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ABSTRACT

Glycerol-3-phosphate acyltransferase-2 is a member of “cancer-testis gene” 
family. Initially linked to lipid metabolism, this gene has been recently found involved 
also in PIWI-interacting RNAs biogenesis in germline stem cells. To investigate its 
role in piRNA metabolism in cancer, the gene was silenced in MDA-MB-231 breast 
cancer cells and small RNA sequencing was applied. PIWI-interacting RNAs and 
tRNA-derived fragments expression profiles showed changes following GPAT2 
silencing. Interestingly, a marked shift in length distribution for both small RNAs 
was detected in GPAT2-silenced cells. Most downregulated PIWI-interacting RNAs 
are single copy in the genome, intragenic, hosted in snoRNAs and previously found to 
be upregulated in cancer cells. Putative targets of these PIWI-interacting RNAs are 
linked to lipid metabolism. Downregulated tRNA derived fragments derived from, so-
called ‘differentiation tRNAs’, whereas upregulated ones derived from proliferation-
linked tRNAs. miRNA amounts decrease after Glycerol-3-phosphate acyltransferase-2 
silencing and functional enrichment analysis of deregulated miRNA putative targets 
point to mitochondrial biogenesis, IGF1R signaling and oxidative metabolism of lipids 
and lipoproteins. In addition, miRNAs known to be overexpressed in breast cancer 
tumors with poor prognosis where found downregulated in GPAT2-silenced cells. In 
conclusion, GPAT2 silencing quantitatively and qualitatively affects the population of 
PIWI-interacting RNAs, tRNA derived fragments and miRNAs which, in combination, 
result in a more differentiated cancer cell phenotype.
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INTRODUCTION

Glycerol-3-phosphate acyltransferase (GPAT) 
catalyzes the first step in glycerolipid biosynthesis, 
in which glycerol-3-phosphate is acylated to form 
lysophosphatidic acid. In mammals, four GPAT isoforms 
(GPAT1–GPAT4) have been described which differ in their 
subcellular location, tissue expression pattern, substrate 
preference, transcriptional regulation, and sensitivity 
to sulfhydryl group reagents such as N-ethylmaleimide 
[1]. While GPAT1, GPAT3 and GPAT4 are expressed in 
lipogenic tissues and regulated by nutritional status, we 
found that GPAT2 is a mitochondrial isoform that is highly 
expressed in the testis, where its expression is transient, 
being restricted mainly to primary spermatocytes [2]. 
At subsequent stages of meiosis, GPAT2 expression is 
abruptly turned off by methylation of its promoter [3].

Although GPAT2 was initially associated with 
lipid metabolism [2] a recent work links GPAT2 to the 
biogenesis of Piwi-interacting RNAs (piRNAs) [4]. 
piRNAs are a class of small non-coding RNAs (sncRNAs) 
of 24-31 nt in length that function in germline cells to 
silence retrotransposons and maintain genome integrity 
[5]. piRNA expression is high at pachytene stage of 
meiosis, which supports a role of GPAT2 in this pathway. 
It has been described that GPAT2 physically interacts 
with MILI, a key component of piRNA pathway, and its 
knockdown in germline stem cells significantly reduces 
the amounts of piRNAs bound to MILI [4].

We also determined that GPAT2 behaves as a 
cancer testis gene: its expression is restricted to testis 
under physiological conditions, but it is ectopically 
overexpressed in cancer cells, contributing to tumor 
phenotype. GPAT2 knockdown in MDA-MB-231 breast 
cancer cells diminished cell proliferation, anchorage 
independent growth, migration and tumorigenicity, and 
increased staurosporine-induced apoptosis. In contrast, 
GPAT2 over-expression increased cell proliferation rate 
and resistance to staurosporine-induced apoptosis [6].

