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ABSTRACT

Chemotherapy-induced cognitive impairment (CICI) is now widely recognized 
as a real and too common complication of cancer chemotherapy experienced by an 
ever-growing number of cancer survivors. Previously, we reported that doxorubicin 
(Dox), a prototypical reactive oxygen species (ROS)-producing anti-cancer drug, 
results in oxidation of plasma proteins, including apolipoprotein A-I (ApoA-I) leading 
to tumor necrosis factor-alpha (TNF-α)-mediated oxidative stress in plasma and brain. 
We also reported that co-administration of the antioxidant drug, 2-mercaptoethane 
sulfonate sodium (MESNA), prevents Dox-induced protein oxidation and subsequent 
TNF-α elevation in plasma. In this study, we measured oxidative stress in both brain 
and plasma of Dox-treated mice both with and without MESNA. MESNA ameliorated 
Dox-induced oxidative protein damage in plasma, confirming our prior studies, and 
in a new finding led to decreased oxidative stress in brain. This study also provides 
further functional and biochemical evidence of the mechanisms of CICI. Using novel 
object recognition (NOR), we demonstrated the Dox administration resulted in memory 
deficits, an effect that was rescued by MESNA. Using hydrogen magnetic resonance 
imaging spectroscopy (H1-MRS) techniques, we demonstrated that Dox administration 
led to a dramatic decrease in choline-containing compounds assessed by (Cho)/creatine 
ratios in the hippocampus in mice. To better elucidate a potential mechanism for this 
MRS observation, we tested the activities of the phospholipase enzymes known to act 
on phosphatidylcholine (PtdCho), a key component of phospholipid membranes and a 
source of choline for the neurotransmitter, acetylcholine (ACh). The activities of both 
phosphatidylcholine-specific phospholipase C (PC-PLC) and phospholipase D were 
severely diminished following Dox administration. The activity of PC-PLC was preserved 
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when MESNA was co-administered with Dox; however, PLD activity was not protected. 
This study is the first to demonstrate the protective effects of MESNA on Dox-related 
protein oxidation, cognitive decline, phosphocholine (PCho) levels, and PC-PLC activity 
in brain and suggests novel potential therapeutic targets and strategies to mitigate CICI.

INTRODUCTION

Chemotherapy-induced cognitive impairment 
(CICI), often termed “chemobrain” by patients, is 
increasingly recognized as a significant complication of 
cancer chemotherapy [1–7]. CICI consists of impairments 
in various aspects of memory and executive function 
[8, 9]. Despite the increased attention this issue has 
garnered from the clinical and research communities, the 
mechanisms of the resulting cognitive impairment still are 
poorly understood but are thought to include peripheral 
toxic effects caused by the chemotherapy drugs leading 
to downstream structural and functional changes in the 
brain. These latter changes include neuroinflammatory 
consequences and even changes in neurotransmitter 
levels and function [10–13]. The main reasons for the 
slowness to address CICI may include the complexity 
of cancer and its treatments, especially by agents that 
do not cross the blood-brain barrier (BBB). Moreover, 
a hitherto lack of a scientific explanation for cognitive 
consequences of chemotherapy has hampered progress. 
A better understanding of the underlying mechanisms by 
which CICI occurs is necessary to allow cancer survivors 
to have a better quality of life by protecting non-targeted 
tissues against undesired toxicities of anticancer drugs. 

In the present studies, we used doxorubicin (Dox) 
as a representative chemotherapeutic agent known to 
produce reactive oxygen species (ROS) [14–16]. Dox is 
an anthracycline antineoplastic agent commonly used in 
multidrug chemotherapy regimens primarily to treat solid 
tumors and leukemia. The cancer-killing effects of Dox 
have been shown to involve three proposed mechanisms: 
DNA intercalation, inhibition of topoisomerase II, and 
production of ROS [16–22]. The quinone moiety present 
in the Dox structure is capable of undergoing a one-
electron reduction to the semi-quinone [10, 23]. Through 
the redox cycling of this structure back to the quinone 
in vivo, the reactive superoxide free radical (O2

-•) is 
produced from molecular oxygen. In addition, previous 
studies by our laboratories demonstrated that even though 
neither Dox nor its primary metabolite crosses the BBB, 
peripheral Dox treatment causes brain injury as evidenced 
by increased oxidative stress, elevated levels of the pro-
inflammatory cytokine, tumor necrosis factor-alpha 
(TNF-α), and mitochondrial dysfunction [24–27]. 

Our laboratory and others previously 
demonstrated Dox-induced oxidative stress in 
plasma and damage to plasma proteins subsequently 
leading to detrimental central nervous system 
consequences [10, 24, 28–31]. Central to this paradigm 
is apolipoprotein A-I (ApoA-I) [4, 10, 32, 33].  

ApoA-I promotes cholesterol efflux as part of the high 
density lipoprotein (HDL) complex. Additionally, ApoA-I 
has been shown to suppress TNF-α in plasma [34–36]. 
Previous studies showed that, when oxidized, ApoA-I 
loses this ability to suppress TNF-α release and may 
exacerbate the problem [10].

