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ABSTRACT

It has been difficult to elucidate the structure of gene regulatory networks under 
anticancer drug treatment. Here, we developed an algorithm to highlight the hub genes 
that play a major role in creating the upstream and downstream relationships within 
a given set of differentially expressed genes. The directionality of the relationships 
between genes was defined using information from comprehensive collections of 
transcriptome profiles after gene knockdown and overexpression. As expected, among 
the drug-perturbed genes, our algorithm tended to derive plausible hub genes, such as 
transcription factors. Our validation experiments successfully showed the anticipated 
activity of certain hub gene in establishing the gene regulatory network that was 
associated with cell growth inhibition. Notably, giving such top priority to the hub 
gene was not achieved by ranking fold change in expression and by the conventional 
gene set enrichment analysis of drug-induced transcriptome data. Thus, our data-
driven approach can facilitate to understand drug-induced gene regulatory networks 
for finding potential functional genes.

INTRODUCTION

Comparative gene expression analysis defines 
differentially expressed genes (DEGs) under certain 
conditions of interest. To interpret DEGs from biological 
aspects, they have been compared with gene sets from 
curated databases of molecular functions [1–3]. In the 
field of biomedical research, the connectivity map (CMap) 
team developed a transcriptome database, composed of 
five human cell lines treated with 1309 small compounds 
[4, 5]. We have also constructed a transcriptome database 
focusing on anticancer compounds and related compounds, 
mainly using colon adenocarcinoma HT-29 cells [6, 7]. 
These drug-induced transcriptome databases are useful as 
reference databases of gene expression change. However, 
further prior knowledge and summarizing techniques are 
required to extract underlying biological information from 
these gene expression signatures [8].

Recently, the Library of Integrated Network-Based 
Cellular Signatures (LINCS) program (National Institutes 

of Health, USA) initiated an effort to generate a variety of 
biomedical big data [9]. In particular, the LINCS L1000 
project has developed the high-throughput L1000 platform 
[9] and measured the expression of 978 landmark genes 
under 1.3 million cell conditions, consisting of compound 
treatments (multiple doses) and genetic perturbation 
treatments (knockdown by shRNA, overexpression, 
and ligand treatment) at multiple time points in several 
different cell lines [10]. 978 landmark genes were 
determined as informative genes from multivariate 
analysis using 12063 public transcriptome microarray 
data catalogued in the Gene Expression Omnibus [10]. 
Furthermore, based on measured expression levels 
of landmark genes, the expression levels of ~21,000 
unmeasured genes were inferred by a linear regression 
model, in which the weight coefficient was estimated from 
the substantial transcriptome data [10, 11].

In addition to the expansion of gene expression 
databases, bioinformatic methodologies are also required 
for linking different databases and extracting interpretable 
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information from them. Subramanian et al. developed 
the Gene Set Enrichment Analysis (GSEA) methodology 
to evaluate the enrichment of gene sets in genes with 
increased or decreased expression ranked by user-prepared 
transcriptome data [12, 13]. Based on the concept of this 
enrichment analysis, the CMap team developed a pattern-
matching algorithm (CMap algorithm) to search which 
conditions in the CMap database induce the pattern of 
gene expression change similar to the pattern in the user-
prepared list of DEGs [4]. Currently, the CMap algorithm 
is widely accepted in the biomedical field [14, 15] and has 
contributed to biological interpretation of the activities of 
drugs [6, 16, 17].

Thus, the methodology of enrichment analysis has 
succeeded in interpreting the overall biological effects 
of a set of drug-induced DEGs, and thus the expansion 
of genetic perturbation data in LINCS is promising for 
providing further deep insights into DEGs. However, it 
remains a major challenge to interpret how a hierarchical 
network among DEGs was developed and which DEGs 
played a central role in this development. To address this, 
we defined an influential gene as one whose increased or 
decreased expression level centrally mediates the change 
of expression levels of many other genes. Herein, to find 
influential genes from among DEGs, we developed the 
influential gene detection in perturbed transcriptome 
hierarchical network (InDePTH) methodology. InDePTH 
is a novel algorithm to detect hubs of influential 
genes from reconstructed upstream and downstream 
relationships among DEGs (user-prepared, query DEGs), 
by referring to the rank matrix of Z-scores from a database 
of comprehensive genetic perturbations, such as the 
LINCS L1000 dataset (publicly available, reference data). 
The application of the InDePTH method could be effective 
in identifying influential genes from among DEGs under 
anticancer drug treatment.