Increasing evidence indicates that non-coding 
RNAs (ncRNA) play a relevant role in the progression 
of cancer. Non-coding RNAs can be subdivided into two 
major classes based on their transcript size: sncRNAs (20-
200 nucleotides) and long ncRNAs (lncRNAs, over 200 
nucleotides). Small non-coding RNAs (sncRNA), include 
RNAs involved in translation such as transfer RNAs 
(tRNAs) and ribosomal RNAs (rRNAs), small nuclear 
RNAs (snRNAs) involved in splicing events, and small 
nucleolar RNAs (snoRNAs) involved in the modification 
of other small RNAs, such as rRNAs and tRNAs. 
Additionally, sncRNAs include RNAs with regulatory 
functions, such as short-interfering RNAs (siRNAs), 
microRNAs (miRNAs), the above mentioned piRNAs 
and the recently characterized tRNA derived fragments 
(tRF). Although miRNAs are the most extensive subclass 

of sncRNAs studied in cancer, the involvement of piRNAs 
and tRF has also been described [7, 8]. piRNAs are 
deregulated in cancer cells, where they could play a role in 
tumorigenesis [9, 10, 11, 12]. Each tumor type expresses 
specific subgroups of piRNAs and some of them correlate 
with relevant clinical parameters [8, 13]. In this sense, it 
has been shown that piRNA pathway is active in breast 
cancer cells and that specific piRNAs are differentially 
expressed in breast cancer respect to mammary epithelial 
cells [10]. Moreover, a group of piRNAs differentially 
expressed in exponentially growing cells compared 
to quiescent cells after estrogen deprivation, has been 
identified leading to the conclusion that piRNA expression 
responds to exogenous mitogenic stimuli [10].

Considering that GPAT2 has been involved in 
piRNA biogenesis in germline stem cells and that 
GPAT2 is highly expressed in MDA-MB-231 cells, we 
asked whether GPAT2 could be also involved in piRNA 
metabolism in breast cancer cells. Considering that GPAT2 
knockdown reduced tumor phenotype, we hypothesized 
that this action could be related to changes in specific 
piRNAs associated with cell proliferation. To test this 
hypothesis, GPAT2 knockdown was performed in MDA-
MB-231 cells and sncRNA expression was assessed.

RESULTS

GPAT2 silencing modifies the sncRNA 
expression pattern of breast cancer cells

To analyze the impact of GPAT2 on piRNA 
biogenesis in the MDA-MB-231 cells, GPAT2 silencing 
was performed by shRNA plasmid transfection and 
puromycin selection to establish scramble control cells 
(SC) and GPAT2 silenced cells (SH) GPAT2 mRNA 
expression was reduced by 90% and GPAT2 protein 
was undetectable in SH cells (Supplementary Figure 1). 
Small RNA sequencing was performed on these cell lines. 
Results demonstrate that silencing GPAT2 affects sncRNA 
distribution. In SC cells, we identified an average of 67% 
of miRNAs, 3% of piRNAs, 7% of tRF, 5% of Rfam, 7% 
of Refgene and 11% of non-assigned transcripts, whereas 
in SH cells, 53% were miRNAs, 8% piRNAs, 13% tRF, 
4% Rfam, 9% Refgene and 13% not-assigned transcripts 
(Figure 1). Although percentages of total reads for each 
category differed in SC and SH cells, differences were 
only significant for the miRNA category, with a decrease 
after GPAT2 silencing (Figure 1; Supplementary Table 
1). In addition, we compared miRNA expression profiles 
between SC vs MDA-MB-231 and MCF10 cell lines 
obtained from the study of Zhou et al. [14]. As expected, 
we found a high correlation between SC vs MDA-MB-231 
cells from Zhou et al., whereas no correlation was found 
for the comparison between SC and MCF10 cell line 
(Supplementary Figure 2).
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GPAT2 modulates the expression of snoRNA 
derived piRNAs and piRNAs related to breast 
cancer cell proliferation

Although total piRNAs abundance did not change 
after GPAT2 silencing, an upper shift in read length 
distribution was observed (Figure 2A). In SC cells, length 
distribution was bimodal, with peaks at 27 and 30 nt, 
whereas in SH cells, only one peak at 29 nt was obtained.

Differential expression analysis revealed that 
of the 137 piRNAs identified in SC cells, 77 (56%) 
were differentially expressed after GPAT2 silencing 
(p≤0.05, FC≥|1.5|), with 38 upregulated (28%) and 39 
downregulated (28%) (Figure 2B, Supplementary Table 
2).