However, ApoA-I oxidation and subsequent increased 
TNF-α release is suppressed with co-administration of the 
drug MESNA (2-mercaptoethane sulfonate sodium) in mice 
[10]. The structure of MESNA contains a free sulfhydryl 
group imparting much of its antioxidant properties by 
affording it the ability to scavenge free radicals and lipid-
derived reactive aldehydes such as 4-hydroxynonenal 
(HNE) and acrolein. MESNA is FDA approved for 
prevention of hemorrhagic cystitis and routinely used with 
Dox as part of multidrug chemotherapy regimens that 
include ifosfamide or cyclophosphamide. MESNA does 
not enter cells and therefore does not interfere with cancer 
chemotherapy [37]. Treatment of mice with MESNA blocks 
protein oxidation, including ApoA-I, in the plasma [10]. 
Modulating the location and production of chemotherapy-
induced production of ROS may be paramount in decreasing 
the unwanted toxicities associated with chemotherapy while 
enhancing the cancer-killing effects [38].

The current study was undertaken to test the 
hypothesis that MESNA would block Dox-induced, TNF-
α-mediated markers of brain damage, indexed by changes 
in oxidative stress and magnetic resonance spectroscopy 
(MRS) spectra in brain, with consequent improved 
cognition.

RESULTS

Dox administration results in increases in 
oxidative stress markers in brain and plasma

We previously showed that, despite its inability 
to cross the BBB, peripheral Dox administration led to 
increased levels of TNF-α and oxidative stress in brain [10, 
11, 24, 27, 39]. Here, we tested for indicators of oxidative 
stress in brain and plasma of animals used in this study. 
Test subjects were administered either saline, MESNA, 
Dox, or Dox plus MESNA. Brain and blood samples 
were collected 72 h post-Dox treatment, immediately 
following cognitive or MRS studies.  Protein carbonyl 
and protein-bound HNE levels were used as a gauge of 
damage to proteins and lipids, respectively. Significantly 
higher levels of protein carbonyls and protein-bound HNE 
in brain of Dox-treated animals compared to saline-treated 
controls were observed (p < 0.01, Figure 1A and p < 0.01, 
Figure 1C, respectively). MESNA protected the brain from 
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these oxidative damages (p < 0.01, p < 0.01). Plasma 
results confirmed similarly increased protein carbonyl 
and protein-bound HNE levels in Dox vs. saline treated 
animals (p < 0.0001, Figure 1B and p < 0.001, Figure 
1D, respectively). Both effects were ameliorated when 
MESNA was administered with Dox (p < 0.01, p < 0.05).  
These results are consistent with our previous findings 
in plasma [10] and brain [11, 27] and consistent with the 
notion that concomitant MESNA administration may be 
able to reduce or prevent these consequences in brain. 

Dox administration results in cognitive 
impairment and decreased locomotor activity

In order to determine potential cognitive 
consequences of Dox-induced oxidative stress in brain 

and the possibility that MESNA protected brain function, 
NOR was performed on animals in each of the previously 
mentioned treatment groups (Figure 2A). NOR provides 
a measure of cognitive function in rodent models by 
assessing the preference for investigating a novel object 
in a familiar environment. Preference for the novel object 
indicates memory of a familiar object and learning through 
the animal’s natural propensity to explore an unfamiliar 
object. Novelty recognition is thought to require more 
complex cognitive function [40, 41]. NOR employs both 
hippocampus and frontal cortex, thought to be key brain 
regions affected in CICI (“chemobrain”). Open field 
testing was employed as a measure of locomotor activity 
among treatment groups (Figure 2B). 

Prior to treatment, animals assigned to each of the 
treatment groups spent an average of 65–70% of total 

Figure 1: Levels of protein carbonyl and protein-bound HNE are indicators of protein oxidation and lipid peroxidation, 
respectively. Graphs (A–D) depict protein carbonyl and protein-bound HNE in brain and plasma of 2–3 month old, male B6C3 mice treated 
with saline, MESNA, Dox (25 mg/kg), or Dox with MESNA. MESNA was administered at 160 mg/kg i.p. 15 min before DOX/Saline as 
well as 3 h and 6 h after Dox/Saline. Brain and plasma samples were acquired post 72 h treatments. Protein carbonyl levels were significantly 
increased in brain (A) (**P < 0.01) and plasma (B) (****P < 0.0001) of mice treated with Dox relative to saline. MESNA, co-administered 
with Dox, ameliorated Dox-induced increases in protein carbonyl in both brain and plasma (**P < 0.01).  Protein-bound HNE levels were 
significantly elevated in brain (**P < 0.01) and plasma (***P < 0.001) of mice treated with Dox relative to saline.  MESNA, co-administered 
with Dox, significantly suppressed Dox-induced elevation in protein-bound HNE in both brain (**P < 0.01) and plasma (*P < 0.05).  N = 
10–13 per treatment group.
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exploration time investigating the novel object. At 24 h 
post-treatment, each subject was re-acclimated to the 
environment containing the two original familiar objects 
followed by exposure to one familiar and one novel object. 
There is no difference among each treatment groups at 24 h. 