RESULTS

Development of the InDePTH methodology

InDePTH involves four steps for the identification 
of influential genes from among query DEGs (Figure 
1a). First, it calculates similarity scores between patterns 
of query DEGs and those of perturbed genes from each 
of the genetic perturbations in LINCS, using the CMap 
algorithm [4] (Figure 1b). Second, if these similarity 
scores are above the predetermined cut-off point and if 
a gene subjected to the genetic perturbation satisfies the 
condition that the direction of change of its expression 
due to the perturbation is the same as that of the query 
DEGs, the gene is selected as an upstream gene. Third, 
InDePTH searches for downstream genes (genes whose 
expression change by an upstream gene perturbation is 
significant (z-score ≥ 2 or ≤ −2), as recorded in LINCS) 
whose direction of change in expression is the same as that 

of the query DEGs, and then upstream and downstream 
genes are connected by arrows (Figure 1c). Finally, from 
the hierarchical network of DEGs with connections by 
arrows (i.e. directed graph model), InDePTH mines the 
hub of upstream genes that play central roles in developing 
the gene network, using a data-mining algorithm for the 
complex world wide web to discover information sources 
and hubs that join the sources [18] (Figure 1d). For each of 
the query DEGs, a hub score is obtained within the range 
of 0 to 1, in which a DEG with a hub score = 1 is the most 
highly influential gene among the query DEGs, and the 
hub scores of other genes are values relative to the score 
of the highest one.

Optimization of the InDePTH parameters

In the InDePTH algorithm, a critical tuning 
parameter for refining hierarchical network structure 
is the cut-off point of the CMap similarity score, but 
no method is available for determining the threshold 
of the score from a rank matrix obtained by ordering 
the Z-scores of the reference LINCS L1000 dataset. 
Thus, we measured the sensitivity and specificity of 
the similarity score calculated from the DEGs of HT-29 
cells treated with anticancer compounds, obtained from 
a previously developed transcriptome database [6, 7] 
(Supplementary Table 1). Here, area under the receiver 
operating characteristic (ROC) curve (i.e. concordance 
index: c-index) was calculated by regarding the same 
drug treatment conditions as positive and the others as 
negative when assessing the similarity to experimental 
conditions that should substantially be the same between 
reference and query DEGs (Figure 2a). We first used 
978 landmark genes for calculating the CMap similarity 
score and compared two types of calculation method 
for c-index: one that used all of the LINCS’ 1.3 million 
perturbations, including all of the cell lines contained in 
the LINCS database [i.e. c-indexALL], and the other that 
used perturbations for only HT-29 cells to consider the 
effect of cellular context on the origin of the query DEGs 
[i.e. c-indexHT29]. Interestingly, both c-indexes for many 
compounds showed moderate accuracy (c-index>0.7) [19], 
despite only 978 genes having been used for the similarity 
scoring (Figure 2b). In the area corresponding to moderate 
accuracy for both c-indexes, each c-indexHT29 of almost all 
compounds was higher than the corresponding c-indexALL, 
except for the case of mitomycin C (Figure 2b). In the 
area with poor accuracy for the c-indexALL <0.7, each 
c-indexHT29 of many tyrosine-kinase inhibitors was higher 
than the corresponding c-indexALL (Figure 2c), but not for 
the cases of sunitinib and axitinib (Figure 2d). Thus, when 
selecting cut-off points, it is important to consider the 
cellular context.

Next, we investigated whether the expression data 
of ~21,000 genes inferred from 978 landmark genes can 
improve the accuracy of the similarity score. Calculating 
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the similarity score, however, revealed that including 
inferred expression data decreased c-indexHT29 (Figure 
2e), as well as c-indexALL (Supplementary Figure 1), for 
many drugs. Notably, each c-indexHT29 was also higher 
than the corresponding c-indexALL, even when inferred 

expression data were also used for calculating similarity 
scores (Supplementary Figure 2). Taking these findings 
together, in the InDePTH analysis, CMap similarity scores 
from only landmark gene sets were preferred. It is noted 
that, even in the area corresponding to high accuracy 

Figure 1: Overview of InDePTH algorithm. (a) Overview of InDePTH methodology. Drug-induced DEGs (query DEGs) and 
LINCS gene expression perturbation database (reference data, high-throughput gene expression DB) were used for creating a directed 
graph of DEGs and subsequent detection of influential genes. (b) Similarity score calculation in InDePTH. (c) DEG connection method. 
Query DEG-related perturbations were selected from reference data using the following two criteria: 1) a record that showed a similarity 
score greater than the best cut-off point was selected, and 2) a record that showed a match in the direction of gene expression change 
between query DEGs and reference data was filtered. (d) Scoring method for influential genes [18].
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Figure 2: Identification of comparable conditions in InDePTH algorithm. (a) Method for evaluating sensitivity and specificity, 
and the best cut-off point of similarity score. See also Materials and Methods. (b–d) A comparison of the c-index between one from the 
1.3 million LINCS dataset [x-axis, c-indexALL] and one from the HT-29 LINCS dataset [y-axis, c-indexHT29]. The area representing high 
c-indexHT29 but low c-indexALL is enlarged in (c). The area corresponding to a low c-index in both conditions is enlarged in (d). (e) A 
comparison of the c-index between only landmark genes (y-axis) and landmark genes with inferred genes (x-axis). Red plot indicates that 
the difference of c-index is statistically significant (P-value<9.6×10−4, Bonferroni-corrected, n=52). See also Supplementary Figures 1 
and 2.
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(c-index>0.9) [19] of the optimized conditions, the best 
cut-off point led to the CMap similarity score being 
distributed in the range of >0.2 (Supplementary Figure 3). 
Thus, an arbitrary threshold >0.2 can be acceptable when 
an appropriate cut-off threshold of the similarity score 
cannot be determined by ROC curve analysis.

