKM < 10. For easy visualization,  
Figure 8A serves as a graphical representation of the 
plausible heterodimeric integrin targets. Integrin α3β1 
is expressed in high levels in bladder cancer [20]. It 
has been previously shown that targeting αv integrins 
reduces malignancy in bladder cancer [21]. Integrin 
α5β1 and integrin αvβ5 are shown to be viable targets 
in invasive breast carcinoma [22]. Cervical squamous cell 
carcinoma and endocervical adenocarcinoma overexpress 
integrins α2β1 and αvβ6 [23, 24]. Cholangiocarcinoma 
overexpresses β4 integrin subunit [25]. A migratory 
and highly invasive cholangioacarcinoma phenotype is 
closely linked to expression of the integrin α6 subunit, 
where higher expression is associated with more invasive 
properties [26]. By the rules of integrin pairing (Figure 2A),  

Figure 5: Expression levels for all ranked integrin subunit genes. FPKM expression values for all the ranked integrin subunits 
(Figure 2B) were obtained from TCGA Expression Graphs hosted at The Protein Atlas (https://www.proteinatlas.org/). FPKM values ≥ 10 
(Blue) denote that the level of expression of the gene is significant enough to represent a targetable receptor. The boxes colored in green 
indicate FPKM values very close to the cut-off, and are also considered targetable subunits. 
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the β4 subunit must pair with α6 subunit, thereby 
supporting the data displayed in Figure 8B. Additionally, 
integrin αvβ6 has been shown to be overexpressed in 
cholangiocarcinomas [27]. The αv integrins are prime 
targets for glioblastoma therapeutic strategies and are 
highly overexpressed in malignant samples compared to 
normal samples: integrins αvβ5, αvβ8, and αvβ3 [28–30]. 
In addition, α5β1 has been previously shown to be key in 
regulating growth and tumor progression in glioblastoma 
[31]. Head and neck squamous cell carcinoma has been 
extensively studied and integrins αvβ5, αvβ8, α5β1, 
α6β4, αvβ8, and αvβ6 have clearly been shown to 
be overexpressed receptors [32, 33]. Further evidence 

supports that for head and neck squamous cell carcinomas, 
the β1 integrins in general are necessary for maintaining 
proper tumor processes and growth [34, 35]. Liver 
hepatocellular carcinoma overexpresses many integrin 
receptors including the previously established integrins 
αvβ3, αvβ5, α2β1, α5β1, α6β1, and α6β4 [36–40]. β1 
and β8 subunits overexpression, in general, have been 
implicated in facilitating liver hepatocellular carcinoma 
metastases and progression [40, 41]. Lung adenocarcinoma 
integrin drug targets that have been previously vetted are 
integrins αvβ3, αvβ5, α2β1, αvβ1, and α6β4 [42–44]. 
Additionally, integrin α11β1 has been shown to enhance 
tumorigenicity and metastasis in lung adenocarcinoma 