At 72 h post-treatment, the saline and MESNA 
treatment groups maintained an average RI of 
approximately 70, similar to previous performance. 
Meanwhile, the Dox treatment group performed at a 
significantly decreased mean RI of around 40, suggesting 
no preference for the novel object, reflecting Dox-induced 
memory impairment. The RI of Dox treated group at 72 
h post-treatment was significantly lower than all three 
other groups (Saline, MESNA and Dox+MESNA) at 
72 h post-treatment (*P < 0.05), suggesting a delayed 
memorydecline by Dox. That corresponded to the time 
when oxidative stress parameters were significantly 
elevated (Figure 1). The group that received MESNA 
with Dox had a mean RI of approximately 60 at 72 h post-
treatment, significantly higher than the 72 h Dox treated 
group, indicating a protection of cognitive function by 
rescuing the Dox-induced delayed memory impairment.  

Dox treatment significantly decreased the locomotor 
activity compared to MESNA control group at 24 h post 
treatment (*P < 0.05). Dox resulted in a progressive 
decline in locomotor activity, which reached statistical 
significance by 72 h post-treatment in Figure 2B  
(*P < 0.05).  The similar decrease in total locomotor 
activity of the Dox and Dox+MESNA groups (Figure 
2B) suggests a selective effect of MESNA on attenuating 

Dox-induced memory impairment, and eliminates activity 
level as a potential confounding variable when comparing 
cognitive function results between these two groups.

Dox administration results in changes to the 
neurochemical profile in the hippocampus 
determined by MRS

The involvement of the hippocampus in learning 
and memory [40, 42–45] led us to pursue MRS scans 
of the hippocampus in the murine chemotherapy 
treatment groups studied. H1-MRS non-invasively 
measures neurochemical aspects of the living brain. 
The peaks observed in this spectrum (Figure 3A) 
include N-acetylaspartate (NAA), Choline-containing 
compounds (Cho), creatine (Cr), myo-inositol, glutamate 
and glutamine, lipids, and lactate allowing quantification 
of these and other metabolites in the living brain [46]. 
Quantification is generally achieved using ratios to other 
species, commonly to Cr. 

Unilateral and bilateral hippocampal H1-MRS 
showed a slight, but significant, decrease in the NAA/Cr 
ratio in the Dox treated group compared to saline controls 
(p < 0.05, Figure 3B). A decrease in NAA/Cr is indicative 
of decreased neuronal integrity. Strikingly, MRS scans 
revealed, on average, a much larger six standard-deviation 
decrease in Cho/Cr in Dox-treated mice compared to that 
of saline-treated mice (p < 0.0001, Figure 3C). Though 
not significant, a slight increase in the Cho/Cr to peak was 
seen in the Dox+MESNA group compared to Dox alone 

Figure 2: Behavior testing for male B6C3 mice treated with saline, MESNA, Dox (25 mg/kg), or Dox+MESNA. MESNA 
was administered at 160 mg/kg i.p. 15 min before DOX/ Saline as well as 3 h and 6 h after Dox/Saline. Brain and plasma samples were 
acquired post 72 h treatments. N = 7–8 per treatment group. (A) Novel Object Recognition (NOR) testing provides a measure of cognitive 
function through recognition memory. Dox group performed at a significantly lower RI than Saline, MESNA and Dox+MESNA groups 
at 72 h post treatment (*P < 0.05). MESNA given with Dox rescued this measure of cognitive function. (B) Open Field Testing was used 
to provide a comparison of average total locomotor activity among groups. Dox group is significantly different from MESNA control 
group at 24 h post treatment. Both the Dox and Dox+MESNA groups showed significantly decreased average total movement compared 
to Saline group or MESNA group at 72 h post treatment (*P < 0.05). Comparisons to MESNA group at 72 h were not shown in the figure. 
The result shows that motor activity in an open field declines following Dox treatment, and this motor dysfunction is not ameliorated by 
MESNA treatment.
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(Figure 3D). This result suggests that MESNA may be 
protecting cognition by a different mechanism in addition 
to partial restoration of the Cho/Cr ratio. As noted above, 
phosphocholine and glycerophosphorylcholine are the 
major contributors to the Cho peak, while choline itself is 
a smaller contributor. 

Dox administration results in decreased PC-PLC 
and PLD activity

To gain insight into a possible mechanism for the 
MRS-indexed changes in choline-containing compounds, 
the activities of phospholipase enzymes known to act on 
PtdCho, a major source of choline and PCho in the brain 
were tested. PC-PLC cleaves PtdCho at the glycerol-
phosphate bond producing the second messenger, 
diacylglycerol (DAG), and PCho. Phospholipase D (PLD), 
located in the plasma membrane, cleaves the headgroup 
from phospholipids thereby releasing soluble choline 
from PtdCho into the cytosol leaving phosphatidic acid. 
Activity of both PC-PLC and PLD in brain were severely 
impaired at 72 h following Dox administration (p < 
0.01 and p < 0.01, respectively; Figure 4) providing a 
possible explanation for the dramatic decrease seen in the 
choline-containing peaks (as measured by MRS Cho/Cr 
ratio). MESNA, co-administered with Dox, completely 
rescued PC-PLC activity back to the activity observed 
in the saline-treated group. However, adding MESNA to 

the treatment regimen with Dox did not prevent the Dox-
related decrease in PLD activity. 