Validation of the InDePTH analysis

To evaluate whether InDePTH can reliably select 
hubs of influential genes, we closely examined its results 
using compounds showing moderate accuracy from 
c-indexHT29. First, directed graphs modelling upstream and 
downstream relationships among DEGs were successfully 
created (Figure 3a and 3b), but in many cases, the graphs 
were too complex to interpret (Supplementary Figure 
4), suggesting the importance of the scoring system for 
the hub in the data-mining algorithm. The most highly 
influential gene for each of the drug-induced DEGs, 
which was determined by the hub score, is shown in 
Supplementary Table 2, and relatively highly influential 
genes are shown in Supplementary Table 3. The most 
highly influential genes included transcription factors, 
such as v-myc myelocytomatosis viral oncogene 
homolog (MYC), in the conditions of 6-h treatments with 
methotrexate, mitomycin C, mitoxantrone, etoposide, 
and U-0126, and 16-h treatments with gemcitabine, 
methotrexate, and etoposide; jun proto-oncogene (JUN) in 
the conditions of pazopanib and SB218078 treatment; and 
Kruppel-like factor 6 (KLF6) in the condition of BEZ235 
treatment (Figure 3c and Supplementary Table 2). Thus, it 
is likely that InDePTH could prioritize influential genes 
from potential upstream genes including those encoding 
transcription factors under drug treatment. It is notable 
that no genetic perturbation was selected in the analysis of 
some compounds, such as bortezomib and vemurafenib, 
due to the extremely high cut-off point of the similarity 
score (Supplementary Table 1).

To conduct further validation of InDePTH by 
in vitro study, we focused on MYC because InDePTH 
analysis showed MYC to be the most highly influential 
gene for many conditions for the query DEGs (Figure 
3c), and because the curated MYC target signatures [3] 
may be useful for unbiased comparison. We investigated 
the role of MYC in the transcriptome change associated 
with the compounds showing relatively high hub scores 
(>0.01), most of which were DNA damaging agents 
(Supplementary Table 4). Notably, in all conditions of 
compound treatment, the rank of MYC expression change 
was about 4000th–5000th place (top 8%), in ascending 
order among the genes measured by the microarray 
(Supplementary Figure 5), suggesting that InDePTH 
could evaluate the transcriptome data from a perspective 
other than the degree of change in gene expression. 
Associated with these MYC expression changes, MYC 
protein levels were decreased by 16-h treatments with 

gemcitabine, methotrexate, etoposide, 6-mercaptopurine, 
and mitomycin C (DNA damaging agents) (Figure 4a), 
and by 6-h treatments with U-0126 (MEK inhibitor), 
mitoxantrone, doxorubicin, methotrexate, etoposide, 
mitomycin C, and topotecan (DNA damaging agents) 
(Figure 4b).

We also found that the knockdown of MYC in HT-
29 cells by siRNA treatment (Figure 4c and 4d) decreased 
cell growth (Figure 4e and 4f) and the expression levels 
of genes from curated MYC target signatures as well 
(Supplementary Table 5). As expected, gene expression 
patterns under MYC siRNA treatments were similar to 
those under 16-h and 6-h treatments of DNA damaging 
agents (Figure 4g). In general, MYC knockdown-
associated DEGs, which would include both primary 
and secondary transcription targets of MYC, were 
significantly enriched in the genes whose expression 
increased and decreased under treatment with the above 
compounds (Figure 4h, and Supplementary Figures 6 and 
7). Notably, GSEA using hallmark signatures of gene sets 
[3] confirmed that the curated MYC target signatures were 
enriched in genes whose expression decreased under the 
drug treatments (Figure 5a), but many other signatures 
showed stronger significance than the MYC signatures 
(Figure 5b). This comparison indicated that InDePTH can 
detect the influence of MYC on other DEGs, in a different 
way from the conventional enrichment analysis.