Figure 6: Profiling of integrin protein overexpression across 12 cancer types. Immunohistochemistry (IHC) data from The 
Human Protein Atlas (https://www.proteinatlas.org/humanpathology) was analyzed for integrin subunit protein expression in each cancer 
type (Materials and Methods). The values of the translated quantitative IHC expression levels is shown in Supplementary Table 3A in 
the format (tumor, normal). Overexpression was determined when the tumor value exceeds the normal value. In the table above, the 
cancers exhibiting overexpression of the indicated integrin subunits are displayed in green. A blank box indicates that either there was no 
overexpression of the integrin compared to normal tissue samples or that the Protein Atlas did not perform IHC analysis of that integrin 
subunit (IHC analysis was not performed for ITGA4 and ITGA10). Since the cancer types are broadly categorized by organ site in the 
Protein Atlas, data are not available for certain cancer sub-types, specifically renal (KIRC, KICH, KIRP), lung (LUAD, LUSC), colorectal 
(COAD, READ), PCPG and CHOL. Immunohistochemistry data was collected from the Protein Atlas, and only the data from validated 
antibodies were used for analysis. Supplementary Table 3B displays the antibodies used and sample sizes. A number of integrin subunits 
only displayed data from one antibody, thus it was used as default regardless of validity (ITGAD, ITGAL, ITGA1, ITGA7, ITGA8, ITGA9, 
ITGA11, ITGBL1, ITGB1, ITGB3, ITGB7 have data reported by one antibody only). Additionally, data for ITGA4 and ITGA10 subunits are 
intentionally left empty because the Protein Atlas did not report any results for these subunits. 
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[45]. Integrin α5β1 is essential for lung tumor progression 
as it recognizes fibronectin and is a potential anti-lung 
cancer therapeutic candidate [46]. Previous research has 
identified integrin α6β4 to be crucial in squamous cell 
lung carcinoma development and growth [47]. Similarly, 
integrin α6β4 is overexpressed and a prime therapeutic 
target in pancreatic adenocarcinomas [48, 49]. It has also 
been previously shown that integrin α6β1 overexpression 
increases metastatic capability of pancreatic cancers 
[50]. The overexpression of αv integrins (αvβ3, αvβ5, 
αvβ6) serves as key prognostic, and therapeutic targets 
in stomach cancers [51, 52]. Overexpression of integrins 
subunits α2 and α6 increase the invasive potential of 
gastric cancers and prime the tumor cells for invasion into 
surrounding tissues [53]. 

DISCUSSION 

Through computational analysis of RNA-
seq data and comparison to immunohistochemistry 
data, overexpressed integrins in 17 solid tumors were 
characterized. Individual integrin subunits identified 
in this study may serve as potential drug targets for the 
development of cancer therapeutics. Inhibition of individual 
subunits is expected to disrupt cellular signaling and acts to 

halt tumor metastatic processes, angiogenesis and growth. 
The heterodimeric integrin drug targets identified in this 
study are overexpressed in their respective tumor types and 
therefore are prime targets for therapeutic development. 
Integrins are evolutionarily conserved, and also conserved 
by a tumor indicating the importance of integrins for 
sensing and interacting with the external environment. 
Through our bioinformatics and mathematical analysis 
scheme, a new method for selecting integrin therapeutic 
targets has been introduced. This study contributes a 
pattern-oriented method for pinpointing specific integrin 
targets, which can streamline the drug discovery process. 
Integrin heterodimers, with high expression on tumor cells 
compared to normal cells, outlined in this study can also 
serve as cell surface targets for nanodelivery of drugs and 
imaging agents. 

The results of our analyses demonstrate that each type 
of cancer examined possesses a distinctive integrin gene 
overexpression signature. While this is not unexpected, the 
results serve as an additional confirmation of previously 
targeted integrins and highlight those that should potentially 
be prioritized. The results are based on transcriptome data, 
which has its limitations. Most notably, it is not completely 
indicative of protein expression. However, these findings 
emphasize the need for therapeutic approaches that are 