DISCUSSION

Based on our earlier studies, we previously 
proposed the following model for CICI [47]: Plasma 
protein oxidation, including that of ApoA-I, induced by 
the redox cycling of Dox, leads to elevation of TNF-α 
in the periphery. TNF-α crosses the BBB by receptor-
mediated endocytosis to induce microglial activation, 
leading to further TNF-α release, increased production 
of NO, mitochondrial dysfunction, neuronal death, and 
consequent cognitive impairment [4, 10, 11, 24–26, 28]. 
We previously showed that oxidative damage occurs early 
in neurodegenerative processes [48–52]. Nearly half of 
FDA approved anti-cancer drugs result in elevation of 
ROS and induce oxidative stress [23]. A large percentage 
of cancer survivors suffer from CICI, now widely 
recognized as a chemotherapy complication [1–5]. The 
goals of this study were to gain insights into mechanisms 
of CICI and its potential prevention, with the long-term 
goal to progress toward prevention or at least successful 
management of CICI and an improved quality of life 
for an ever-growing number of cancer survivors. Figure 
5 depicts major changes in brain following treatment of 
mice with non-BBB permeable Dox and modulation or 
amelioration of these changes by MESNA. 

Figure 3: (A) H1-MRS uses proton signatures from hydrogen in much the same way as NMR to create two-dimensional images of the 
tissue (right) and a spectrum of peaks reflecting a neurochemical profile of one mouse after 72 h treatment that includes NAA, Cho, Cr, and 
others (left). (B) Bilateral H1-MRS scans of mouse hippocampus revealed that Dox treatment lead to a slight but statistically significant 
decrease compared to Saline group (*P < 0.05) in the NAA/Cr ratio. (C) A six standard deviation decrease in the Cho/Cr ratio in the Dox-
treated group compared to saline control (***P < 0.001). (D) Co-administration of MESNA with Dox resulted in a trend toward rebound in 
Cho/Cr compared to Dox alone. Greater variability was seen in Cho/Cr in the Dox+MESNA group.
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Direct toxic effects caused by the chemotherapy 
drugs lead to damage to biomolecules including lipids, 
proteins, lipoproteins, and genetic material [10, 11, 23, 
53–55]. Oxidative stress caused by anticancer drugs leads 
to damage to biomolecules in non-targeted, non-cancerous 
tissues including the blood, heart, and brain [23, 47]. 
Reactive oxygen and reactive nitrogen species (ROS, 
RNS) include such species as superoxide radical anion  
(O2

-•), nitric oxide (NO), peroxynitrite (ONOO-), and 
hydroxyl radical (HO•). Some of these have both functions 
essential to life and effects damaging to biomolecules 
necessary for life. O2

-• is produced by inefficient reduction 
of molecular oxygen in the mitochondria [23, 56–58]. NO, 
a free radical, is produced from L-arginine by catalysis 
of various forms of the enzyme, nitric oxide synthase. 
Together, O2

-• and NO combine to form another reactive 
species, ONOO- [59, 60].  Hydrogen peroxide (H2O2), 
produced through the actions of superoxide dismutase 
(SOD) [61, 62], is converted to water and molecular 
oxygen by peroxidases, but H2O2 can result in production 
of HO• in the presence of iron(II) or copper(I) ions 
via Fenton Chemistry [63–65]. These radical species 
can cause the formation of carbon-centered radicals, 
alkoxyl radicals, and peroxyl radicals further damaging 
biomolecules through a free radical chain reaction [66, 
67]. In particular, this type of oxidative stress can lead to 
lipid peroxidation in the lipid bilayer and the formation 
of reactive alkenals such as HNE, a lipid peroxidation 
product easily formed in brain containing abundant 
arachidonic acid. HNE can covalently bind proteins by 
Michael addition to alter protein structure and function 

[68–71]. The brain is particularly vulnerable to oxidative 
damage due to relatively low antioxidant defenses, 
high oxygen consumption, and high concentrations of 
polyunsaturated fatty acids.

Administration of the prototypical ROS-generating 
anti-cancer drug, Dox, leads to oxidative damage to 
plasma proteins through both direct and indirect toxicity 
independent of its cancer killing ability. Dox directly 
continually causes oxidative stress in peripheral tissues 
by redox cycling of the quinone moiety in its structure 
[72]. Dox-induced cardiac dysfunction, in part is due to 
mitochondrial damage, is well established and is used as 
a dose limiting criteria in treatment protocols [73–76]. 
Indirectly, Dox elevates levels of TNF-α in the plasma 
and, subsequently, the brain leading to neuronal death [10, 
24]. Macrophages are the principal cell source of TNF-α; 
however, cellular targets and biological effects are varied 
including inflammation, neutrophil activation, catabolism 
in fat and muscle, triggering the synthesis of acute-phase 
proteins, and apoptosis in many cell types. Such responses 
can be beneficial if acute but quite harmful if chronic or 
sustained. 