Our previous study indicated that data from 16-h 
treatment with DNA damaging agents tended to cluster 
together, despite these agents having different mechanisms 
of action (MoA) [6]. We found that the genes whose 
expression increased in association with MYC siRNA 
enabled DNA damaging agents with the same MoA to 
cluster closer together, especially for compounds targeting 
nucleic acid metabolism (Figure 6a and 6b). Interestingly, 
the pattern of hierarchical clustering retained the pattern 
of the original clustering, despite the MYC siRNA-induced 
DEGs (Figure 6c) and known cell cycle signature of gene 
sets (Figure 6d) having been removed from the original 
DNA damaging agent-induced DEGs. Consistent with 
these findings, a great number of genes were required for 
fully constructing the gene expression networks induced 
by the DNA damaging agents; however, a set of genes 
with high hub scores explained most of these complex 
structures (Supplementary Figures 8 and 9). Collectively, 
most of the drug-induced DEGs were derived from both 
primary and secondary effects of the drug treatments, and 
these effects can be distinguished by InDePTH.

We further analysed public transcriptome datasets 
including 14 compounds treatments on diffuse large 
B cell lymphoma cells (OCI-LY3) [20] by InDePTH 
and compared the result with an algorithm named 
detecting mechanism of action by network dysregulation 
(DeMAND), which prioritizes proteins whose interactions 
(such as protein-protein interactions) could be perturbed 
by drug treatments [21]. We successfully selected query 
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DEGs from the datasets of 14 compounds (FDR <.10; 
no DEG in aclacinomycin A and geldanamycin; too 
small DEGs for InDePTH analysis in blebbistatin and 
vincristine). In general, the rank of genes from InDePTH 
and DeMAND analysis did not correlate (Supplementary 
Figure 10). Especially for DNA damaging agents including 
camptothecin, doxorubicin, etoposide and mitomycin 

C, the commonly prioritized genes in InDePTH (hub 
score >.01 and top 20) were MYC and polo-like kinase 
1 (PLK1). Interestingly, PLK1 was also predicted by 
DeMAND as an effector protein for the drug perturbations 
[21]. The other effector proteins from DeMAND analysis 
were not the commonly prioritized in InDePTH analysis 
at mRNA levels, such as DNA damage-inducible gene 

Figure 3: Prediction of drug-induced gene expression network. (a, b) Constructed DEG directed graph. Yellow circles represent 
UP-DEGs and blue circles represent DOWN-DEGs from among the query DEGs. Each arrow indicates a direction of upstream and 
downstream relationships. Arrows connecting to MYC are highlighted by red. DEGs without an arrow mean that the upstream gene is over 
the cut-off value, but no downstream gene shows the same direction of gene expression change between query DEGs and reference data. 
(c) Counts of most highly influential genes (see Supplementary Table 2).
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45A (GADD45A), cyclin-dependent kinase inhibitor 1A 
(CDKN1A), proliferating cell nuclear antigen (PCNA), 
cyclin B1 (CCNB1) and Aurora Kinase A (AURKA) [21] 
(Supplementary Figure 10). However, of interest was 
that InDePTH analysis could show potential hierarchical 
relationships of these genes for each agent (Supplementary 
Figure 11).

Finally, we performed InDePTH analysis of 
hypoxia-responsive genes whose expression levels were 
increased and decreased depending on mitochondrial 
functions [22]. InDePTH reconstructed the gene regulatory 
network and interestingly showed that the gene with the 
highest hub score was NADH:Ubiquinone Oxidoreductase 
Complex Assembly Factor 4 (NDUFAF4), an assembly 

Figure 4: MYC, one of the most influential genes, accounts for the drug-induced change in gene expression. (a, b) 
Immunoblot analysis of MYC under (a) 16-h treatment and (b) 6-h treatment of HT-29 cells with the indicated compounds. mTOR was 
used as a loading control. Blot intensities of MYC relative to those of mTOR (n=3 independent experiments, mean ± SD) are shown (b, 
below). The drug concentrations were the same with the description in Supplementary Table 1. (c, d) Immunoblot analysis of MYC upon 
treatment with MYC siRNAs. RPS3 and β-actin were used as a loading control. (e, f) Cell growth assay after treatment with MYC siRNAs. 
ON-TARGETplus SMART pool siRNA was used (in c, e) and Silencer Select Pre-designed siRNAs were used (in d, f). (g) Hierarchical 
clustering analysis of indicated conditions using DEGs of MYC siRNA. (h) Enrichment plot using MYC siRNA-increased gene sets. Running 
enrichment score (top portion, green curve) and the statistics were calculated from the order of gene sets based on the gene expression 
change (bottom) upon treatment with U-0126. GEM, gemcitabine; MTX, methotrexate; ETP, etoposide; 6-MP, 6-mercaptopurine; MMC, 
mitomycin C; TOP, topotecan; DOX, doxorubicin; MIT, mitoxantrone.
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Figure 5: Conventional enrichment analysis entirely prioritized gene sets other than MYC target signatures. (a, b) 
GSEA analysis of hallmark signatures of gene sets. (a) False discovery rate (FDR)-based significance scores (see Materials and Methods) 
of the indicated drug treatments (column) were shown for each hallmark signature (row) and (b) absolute values. MYC_TARGETS_V1 
and MYC_TARGETS_V2, gene sets defined as subgroups of genes regulated by MYC in the hallmark signature of gene sets [3], were 
highlighted by the green arrow in (a) and colored diamond shapes in (b). GEM, gemcitabine; MTX, methotrexate; ETP, etoposide; 6-MP, 
6-mercaptopurine; MMC, mitomycin C; TOP, topotecan; DOX, doxorubicin; MIT, mitoxantrone.
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factor for mitochondrial complex I [23] (Supplementary 
Figure 12).