Figure 7: Selection of cancer type-specific therapeutically actionable integrin heterodimer receptors. The therapeutically 
actionable receptors are based on the highest ranked, according to Metric, and FPKM-filtered subunit genes. The subunits that passed the 
Metric and FPKM filters were combined, according to the integrin pairing rules (Figure 2A), to form any of the 24 possible obligated 
heterodimeric integrins displayed on the cell surface. Blue indicates integrin heterodimers identified as targets through differential 
expression analysis of TCGA data only, Red indicates results obtained from immunohistochemistry only (Figure 5), and Green indicates 
that both methods agree. The cancer types (BLCA, BRCA, CESC, KICH, KIRP, KIRC, PCPG, PRAD, READ), did not have viable 
heterodimer integrin options based on the FPKM filtered ranked genes from RNA-seq analysis. Renal cancer data from IHC was broadly 
applied to KICH, KIRP and KIRC. Similarily, immunohistochemistry lung cancer data was applied to LUSC and LUAD. 
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Figure 8: Pausible integrin heterodimers as cancer therapeutic targets. (A) A chart representing the plausible integrin 
heterodimers is shown. The red boxes indicate that only one subunit was overexpressed and the blue boxes indicates that both subunits 
were overexpressed. (B) The full expanded version of Part A is depicted in Part B. A comprehensive map of heterodimeric integrin targets 
for 17 different tumor types based on the computational analysis is presented. The bolded subunits represent subunits that are overexpressed 
compared to normal samples (Figure 4), and are absolutely expressed at a level greater than 10 FPKM (Figure 5). The integrin heterodimers 
that are colored in red represent receptors for which previously published data exists regarding differential expression and/or usefulness in 
cancer treatment and diagnosis.
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individualized for cancer type, and for the patient, if 
appropriate clinical molecular testing is available. For 
example, cholangiocarcinoma (CHOL) overexpresses a 
large variety of subunits possibly to increase migration and 
promote metastasis whereas pancreatic adenocarcinoma 
(PAAD) overexpresses a very limited set of integrins 
(Figure 2B). The relatively few expression features shared 
by KICH, KIRC, and KIRP indicate that there may be 
major differences in tumor biology in kidney cancers. 
(Figure 2B). Although the two most common types of non-
small cell lung cancer, lung adenocarcinoma (LUAD) and 
lung squamous cell carcinoma (LUSC), originate from 
distinctive cell types, they have remarkably similar integrin 
expression profiles, and share overexpression of ITGAV, 
ITGA2, ITGA11, ITGB4, and ITGB5. Also, both share 
underexpression of ITGB2, ITG10, ITGA9, ITGA8, ITGA5, 
ITGA1, ITGAM, ITGAL, and ITGAE (Figure 2B). 

The computational analysis (Figure 8A) and 
immunohistochemical data (Figure 7, red color) yielded 
no viable heterodimer options for several cancer types, 
including BLCA (bladder urothelial carcinoma). BLCA, 
in this study, was found to possess no actionable receptors 
primarily through scoring via the Metric and FPKM 
filtering. However, as indicated earler, overexpression of 
both subunits in a heterodimeric pair may not be needed 
for a viable drug target; overexpression of one subunit with 
normal expression of the obligated partnering subunit may 
suffice. Using this relaxed criteria, three plausible targets 
emerge for BLCA: α3β1, αvb6, and α6b4 (Figure 8A).

While predictions based solely on transcriptome 
profiling data can be limited due to varying concordance 
between RNA and protein levels [54, 55], we attempted 
to increase the dependability of our scheme by integrating 
protein-level data. The immunohistochemistry data 
(Figure 6) seemingly preferentially recognized many 
targets for lung, liver, and cervical cancer that were 
unsupported by computational analysis of the RNA-Seq 
transcriptome data. Two potential reasons can explain 
this phenomenon: 1) RNA expression does not always 
correspond to protein expression, and 2) non-TCGA 
samples were used. Comparing non-TCGA data (IHC 
data) to TCGA samples (computational data) can lead to 
discrepancies in analysis simply because a different data 
source was used. It is curious that there are inconsistencies 
with the immunohistochemistry data. For example, when 
staining ITGβ4, antibodies HPA036348 and HPA036349 
showed reliable results whereas antibodies CAB002422 
and CAB005258 do not stain normal glands that should 
typically be positive for ITGβ4. In order to combat this 
source of inconsistency and be stringent in the criteria 
for IHC analysis, only validated antibodies supported 
by immunoblotting evidence were used (Supplementary 
Table 3B). A portion of this inconsistency may stem from 
the heterogeinety within the tissue samples stained. 