Under normal conditions, ApoA-I suppresses TNF-α 
release in plasma [34, 77]. Once oxidized, ApoA-I loses 
this ability and may actually exacerbate TNF-α release 
[10, 32]. The oxidative status of ApoA-I is crucial to its 
role in TNF-α suppression. Dox-induced ApoA-I oxidation 
and TNF-α increase is suppressed by co-administration of 
MESNA [10]. MESNA is rapidly oxidized, scavenging 
reactive species in circulation. MESNA’s time in 
circulation is short-lived as it is rapidly renally eliminated, 

Figure 4: Phosphatidylcholine-specific phospholipase C (PC-PLC) and Phospholipase D (PLD) activity in brain  
72 h post-treatment presented as percent saline control. (A) PC-PLC activity at 22.5 h of incubation, the peak fluorescence of 
the corresponding positive control in these trials, at room temperature in the dark. Cleavage of the assay substrate by PC-PLC yields a 
dye-labeled diacylglycerol (DAG) which fluoresces using an excitation and emission maxima of 509 nm and 516 nm, respectively. Dox 
administration caused a significant decrease in PC-PLC activity compared to saline treated mice (**p < 0.01). Co-administration of MESNA 
rescued decreased PC-PLC activity by Dox (**p < 0.01). (B) PLD activity at 1h of incubation, the peak fluorescence of the corresponding 
positive control in these trials, at 37° C protected from light. PLD cleaves the headgroup from phospholipids thereby releasing the choline 
from PtdCho. Assay reactions involving the choline produce a product that fluoresces using an excitation and emission maxima of 571 and 
585 nm, respectively. Dox treatment resulted in significantly decreased PLD activity compared to saline treated controls (**p < 0.01). PLD 
activity in the Dox+MESNA group was not significantly different from the group receiving Dox alone.
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thereby reducing the chance for potential unwanted side 
effects [78]. 

Oxidative stress data presented here support the 
results of our previous studies. Dox administration leads 
to oxidative stress in both plasma and brain as evidenced 
by increased protein carbonyl and protein-bound HNE. 
Both of these damages are prevented when MESNA is 
administered just prior to Dox. These results, shown for 
the first time in brain, confirm our prior results in plasma.

Cognitive testing of saline, Dox, MESNA, and 
Dox+MESNA treatment groups revealed memory 
impairment in animals receiving Dox alone. Cognitive 
performance, as measured by NOR, was rescued in the 
group that received MESNA with Dox at 72 h post-
treatment. Open field testing was employed as a gauge of 
locomotor activity. The treatment groups receiving Dox 
displayed less total movement than those without Dox 
treatment. This finding is consistent with prior studies of 
others [79, 80] that conceivably could be due to protein 
oxidation of muscles and/ or the effects of elevated 
levels of the pro-inflamatory cytokine TNF-α [81, 82]. 
Dox-induced motor dysfunction is not ameliorated by 
MESNA treatment. However, the Dox and Dox+MESNA 
treatment groups displayed similar total movement in the 
test environment decreasing potential confounds when 
comparing NOR performance between these two groups. 
Total object exploration time was similar among all 
treatment groups and decreased with repeated exposure to 
the environment. After only 24 h post-injection, animals 
in the Dox-treated group were already showing a trend 
of decreased preference for the novel object compared to 

the other treatment groups. By day three, the Dox treated 
animals on average displayed no preference for the novel 
object over the familiar one. This is compelling evidence 
for Dox-induced cognitive impairment. MESNA rescued 
much of this Dox-induced cognitive deficit (Figure 2A), 
which we speculate is due to prevention of oxidative stress 
in brain following Dox treatment (Figure 1). 

H1-MRS of hippocampus of similarly treated 
animals revealed changes in the neurochemical profile 
in Dox-treated group versus saline control. A slight but 
significant decline in the NAA/Cr ratio was observed in the 
Dox group suggesting neuronal damage. More profoundly, 
MRS revealed, on average, a large six standard deviation 
decline in the Cho/Cr ratio in the hippocampus of the Dox-
treated group compared to the saline-treated group. These 
results are consistent with results from another study in 
which Ciszkowska-Łysoń et al. observed a time-related 
decrease in the Cho/Cr ratio following chemotherapy 
which they attributed to potential myelin damage [83]. 
Three days after Dox treatment may be too soon to see 
measurable myelin damage in brain detectable by MRS. 