Genomic features of deregulated piRNAs were 
annotated according to their sequences based on curated 
databases (piRNA bank, NCBI_Nucleotide and UCSC 
genome Browser). Length distribution in both groups 
indicated that piRNAs of 27 and 28 nt in length were 
significantly associated with the downregulated group 
(p value ≤0.05). There were no such differences in 
the other lengths (Figure 2B). Interestingly, most of 
the downregulated piRNAs (32/39, 82%) are single 
copy (p value≤0.05), being mainly intragenic (27/32, 
84%); whereas in the upregulated group, piRNAs with 
single (18/38, 47%) and multiple (20/38, 52%) copies 
showed similar frequencies (p value≤0.05) (Figure 2C, 
Supplementary Table 2); however, single copy upregulated 
piRNAs were mostly intergenic (14/18, 77%) (p value 
≤0.05). Strikingly, snoRNAs constituted the host gene of 
22 out of 27 (81%) intragenic single copy downregulated 
piRNAs, which is 56% of all downregulated piRNAs, 
with a probability value ≤0.05 when compared with the 

upregulated piRNAs. Moreover, piR-36011, a multiple 
copy downregulated piRNA, maps to the loci of the SNar 
genes (small NF90-associated RNAs). By constrast, none 
of the upregulated piRNAs is hosted in a SNOR or SNAR 
gene.

Considering that it has been proposed that certain 
piRNAs are derived from snoRNAs precursors [15], and 
that piRNAs are tissue restricted, we evaluated whether 
there is a correlation in tissue distribution among the 
downregulated piRNAs and their hosted snoRNAs. Using 
DASHR database we analyzed the tissue profile of the 
piRNAs and the host snoRNAs that were available in 
the database. Unsupervised clustering based on Pearson 
correlation was assayed on the nine pairs of piRNA-
snoRNA obtained from the search. In all cases an almost 
prefect correlation (~1) was observed, coincident with a 
co-expression pattern (Figure 2D).

Interestingly, four of the top-five upregulated 
piRNAs previously identified in breast cancer growing 
cells [10], were found downregulated in the SH cells 
(piR-31636, piR-57125, piR-35548 and piR-57125). 
Similarly, piR-36041 and piR-43772 which were 
markedly downregulated in MCF7 growing cells, were 
found upregulated in the SH cells. Furthermore, of the 
latter group, piR-36743, piR-36318 and piR-36249 were 
previously found underexpressed in BC tissues compared 
to their normal counterparts [10]. All these data agree 
with the less proliferative phenotype of the SH cells. 
Expression of four representative piRNAs is displayed in 
Figure 2E.

Based on published evidences that piRNAs would 
be involved in mRNA target repression via imperfect 
base-pairing between the piRNA and the potential 
target [16], we searched for putative mRNA targets 

Figure 1: sncRNA distribution in SC and SH cells. Piecharts of the percentages of aligned reads assigned to each category of 
sncRNA in the SC cells and SH cells. A significant decrease was observed in the abundance of miRNAs of the SH cells * p value≤0.05.
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by base complementarity for all the differentially 
expressed piRNAs. We considered the percentage of 
complementarity, the strand sense, the mRNA region 

mapped (5’UTR or 3’UTR), the total score provided by the 
NCBI Nucleotide Blast, the conservation among species, 
and not only mRNAs but also pseudogene transcripts 

Figure 2: piRNAs. (A) Length distribution of reads assigned to piRNAs in SC and SH libraries. (B) Piechart representation of the 
percentages of differentially expressed piRNAs and barchart of the frequencies of piRNAs in the upregulated and downregulated groups 
distributed according to their nucleotide length. (C) Heatmap representation of the differentially expressed piRNAs; the name of the host 
snoRNAs when it corresponds, and copies in the genome are indicated. (D) Corrplot of the pairs piRNA-snoRNA. (E) Boxplots of four 
representative piRNAs differentially expressed. NDE: Non-Differentially Expressed.
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and long ncRNAs (Supplementary Table 3). The number 
of targets varied considerably for each piRNA, ranging 
from no-hits to hundreds of mRNAs. After filtering, 
based on the mentioned criteria, we obtained a reduced 
list of targets (Supplementary Table 3). The functional 
enrichment of piRNA targets yielded terms mainly linked 
to lipid metabolism that included sphingolipid de novo 
biosynthesis, peroxisomal lipid metabolism and synthesis 
and interconversion of nucleotide di- and triphosphates, 
among others (Supplementary Table 3). The expression 
of the putative piRNA target ACSS3, a gene coding for 
acyl-CoA synthetase short-chain family member 3, was 
assessed by qPCR; as expected, ACSS3 gene expression 
decreased 90% in SH cells (Supplementary Figure 3).