The level of mutation and type of mutation are all 
factors to be considered in designing therapeutic ligands. 
Mutations could potentially affect the activation state 
of the integrin or alter the binding pocket of integrin. 
Mutated integrin subunits may lower the binding affinity 
of the integrin to the therapeutic ligands as the ligand 
was designed for wild-type integrins. This renders the 
tumor resistant to such treatment. In this study, we 
have ignored integrin mutation in our selection criteria 
because, in general, mutation rate of the integrin subunits 
for the 17 surveyed cancers were low ranging from 
0.2% to 8.74%. This low level of mutation indicates 
that overall mutation rate was not an important factor in 
assessing drug targets. 

In the era of precision medicine, by selecting 
integrins that are overexpressed in specific tumors, 
more effective therapeutics can be designed. Surveying 
the integrin expression profile of a tumor, the most 
overexpressed integrins can be targeted, provided that high 
affinity and high specificity antagonist or ligands for drug 
delivery against these integrin heterodimers are available. 
Therapeutics developed against these overexpressed 
integrin are intended to be short-term treatment options. 
The expression differences between cancer and normal 
tissue are high enough to minimize non-relevant effects. 
Furthermore, these overexpressed integrin targets can 
also serve as imaging targets [14]. One efficient approach 
to discover such ligands is to use the enabling OBOC 
combinatorial technology [11–14].

Many solid tumors, such as GBM, LIHC, and PAAD 
exhibit marked cellular and molecular heterogeneity. 
This is critical to consider when analyzing transcriptome 
data as certain focal areas in the tumor (e.g., cell sub-
populations) may exhibit overexpression of a marker while 
adjacent sections may not express the marker. Moreover, 
consideration of intra-tumor heterogeneity is critical in 
the context of drug development and tumor targeting, 
since the overall drug responses can be influenced by 
the target being expressed in a generalized manner 
throughout the tumor or in a more limited, focal area. In 
this regard, single cell analyses, spatial transcriptomics, 
and immunohistochemistry can be vital in discerning these 
patterns of expression. 

In this study, we comprehensively screened the 
TCGA database and identified integrin expression and 
potential targets across 17 cancer types. Furthermore, a 
new method for selection of integrin-based therapeutic 
targets has been described (Figure 1). While this study 
identified actionable targets broadly for each cancer type, 
applying this for individual patients will be essential for 
achieving goals of precision medicine. In addition, while 
this is a bioinformatics-based analysis, it will be essential 
to perform further studies aimed at empirical validation of 
this target selection approach. 
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MATERIALS AND METHODS

Data acquisition from TCGA (the cancer genome 
atlas) 

Non-normalized, raw counts data from The Cancer 
Genome Atlas was downloaded from the TCGA using the 
R package TCGAbiolinks [56]. All Illumina RNA-seq 
gene expression data for all 30 available cancer types was 
downloaded. 

Differential expression analysis 

Gene symbols were converted from ENSEMBL ID 
to HGNC ID for all 30 datasets. Differential analysis was 
performed by analyzing expression differences between 
all cancer samples compared to all normal samples of a 
particular tumor type. Datasets with normal samples were 
considered, and all datasets without normal samples were 
discarded, since tumor-normal comparisons would not be 
possible. Seven datasets (ACC, DLBC, MESO, UCS, OV, 
TGCT, and LGG) had only tumor samples. Abbreviations 
of cancer types used throughout this paper are in 
concordance with TCGA abbreviations and the full name 
of the cancer type can be found in the legend to Figure 2A. 

The data for the 27 integrin subunits (18 α, 9 β) was 
extracted from the entire RNA-seq expression datasets. 
The DESeq2 R package was utilized for differential 
expression analysis [57]. As the samples analyzed were 
processed at different labs worldwide and processed 
at different times, GC-content and length bias varied. 
To account for these gene-dependent dependencies, a 
normalization factor matrix with the same dimensions as 
the counts matrix was created. The normalization matrix 
was structured such that the row-wise geometric mean 
was 1, to ensure that the normalized counts for a gene 
was close to the mean of the unnormalized counts. Then, 
dispersions were estimated and the negative binomial 
Wald test was performed to generate results. 