Changes in choline-containing compounds on MRS 
are thought to be associated with membrane turnover 
(phospholipid synthesis and degradation) [84, 85]. 
Choline levels have been shown to be proportional to cell 
density [86] and to correlate with degree of malignancy 
in cancers [84, 85]. A decrease in the Cho peaks in brain 
also has been seen in brain aging as well as a decrease 
in choline uptake in older adults [85, 87, 88]. A decrease 
in the Cho/Cr ratio is indicative of decreased cell 
density and necrosis [85, 86]. Upon Dox administration, 

Figure 5: A pictorial summary of results of Dox-induced elevated oxidative stress and neurochemical alterations in the 
periphery and brain as well as cognitive decline (left) and MESNA-mediated protection against these Dox-facilitated 
effects in both plasma and brain.
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the decreased PCho and/or choline is consistent with 
changes in the production or metabolism of PtdCho or 
the neurotransmitter, acetylcholine (ACh) [89, 90]. Due 
to the widespread functions of ACh in both the motor 
and somatic divisions of the autonomic nervous system, 
the effects of chemotherapy-induced changes to this 
neurotransmitter may be varied and dramatic and need to 
be further explored. Evidence exists that ACh-associated 
memory, intelligence, and mood may, in part, be mediated 
by choline levels and ACh metabolism in the brain [91]. 

As noted, the decrease in the Cho peak in brain 
revealed by MRS spectra of Dox-treated mice may be due 
to decreased membrane synthesis, decreased myelination, 
and potentially cell loss. Such observed changes by MRS 
conceivably may be consistent with white matter changes 
seen in human breast cancer patients [92–95]. Magnetic 
resonance imaging (MRI) and magnetic resonance 
spectroscopy (MRS) are proving to be useful tools both for 
visualization of white matter changes and changes in the 
neurochemical profile indicative of axonal degeneration 
and demyelination in the brains of living subjects 
following chemotherapy [95]. Indeed, the integrity of 

lipid-rich myelin covered white matter have been shown 
to be altered as well as damage to gray matter with 
associated functional deficits  following systemic cancer 
chemotherapy, in some cases years after chemotherapy [8, 
95, 96]. Studies have shown that chemotherapy-induced 
neuroinflammation, including increases in TNF-α, are 
correlated with changes in myelination and cognitive 
impairment [96]. Coupled with neuropsychological 
tests, neuroimaging techniques can provide important 
information to help outline a mechanism for clinical 
and biochemical changes in the brain that results from 
chemotherapy and help researchers and clinicians work 
together to decrease or prevent unnecessary cognitive 
decline in cancer patients [97–99].

Elevated TNF-α is reported to decrease synthesis of 
PtdCho [90, 100]. We previously hypothesized that TNF-α 
elevated in the periphery and in brain following cancer 
chemotherapy plays a central role in CICI [4, 10, 24, 26, 
39, 47, 101]. PtdCho is also the principal phospholipid 
found in high-density lipoprotein (HDL), teaming with 
ApoA-I in cholesterol transport, one of the most common 
constituents found in biological membranes. PtdCho is 

Figure 6: Proposed model of mechanism of CICI. ROS-associated chemotherapeutic agent Dox causes elevation of oxidative stress 
including protein-bound HNE. ApoA1 is oxidized by protein-bound HNE with conformational and further functional changes. ApoA1 thus 
loses its ability to interact with ABCA1, increasing TNF-α in the periphery as a consequence. TNF-α can then cross blood brain barrier by 
endocytosis of TNFR1, activate microglia in brain to make more local TNF-α, leading to neuronal mitochondrial dysfunction, apoptosis and 
subsequent cognitive decline. MESNA can block the ROS in periphery (plasma) and ameliorate oxidative stress and cognitive impairment 
in brain (labeled with green arrows in the Figure 6.)
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usually located in the outer bilayer leaflet with the choline 
head group exposed to the aqueous cytosolic environment 
playing vital roles in membrane-mediated cell signaling. 
The turnover of PtdCho is reportedly accelerated 
in models of mitochondrial dysfunction mimicking 
Alzheimer disease (AD) patterns of metabolic changes 
in the brain [102]. Cleavage of PtdCho by PC-PLC 
yields PCho and the second messenger DAG, whereas 
cleavage of PLD releases choline used in the synthesis 
of the neurotransmitter, ACh. PC-PLC plays vital roles in 
several cell signaling pathways involved in both apoptosis 
and cell survival and in a variety of disease processes. 
Hence, decreased DAG could severely impair normal 
cell signaling and be important for CICI. Dox-treatment 
severely impaired the activity of both PC-PLD and PLD 
in brain of the mouse model of chemotherapy used in this 
study (Figure 4). The decrease in activity of these two 
enzymes may, in part, explain the changes in the Cho 
signal seen on hippocampal H1-MRS. The slight though 
not statistically significant recovery of the Cho peaks 
when MESNA was co-administered with Dox may be 
due to protection of PC-PLC function by MESNA but no 

protection of PLD. Therefore, more studies are warranted 
to further elucidate this mechanism.