DISCUSSION

InDePTH is a novel semantic algorithm for linking 
DEGs to each other according to their influence on the 

expression levels of other genes. It then reconstructs 
hierarchical network models of upstream and 
downstream relationships among the DEGs. InDePTH 
is also equipped with a data-mining program for hub 
detection and can rank DEGs by their influence in a 
gene expression network. Indeed, InDePTH revealed 
that one of the genes whose expression had the greatest 

Figure 6: MYC downstream genes enabled DNA-damaging agents with the same MoA to cluster closer together. 
Hierarchical clustering and heatmap. The used gene sets were as follows: (a) DEGs for each indicated drug, (b) MYC siRNA-increased 
DEGs, (c) DEGs for each indicated drug but without MYC siRNA-increased/decreased DEGs, and (d) DEGs in each indicated drug but 
without both MYC siRNA-increased/decreased DEGs and G2/M and cell cycle gene sets [3]. The legends for the coloured boxes are shown 
at the bottom. Drug MoA was obtained from reference #[7].
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influence on the expression levels of many other 
genes upon exposure to many anticancer compounds 
was MYC, whose contribution was masked by other 
DEGs in conventional signature-based enrichment 
analysis. Taking these findings together, InDePTH is 
a powerful algorithm for creating networks of DEGs 
and focusing on the hubs of such networks. A package 
for implementation of the InDePTH algorithm in the 
software environment R is now available to the research 
community at the GitHub repository (https://github.com/
koido/InDePTH).

InDePTH provides upstream and downstream 
relationships in network analysis. In general, upstream and 
downstream relationships in gene regulatory network have 
been provided from text mining-based approaches [24, 25], 
while the information from text mining is limited, partly 
because the names of genes are often not standardized and 
partly because it is also difficult to distinguish between 
genes and proteins in the literature [26]. In contrast to 
text mining-based approaches, InDePTH can utilize 
experimentally verified information about the upstream 
and downstream relationships of numerous genes, stored 
in the massive database LINCS. Similar to InDePTH, 
DeMAND also uses drug-induced transcriptome data 
and can shed light on the role of protein-coding genes 
in drug MoA, even when the extent of their change in 
expression is not significant [21]. Interestingly, a hub 
gene of DNA-damaging agents from InDePTH analysis 
overlapped with the DeMAND-identified effector protein 
for them, even though methods and overall results 
between the two methods were fundamentally different. In 
addition, InDePTH successfully showed the hierarchical 
relationships among mRNAs of DeMAND-identified 
effector proteins for the drug perturbations. Notably, 
for predicting the dysregulation of interacting proteins, 
DeMAND requires a minimum of six samples for both 
case and control samples [21], while InDePTH has no 
such limitation and requires only user-defined DEGs of 
any type. This advantage of InDePTH enables users to 
develop hypothesis even in the early stage of the research 
which in general collects minimum sample sets.

The direction of paths in the InDePTH-reconstructed 
network can be interpreted to represent the pseudo-time 
flow of gene expression change because these directions 
were determined based on the upstream and downstream 
relationships between perturbed genes after genetic 
perturbations. In fact, InDePTH detected MYC as the most 
highly influential gene upon treatment with methotrexate 
for 16 h, 10 h before which, the expression level of 
MYC was slightly decreased (Figure 4a, 4b). The same 
was true for mitomycin C treatments, whose hub score 
upon treatment for 6 h was the highest (Supplementary 
Table 2) and that upon treatment for 16 h was the 
second highest (Supplementary Table 3, Figure 4a, 4b). 
Therefore, InDePTH has one useful aspect of enabling the 
identification of genes whose expression can change at an 

early stage of drug treatment, without time-series data-
based approach [27].

In many cases, the CMap similarity scores from 978 
landmark genes were sufficient to analyse drug-induced 
DEGs by InDePTH. This indicates that the selection of 
landmark genes was preferable for expressing the features 
of drug-induced DEGs. However, a few compounds 
showed c-indexes of around 0.5, indicating that the 
true expression levels of genes other than landmark 
genes were required for InDePTH analysis in such 
cases. Unfortunately, we found that the current inferred 
expression levels could not address these limitations. 
Currently, LINCS makes inferences on genome-wide gene 
expression levels by a linear penalized regression model. 
For making inferences on gene expression, it may be 
necessary to include nonlinear effects (e.g. gene-to-gene 
interactions). One study already attempted to address this 
problem by applying a machine learning approach [11], 
and the LINCS team also has the aim of improving the 
inference accuracy by creating a cloud data analysis 
competition (http://crowdsourcing.topcoder.com/cmap, 
accessed on 16/4/2017). These approaches would lead to 
more accurate estimation of expression levels under drug 
and/or genetic perturbation in LINCS, which would also 
be promising for InDePTH in the future.