Results for each cancer type included, for each of 
the 27 integrin subunit genes, a log 2 value of expression 
difference between cancer and normal, a p-value, and 
a false discovery rate (FDR) adjusted according to the 
Benjamini-Hochberg method (Supplementary Table 2). 

Log 2 value of differential expression, indicates that a 
value of zero, is an expression difference of 2°, or 1. Hence, 
a log 2 value of zero means that there exists no expression 
difference between cancer and normal samples. Positive log 
2 values indicate increased expression in cancer samples 
compared to normal whereas negative indicates decreased 
expression in cancer samples compared to normal. 

Ranking overexpressed genes as drug targets

A scoring system was established to determine 
which genes in a specific cancer are considered the 

best potential drug targets. A mathematical formula was 
created that computed a metric for ranking potential drug 
targets. 

Metric val FDR
gene= ( )log

.
−

0 05

logvalgene = log 2 value of differential expression 
generated by DESeq2

FDR = False Discovery Rate, calculated by negative 
binomial model of DESeq2

The expression concerning FDR: −
FDR
0 05.  exists such 

that False Discovery Rates less than the accepted threshold 
of 0.05, keeps the negative value low whereas FDRs above 
the threshold severely raise the negative value. Through 
the construction of the formula, the best drug targets all 
have FDRs < 0.05, and high logarithmic change values. 

Immunohistochemistry data analysis 

Immunohistochemistry (IHC) data was sourced 
from the Human Protein Atlas [58–60]. Using the 
antibody information provided by the Protein Atlas, only 
validated antibodies were used. If the Protein Atlas only 
used one antibody for their data, the antibody was used 
but its validity was mentioned in the discussion. The 
antibodies that were used for IHC analysis is depicted in 
Supplementary Table 3B. Both normal and tumor samples 
were stained according to the Protein Atlas described 
methods [56–58]. For each cancer, for each integrin, the 
Protein Atlas assigned a single qualitative value to the 
normal IHC level (either not detected, low, medium, or 
high). A segmented bar graph, showing a single integrin’s 
IHC values for a particular cancer type, provided the 
staining intensity using qualitative descriptors (not 
detected, low, medium, or high). Supplementary Table 3B  
also shows the number of samples for each tumor type. For 
example, the segmented bar graph charted the number of 
samples that showed low expression, medium expression, 
and so forth. Overexpression of an integrin in a cancer 
compared to normal was denoted when the weighted 
average of the staining intensity of the tumor samples was 
greater than the normal value assigned to the respective 
tumor type. The results of the overexpression can be seen 
in Figure 6. 

In order to begin comparing IHC expression 
data, the qualitative descriptors were converted into 
quantitative values. Each descriptor for expression 
was paired with a value (not detected = 0, low = 0.33, 
medium = 0.66, and high = 1). A weighted average was 
calculated according to the equation shown below. 

(#of high samples x1) + (#of low samples x0.33) +

(#of mediumsamplees x0.66) + (#of not detected samples x0)

Total#of Samples
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Weighted average

A weighted average for each integrin for each tumor 
type was generated using only the results from validated 
antibodies (Supplementary Table 3A). Overexpression 
of an integrin subunit for a particular tumor type was 
determined by comparing the weighted average to the 
normal value. If the weighted average value was greater 
than the normal value, the integrin was considered to be 
overexpressed in that tumor type. 

Filtering integrin gene targets on FPKM 
expression levels

FPKM absolute expression values were obtained 
from the TCGA dataset analyses on The Protein Atlas. For 
the subunits most highly ranked according to the metric, 
FPKM values were used to filter this set of integrin targets 
further. A cut-off of 10 FPKM was employed, as that 
threshold defines the moderately expressed transcript.

Determining protein heterodimers from scored 
genes

Since integrin subunits associate as heterodimers to 
assemble a productive receptor, the top genes ranked by 
the metric were used to predict the protein heterodimer 
drug targets. Rules for integrin α and β subunit association 
were used as summarized in Figure 2A. 
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