GPAT2 silencing upregulates specific tRF 
that might derive from tRNAs associated to a 
proliferative cellular status

It has been established that tRF can be classified into 
two groups: “tRNA halves”, that are 30-35 nt in length and 
belongs to the single cleavage of the mature tRNA at its 
anticodon loop, and tRF that are derived from mature or 
precursor tRNAs after cleavage at either the D-loop or the 
T-loop, giving 5′-tRF and 3′-tRF [17]. Although total reads 
assigned to tRF did not change after GPAT2 silencing, 275 
tRF were identified as differentially expressed (FC≥|1.5|, 
pvalue≤0.05), with 147 tRF downregulated and 128 
tRF upregulated (Supplementary Table 4). Figure 3A 
shows the top 40 deregulated tRF annotated according to 
the corresponding mature tRNA ID. We then evaluated 
the frequency distribution of each tRF species in the 
upregulated and downregulated groups, compared with 
the total tRNA genes for each species in the genome 
(GtRNAdb). Results indicated that downregulated tRF are 
derived mainly from His-tRNA (9 out of 10, 90%), Pro-
tRNA (19 out of 23, 83%), Cys-tRNA (26 out of 39, 67%) 
and Thr-tRNA (13 out of 23, 56.1%), whereas upregulated 
tRF are derived mainly from iMet-tRNA (9 out of 10, 
90%), eMet-tRNA (7 out of 10, 70%), Trp-tRNA (7 out 
of 8, 87.5%) and Arg-tRNA (Figure 3B, Supplementary 
Table 5). When evaluating the length distribution of reads 
assigned to tRF a shift in length was observed in SH 
cells; after GPAT2 silencing, the number of longer tRF 
(31-41 nt) decreased whereas the number of those with 
smaller length (20nt-30nt) significantly increased (Figure 
3C). This means that smaller tRF (20-30 nt) were more 
abundant in the upregulated group whereas larger tRF (31-
40 nt) were more restricted to the downregulated group 
(Figure 3D).

To find a biological meaning for deregulated 
tRF, we used the classification for tRNAs previously 
proposed by Gingold et al [18]. The authors established 
the existence of two distinct translational programs 
that operate during proliferation and differentiation, 
which eventually coordinate the supply and demand 

of tRNAs. Differentiated cells are less proliferative, 
and proliferating cells are typically not terminally 
differentiated, hence, according to the cellular status at 
which they are expressed, Gingold et al. classified the 
tRNAs into proliferation and differentiation tRNAs. Using 
Euler diagrams, we observed a significant association 
(pvalue≤0.0001) between the subset differentiation tRNAs 
with the downregulated tRF in our analysis, whereas the 
opposite occurred with the upregulated ones, with a strong 
association (pvalue≤0.0001) to the proliferation tRNAs 
subset (Figure 4A, Supplementary Table 6).

Because tRNAs are the supply of amino acids to 
build proteins, we asked whether from the frequency of 
upregulated and downregulated tRF we could establish 
a protein profile with the aim of having a different 
approximation about which biological processes are being 
affected by GPAT2 silencing. We used the abundance 
of each species of tRF and defined its frequency based 
on the amino acid they carry (Supplementary Table 
7). We then used the CompSite expasy database and 
obtained a list of scored putative proteins (Supplementary 
Table 7). Interestingly, functional enrichment of these 
proteins enabled us to identify the biological processes 
previously associated to GPAT2, such as phosphatidic 
acid biosynthesis, phospholipid acyl chain remodeling and 
regulation of cell death, among others (Figure 4B).

GPAT2 silencing affects the expression of 
miRNAs targeting to genes related to cell growth 
and lipid metabolism

In contrast to piRNAs and tRF, miRNAs abundance 
significantly decreased after GPAT2 silencing (Figure 
1, Supplementary Table 8). Unsupervised hierarchical 
clustering analysis of differentially expressed miRNAs 
demonstrated a clear segregation of SC and SH cells 
(Figure 5A). Statistical analysis revealed 213 transcripts 
differentially expressed (109 upregulated & 104 
downregulated) between the two cell line conditions 
(Supplementary Table 8). We choose miR-5100 and 
miR-34 to validate small RNAseq data. Semiquantitative 
RT-PCR experiment demonstrate that, as expected, pre-
miR-5100 was upregulated whereas pre-miR-34 was 
downregulated in SH cells (Supplementary Figure 4).