Based on previous work by our group and the 
results of the current study, we propose the following 
expanded model in Figure 6 for CICI augmenting that 
published by our group previously [10]. ROS-associated 
chemotherapeutic agents cause oxidative damage to 
plasma proteins, including ApoA-I, and lead to peripheral 
elevation of the inflammatory cytokine, TNF-α [10, 
24]. Unaltered ApoA-I interacts with the ATP-binding 
membrane cassette transporter A1 (ABCA1) involved in 
cholesterol transport [35, 77]. Given that protein structure 
changes when oxidized [103], the initial interaction of 
ApoA-I with ABCA1 is altered when ApoA-I is oxidized. 
Hence, TNF-α would be elevated in plasma. Elevated 
TNF-α crosses the BBB leading to microglial activation, 
increased ROS and further TNF-α release in the brain, 
leading to mitochondrial dysfunction and subsequent 
cognitive decline [4, 11]. MESNA can protect both plasma 
and brain from oxidative stress including protein carbonyl 
and protein-bound HNE. MESNA also can save memory 
function and PC-PLC activity in brain following Dox 

Figure 7: A pathway to apoptosis following Dox treatment. Elevated TNF-α inhibits biosynthesis of PtdCho, which coupled 
to decreased activity of PC-PLC, leads to decreased PCho. Decreased PCho results in a relative increased ceramide due to decreased 
conversion to sphingomyelin. Increased ceramide leads to apoptosis.



Oncotarget30333www.oncotarget.com

administration. TNF-α inhibition of PtdCho synthesis 
may result in decreased PCho availability. Since ceramide 
couples with PCho to produce sphingomyelin [104], 
decreased PCho would lead to elevated ceramide. The 
latter is a known inducer of apoptosis [105–108], and we 
previously showed elevated apoptosis in brain of Dox-
treated mice [25] (Figure 7). Dox-induced decreased PC-
PLC and PLD activities may result in dysregulation of cell 
survival and apoptosis pathways that involve PC-PLC.

CICI severely impacts the quality of life of cancer 
survivors. This paper shows for the first time strong 
evidence that elevated brain oxidative damage following 
Dox administration leads to cognitive decline, and both 
are prevented by MESNA. These studies form the basis of 
additional investigations to gain insights into CICI. 

MATERIALS AND METHODS

Chemicals

Precision Plus Protein™ All Blue Standards, BCA 
reagents, and nitrocellulose membranes were purchased 
from Bio-RAD (Hercules, CA, USA). EnzChek® 
Direct Phospolipase C Assay Kit and Amplex® Red 
Phospholipase D Assay Kit were purchased from 
Invitrogen/Life Technologies (Carlsbad, CA). Chemicals, 
proteases, protease inhibitors, and antibodies used in this 
study were purchased from Sigma-Aldrich (St. Louis, MO, 
USA) unless otherwise noted.

Statistical analysis

All data are presented as mean ± SEM, and statistical 
analyses were performed using ANOVA followed by a 
two-tailed Student's t-test to make individual comparisons 
where relevant, with p < 0.05 considered significant. The 
D’Agostino & Pearson omnibus normality test was used 
where appropriate. 

Animals

Mice used in this study were the F1 progeny of 
C57BL/6 x C3H hybrids (B6C3) purchased from the 
Jackson Laboratory. Male B6C3 mice (2–3 months old), 
each weighing approximately 30 grams were kept under 
standard conditions housed in the University of Kentucky 
Animal Facility, and all experimental procedures were 
approved by the Institutional Animal Care and Use 
Committee of the University of Kentucky. Doxorubicin 
HCl was purchased from Bedford Laboratories™, 
and MESNA was purchased from Baxter Healthcare 
Corporation. Mice were injected using a single 
intraperitoneal (i.p.) dose of 25 mg/kg Dox or the same 
volume of saline as a control [109, 110].  MESNA was 
administered at 160 mg/kg i.p. 15 min before DOX as well 
as 3 h and 6 h after Dox.  Animals tested using MRS were 

scanned 72 h post treatment, because Dox has been shown 
to cause maximal protein oxidation and lipid peroxidation 
72 h post treatment [11]. Following MRS or novel 
object recognition (NOR) studies, these animals were 
euthanized and blood and tissues collected for molecular 
or biochemical analysis. 

Cognitive function testing: Novel object 
recognition and open field testing

Cognitive performance was evaluated using a NOR 
paradigm [111, 112].  One day prior to treatment, each 
mouse was acclimated for 1 h to an empty, Plexiglas cage 
which was dedicated to this mouse for all trials.  Several 
hours after acclimation, the mouse was returned to the 
cage containing two identical objects (object A) placed at 
opposite corners, and the time spent exploring each object 
was recorded.  A mouse was considered to be exploring 
when it pointed its nose toward the object at a distance of 
2 cm or less.  Throughout the protocol, trial duration was 
5 min unless total exploration time was less than 10 s.  In 
this case, the trial was extended to ensure a minimum of 
10 s of exploration. On the day of treatment, mice were 
re-introduced to the two “familiar” objects (object A) 
in the morning and, 4 h later, baseline memory function 
was evaluated by replacing one of the familiar objects 
with a novel object (object B). Immediately following the 
baseline memory trial, mice received an injection.  One 
day after injection, the mice were exposed to the original 
two (familiar) objects (object A) and, after a 4 h interval, 
one of the familiar objects was replaced with a novel object 
(object C).  At 3 days after treatment, memory was tested 
again (novel object D paired with familiar object A).  Data 
are reported as a recognition index, which was calculated 
time spent exploring the novel object as the percentage 
of total exploration time.  All trials were performed by an 
investigator blinded to treatment conditions.