InDePTH analysis revealed MYC as a common 
influential hub gene, especially upon treatment with 
DNA damaging agents. Previous studies showed that the 
expression levels of MYC mRNA or MYC protein were 
reduced by methotrexate [28] and gemcitabine [29], while 
it depended on the cellular context whether the expression 
level of MYC increased or decreased upon exposure to 
etoposide [30–32]. In HT-29 cells, knockdown of MYC 
inhibited cell proliferation in vitro and in vivo [33], 
indicating that one of the basic characters of HT-29 cells 
depends on MYC expression. Similarly, suppression of 
MYC expression in OCI-LY3 cells is also considered to 
suppress the growth of the cells [34, 35]. Therefore, MYC 
can indeed be an influential gene, especially for HT-29 
cells and OCI-LY3 cells treated with many anticancer 
compounds.

InDePTH was applicable to not only drug-induced 
DEGs but also other types of gene sets. Indeed, we 
successfully interpreted the mitochondria-dependent 
hypoxic responsive genes via the gene regulatory network 
and found that decreased expression of mitochondrial 
assembly factor NDUFAF4 was the most influential in 
the network. Consistently, it has been reported that a 
missense mutation of NDUFAF4 causes assembly defects 
of the mitochondrial complex I [36]. Thus, it is plausible 
to interpret NDUFAF4 as an influential hub gene under 
the network.

Currently, InDePTH has two potential limitations. 
First, it strongly depends on the conditions catalogued 
in the LINCS database. For example, tissue-specific 
gene expression patterns [37] and genetic effects on 

https://github.com/koido/InDePTH
https://github.com/koido/InDePTH
http://crowdsourcing.topcoder.com/cmap


Oncotarget29107www.oncotarget.com

gene expression [38] governs gene expression patterns 
as well as effects of oncogenes such as MYC. Therefore, 
when seeking the best cut-off point of CMap similarity 
score, the conditions of query DEGs would be preferable 
when the same reference data was obtained in terms of 
compounds and tissue origins of cell lines. To counter 
this limitation, we provided a reasonable cut-off 
range of a CMap similarity score >0.2 for hypothesis 
development by InDePTH (Supplementary Figure 3). 
In addition, as novel and low-cost methods for genome-
wide transcriptome, such as pooled library amplification 
for transcriptome expression (PLATE-Seq) [39], have 
continuously developed, genome-wide transcriptome 
database of genetic perturbation in multiple cell types 
would expand more in future, leading to more reliable 
results from InDePTH. Second, as suggested by Figure 
6c and 6d, it is the case that regulatory networks of 
gene expression under drug treatment might be due 
to conditions other than changes in expression levels, 
such as protein phosphorylation, degradation, and 
stabilization or non-coding RNAs [40]. Considering 
these potential limitations, it will be necessary in future 
to expand the reference database for dealing with 
more multiple cellular contexts and perturbations and 
incorporate other omics data. InDePTH source code is 
online available and therefore users can use reference 
database other than LINCS, and flexibly combine 
InDePTH algorithm with other omics tools, according 
to various purposes.

Taking the above findings together, InDePTH has 
been proven to be effective in identifying influential 
genes from among drug-induced DEGs, even when 
such influence was masked by many other signatures in 
conventional enrichment analysis. InDePTH should thus 
be useful to decipher the hierarchical networks of DEGs 
under anticancer drug treatment.

MATERIALS AND METHODS

LINCS L1000 dataset analysis

All data of LINCS L1000 were obtained from 
the Amazon S3 server, in which access keys were 
provided from lincscloud.org. L1000 gene expression 
data were obtained on 17/11/2014 (level 4 zspc data) 
and on 18/11/2014 (level 3 q2norm data), and the data 
description file (inst.info) was obtained on 13/11/2014. 
We defined the upregulated (downregulated) genes in 
LINCS using the threshold z-score ≥ 2 (≤ −2). If the 
item ‘pert_desc’ in inst.info was ‘−666’ and also the 
item ‘pert_type’ was ‘trt_cp’, we updated the inst.
info file by merging with a chemical information file 
(downloaded on 24/2/2015). We manually confirmed 
that the names of compounds matched between LINCS 
and our database.

In-house datasets and microarray analysis

The transcriptome dataset of anticancer compounds 
was obtained from our previous study [7]. In this study, we 
limited our analysis to only the dataset of HT-29 cells (see 
Supplementary Table 1 for detail conditions). Microarray 
analysis was conducted using GeneChip Human Genome 
U133 Plus 2.0 array (Affymetrix, Santa Clara, CA, USA), 
following standard protocols. Expression measurement 
was carried out using Affymetrix Microarray Suite version 
5.0 from R package affy v1.40.0 [41]. Expression values 
were normalized to a mean target level of 100. Up- or 
downregulated genes (UP DEGs and DOWN DEGs, 
respectively) after exposure to the drug were determined 
as follows: For each treatment sample, we calculated 
treatment-to-control ratio statistics, where, if any intensity 
value was <50, the value was replaced by 50 [7], and we 
selected probe sets if the treatment-to-control ratio was ≥ 
2 for UP DEGs or ≤ 0.5 for DOWN DEGs. Unsupervised 
hierarchical clustering was performed using the Pearson’s 
correlation distance and Ward’s linkage method. When 
performing network analysis, the average signal intensity 
ratio to the same gene was assigned. GSEA was performed 
with GSEA software (v2.0.14, Broad Institute) [12, 13] 
using the Molecular Signatures Database (MSigDB, v5.0) 
[13] or our defined signature gene sets. We set the false 
discovery rate (FDR) as 1 for gene sets, which means that 
the gene sets were not enriched at all. If the FDR of a gene 
set was 0, we set the FDR as the minimum FDR within each 
test. The FDR of gene sets was subjected to logarithmic 
transformation, and a positive or negative sign was used 
in front of this value if the gene set was enriched in genes 
with increased or decreased expression, respectively, under 
drug treatment. If there were both positive and negative 
scores due to marginal enrichment, we summed the two.

The transcriptome dataset for hypoxia-responsive 
genes were described in our previous paper [22]. From the 
hierarchical clustering of the hypoxia-responsive genes, 
mitochondria-dependent DEGs (Supplementary Figure 
12a) were analyzed by InDePTH.

Public transcriptome datasets

Normalized transcriptome data of 14 compounds 
on OCI-LY3 cells were obtained from NCBI Gene 
Expression Omnibus under the series accession no. 
GSE510681. Mapped genes were selected from R package 
hgu219.db v3.2.3 and the probe with the highest median 
of signal intensity for a gene was selected. T-statistics 
were calculated in log2 space by Welch’s two-sample 
t-test from all time points- and concentrations-aggregated 
datasets like DeMAND paper [21]. DEGs (FDR <.10) 
were assigned to probes of GeneChip Human Genome 
U133 Plus 2.0 array by hgu133plus2.db v3.2.3, in which 
using probes were limited to those with the median of 
signal intensity > 50 in the in-house datasets of anticancer 
compounds. Using these probes, InDePTH analysis was 
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performed and the results were compared with the ranking 
of DeMAND analysis using U133p2 network (from a 
supplementary table in DeMAND paper [21]).

Similarity scoring

CMap similarity scores were calculated from 
the CMap algorithm [4] using the R script described 
previously [6]. A reference rank matrix for the CMap 
algorithm was constructed from the LINCS gene 
expression database by ordering LINCS L1000 z-scores 
in descending order, in which, if z-scores had exactly the 
same values as the others, we set a higher rank for genes 
showing higher expression values. Using this LINCS rank 
matrix of 978 landmark genes or 22,268 inferred ones 
(including the 978 landmark genes), CMap similarity 
scores were calculated by using UP DEGs and DOWN 
DEGs obtained from the in-house dataset.

ROC curve analysis

ROC curve analysis was conducted by regarding the 
drug treatment conditions of the same name as positive 
and the others as negative when assessing the similarity 
to experimental conditions that should substantially be the 
same between LINCS L1000 (reference data) and query 
DEGs. ROC curve analysis was performed using the R 
package pROC (version 1.7.3) [42]. When the c-index, area 
under the ROC curve, was <0.5, we set this value as 0.5 
because c-index<0.5 means that there is no comparability 
between the two databases. Overall, 1,328,098 conditions 
were used for c-indexALL and 113,867 HT-29 cell-specific 
conditions were used for c-indexHT29. The Delong method 
[42] was used for calculating the P-value of the difference 
of c-index from the CMap similarity score from landmark 
genes and the CMap similarity score from landmark genes 
with inferred genes. Notably, we could not calculate the 
P-value between c-indexHT29 and c-indexALL because the 
number of genes used to create the ROC curve differed. 
The best cut-off of the CMap similarity score was 
determined at the point with the best sum of sensitivity 
and specificity, by using Youden’s J statistic [43].