At 1 and 3 days after treatment, motor activity was 
tested using an Open Field test [113].  Mice were placed 
in a 48 × 33 cm empty Plexiglas box and videotaped 
from above for a 5 minute trial (EZVideoDV version 
5.51).  Trials were performed by an investigator blinded 
to treatment conditions.

Hydrogen magnetic resonance imaging 
spectroscopy

H1-MRS (hydrogen magnetic resonance imaging 
spectroscopy) was used to quantify neurochemical changes 
in the mouse hippocampus. MRS data were acquired on a 
7 T BrukerClinscan horizontal bore system (7.0 T, 30 cm,  
300 Hz) equipped with a triple-axis gradient system  
(630 mT/m and 6300 T/m/s). A closed cycle, 14 K 
quadrature cryocoil allowed for a 2.8 signal to noise 
increase relative to standard coils.
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The mice were anesthetized with 1.3 % percent 
isoflorane using MRI compatible CWE Inc. equipment. 
Mice were held in place on a Bruker scanning bed with 
a tooth bar, ear bars and tape. Body temperature and 
respiration rate were monitored using equipment from SA 
Instruments Inc. The animals were maintained at 37° C  
with a water heating system built into the scanning bed. T2 
weighted turbo spin echo sequences (TE 40ms, TR 2890ms, 
Turbo 7, FOV 20mm, 0.156 × 0.156 × 5.0 mm3) were 
acquired and used for the placement of the spectroscopy 
voxel. The scanning procedure took 40 min. A 2 × 5.5 ×  
3 mm3 PRESS spectroscopic voxels (TE 135 ms, TR 1500 ms,  
400 avg, CHESS water suppression) was placed to cover 
both hippocampi. Spectrum analysis was performed using 
jMRUI [114] to quantify the area under 10 peaks in the 
spectrum. The creatine peak was used to normalize the 
peak of choline-containing compounds (Cho), primarily 
phosphocholine and glycerophosphorylcholine.

Sample preparation

Protein estimation was performed using the 
bicinchoninic acid (BCA, Pierce) assay

Homogenized whole brain and plasma samples 
were diluted according to initial protein estimation results 
using 20 ug sample in isolation buffer [0.32 M sucrose, 
2 mM EDTA, 2mM EGTA, and 20 mM HEPES pH 7.4 
with protease inhibitors, 0.2 mM PMSF, 20 ug/mL trypsin 
inhibitor, 4 μg/ml leupeptin, 4 μg/ml pepstatin A, and  
5 μg/ml aprotinin].

Slot blot assay

The slot-blot method was used to determine levels 
of protein carbonyls and protein-bound 4-hydroxynonenal 
(HNE) in brain. For protein carbonyl determination, 
samples were derivatized with 2,4-dinitrophenylhydrazine 
(DNPH). For HNE, samples were solubilized in Laemmli 
buffer. Protein (250 ng) from each sample was loaded 
onto a nitrocellulose membrane inrespective wells in a 
slot-blot apparatus (Bio-Rad) under vacuum. Membranes 
were blocked in 3% bovine serum albumin (BSA) in PBS 
with 0.2% (v/v) Tween-20 for 1.5 h and then incubatedin 
primary antibody (anti-dinitrophenylhydrazone primary 
or anti-protein-bound HNE, respectively, each produced 
in rabbit, Sigma-Aldrich) for 2 h, washed three times in 
PBS with 0.2% (v/v) Tween-20 and then incubated for 
1 h with secondary antibody (goat anti-rabbit secondary 
linked to alkaline phosphatase). Membranes were 
developed with 5-bromo-4-chloro-3-indolyl-phosphate 
(BCIP) dipotassium and nitro blue tetrazolium (NBT) 
chloride in alkaline phosphatase activity (ALP) buffer, 
dried, and scanned for analysis. Image analysis was 
performed using Scion Image (Scion Corporation, 
Frederick, MD). 

Phospholipase C and Phospholipase D Activity 
Assays

Phosphatidylcholine-specific phospholipase C (PC-
PLC) and phospholipase D (PLD) activity assays were 
performed using manufacturers’ instructions provided 
with the EnzChek® Direct Phospolipase C Assay Kit and 
Amplex® Red Phospholipase D Assay Kit by Invitrogen/
Life Technologies (Carlsbad, CA), respectively.  
Fluorescence intensity for each assay was measured using 
a SPECTRAFluor Plus instrument and quantified using 
associated Magellan™ software by TECAN over a period 
of 24 h with the kinetic peaks of the positive controls used 
for comparison.
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