Network connection methods

To connect DEGs, perturbations of knockdown, 
overexpression, and ligand treatment (we refer to such 
perturbed genes as upstream genes) were selected if their 
CMap similarity scores were no less than the best cut-off 
point of the score. Upstream genes were further filtered 
using the following criteria: 1) if an upstream gene was 
knocked down in the reference data, the gene in the query 
DEGs must be DOWN DEG, and 2) if an upstream gene 
was overexpressed or treated with a ligand in the reference 
data, the gene must be UP DEG. If upstream genes with 
the same perturbation ID remained, the record with the 
highest CMap similarity score was used. Genes whose 

expression was increased or decreased by perturbation of 
upstream genes (referred to as downstream genes) were 
selected if the upstream genes significantly changed the 
expression of these downstream genes (LINCS Z-score>2 
or Z-score<−2). When selecting knocked down conditions 
from the reference data, we discarded conditions for which 
only one independent perturbation ID remained, to avoid 
including off-target effects. In this process, we did not limit 
our analysis to HT-29 cells because the number of such 
genetic perturbations for HT-29 cells was small [0 records 
for overexpression, 865 records (296 genes) for ligand 
treatment, and 44,729 records (3666 genes) for knockdown].

By using these relationships between upstream and 
downstream genes, query DEGs were fully connected by 
arrows. If present, multiple edges and loops connecting 
a DEG to itself were removed. Kleinberg’s hub score 
[18] was used to identify the most influential gene in the 
network. This scoring method was originally developed 
for the complex world wide web to discover information 
sources and hubs that join the sources [18]. In short, the 
hub score was defined by the sum of authority scores, while 
the authority score was defined by the sum of hub scores. 
These recursive relationships were solved by finding the 
eigenvector of the autocorrelation matrix showing the link 
structure by using R package igraph (version 1.0.1) [44]. 
Components of the autocorrelation matrix were defined by 
the following formulation: α × δ. Here, α is a signal intensity 
ratio of query DEGs identified as an upstream gene in the 
network; δ is a penalty parameter that is the ratio of the 
number of upregulated or downregulated query DEGs to the 
number of upregulated or downregulated landmark genes in 
LINCS, respectively, to avoid off-target effects.

Cell cultures and treatments

Human colorectal adenocarcinoma HT-29 cells 
[45] were cultured in RPMI-1640 (Wako, Osaka, Japan), 
supplemented with 10% heat-inactivated FBS and 100 μg/
ml kanamycin. The chemical conditions for the in-house 
dataset were described previously [6, 7] and shown in 
Supplementary Table 1. 6-Mercaptopurine, doxorubicin, 
etoposide gemcitabine, methotrexate, mitomycin C, 
mitoxantrone, and topotecan have different MoA but 
ultimately induce DNA damage, so they were referred to 
here as DNA damaging agents [7].

Immunoblot analysis

Immunoblot analysis was conducted as described 
previously [22]. Briefly, equal amounts of protein were 
resolved on an SDS-polyacrylamide gradient gel and 
transferred by electroblotting onto a nitrocellulose 
membrane. Membranes were probed with the indicated 
primary antibodies. The specific signals were visualized 
with a chemiluminescence detection system using 
appropriate secondary antibodies (Perkin-Elmer, 
Waltham, MA, USA). The following antibodies were 



Oncotarget29109www.oncotarget.com

used for immunoblotting: anti-β-actin (Sigma, St. Louis, 
MO, USA); anti-RPS3, anti-mTOR, and anti-MYC (Cell 
Signaling Technology, Danvers, MA, USA). β-actin, RPS3 
and mTOR were used as controls.

RNA preparation

Total RNA from cultured cells was extracted using 
an RNeasy RNA purification kit (Qiagen, Valencia, CA, 
USA). RNA quality was checked with a 2100 Bioanalyzer 
(Agilent Technologies, Santa Clara, CA, USA).

siRNA treatment

ON-TARGETplus SMART pool siRNA (GE 
Healthcare, Little Chalfont, UK) and Silencer Select Pre-
designed siRNA (Thermo Fisher Scientific, Waltham, MA, 
USA) were used for the knockdown of MYC expression. 
ON-TARGETplus Non-targeting Pool (GE Healthcare) 
or Silencer Select Pre-designed siRNA (Thermo Fisher 
Scientific) was used as a control. HT-29 cells were seeded 
at a density of 8×104 cells/well on a six-well plate for 
immunoblot analysis and at a density of 3×103 cells/
well on a 96-well plate for cell viability assay, and were 
transfected for 24 h with 20 nM of each siRNA in Opti-
MEM (Thermo Fisher Scientific) with lipofectamine 
RNAiMAX (Thermo Fisher Scientific), in accordance 
with the manufacturer’s reverse transfection protocol. 
After 48 h, the cells were used for further experiments.

Cell growth assay

Cell growth was determined by a CellTiter-Glo 
luminescent cell viability assay (Promega), in accordance 
with the manufacturer’s protocol. Cell growth is shown as 
a percentage of the control level.

Data availability

The microarray datasets of MYC siRNA experiments 
were deposited in the NCBI Gene Expression Omnibus 
under the series accession no. GSE104175.

Computer code

The statistical computing language R (https://
www.r-project.org/) was used for all InDePTH analyses, 
including estimating the best cut-off point of the similarity 
score.
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