To predict putative targets, miRDB database was 
used and the 50 best ranked putative targets for each 
deregulated miRNA were selected (Supplementary 
Table 9). By pivot tables (cross tabulations), the more 
relevant targets present in at least 5 miRNAs (>5%) 
were extracted (Supplementary Table 9). This means to 
select the genes that constitute targets for more than five 
miRNAs. Following this criterion, two lists of putative 
gene targets were obtained, one of 51 genes for the 
upregulated miRNAs, and the other of 109 genes for the 
downregulated miRNAs (Supplementary Table 9).
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To identify biological processes associated to 
miRNA targets, functional enrichment analysis using 
ENRICHR database was performed. Pathways analysis 
revealed specific terms associated to mitochondrial 
biogenesis and IGF1R signaling for genes associated to 
upregulated miRNAs, and oxidative metabolism of lipids 
and lipoproteins for genes associated to downregulated 

miRNAs (Figure 5B). Among the putative genes targeted 
by the upregulated miRNAs were APPL1 and SPRED1, 
both playing critical roles in cell proliferation [19, 20]. 
The expression of these genes was assessed by qPCR and 
as expected, both were found downregulated in SH cells 
(Supplementary Figure 3).

Figure 3: tRF. (A) Heatmap representation of the top 40 deregulated tRF identified in the comparison SC vs SH cells and annotated 
according to the name of the mature tRNA. (B) Stacked barplot of the frequency distribution of tRF considered according to the amino acid 
they carry. Only the name of the amino acid is indicated. The asterisk indicates significantly overrepresented (tRF)-amino acids in the up 
and downregulated groups. (C) Distribution of reads assigned to tRF based on their nucleotide length. (D) Piecharts of the percentages of 
tRF classified according to their nucleotide length.
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GPAT2 modulates miRNAs associated with poor 
prognosis in breast cancer

To determine whether deregulated miRNAs could 
have an impact on the survival of patients with breast 
cancer (BC), we performed an analysis using the YM500 

database. According to YM500 there are 226 miRNAs 
differentially expressed between BC tumors (n=994) and 
normal breast (n=103) (Supplementary Table 10). We 
compared this group with the 213 deregulated miRNAs 
identified in our study. We used the normal approximation 
to the binomial distribution as previously described [21] 

Figure 4: tRF and its associated tRNAs. (A) Euler diagram of the comparison between the upregulated and downregulated tRF with 
the Gingold classification of tRNAs. (B) Functional enrichment of the putative proteins obtained from the (tRF)-amino acid frequencies.
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to calculate whether the number of deregulated miRNAs 
derived from each cross-platform comparison was of 
statistical significance. We found sixty-five miRNAs 
common to both groups (pvalue≤0.05, Figure 6A). Of the 
65 miRNAs, 45 are upregulated and 20 downregulated 
in YM500 BC tumors, while 36 and 29 are upregulated 
and downregulated, respectively, in the SH cells from our 
analysis. Interestingly, we found a significant association 
between the miRNAs upregulated in breast cancer tumors 
with the miRNAs downregulated in the SH cells (22 
miRNAs in common, pvalue≤0.05), as well as between the 
miRNAs downregulated in BC tumors and the upregulated 
in the SH cells (13 miRNAs in common, pvalue≤0.05, 
Figure 6A). We then found that 9 of the 22 miRNAs that 
are downregulated in the SH cells have a significant impact 
on breast cancer patient survival if they are upregulated in 
tumors; whereas only 2 of the 13 upregulated miRNAs in 
the SH cells showed poor prognosis (Figure 6B). Figure 6 
C shows the Kaplan Meier curves of 6 of the 9 miRNAs 
downregulated after GPAT2 silencing and upregulated in 
breast cancer tumors. Moreover, considering that MDA-
MB-231 cells are negative for hormone receptors, we 

performed the survival analysis on a defined group of 
ER- and PR- breast cancer tumors (n=218) for each of the 
significant miRNAs identified in the comparison normal 
vs tumor, but no significant association with overall 
survival was found in any of the miRNA analyzed.

DISCUSSION

In this study, we described how the landscape of 
sncRNAs is affected by GPAT2 silencing in triple-negative 
breast cancer MDA-MB-231 cells, which normally express 
GPAT2. Based on the results obtained by Shiromoto et 
al. [4], demonstrating that GPAT2 participates in piRNA 
biogenesis in mouse germline stem cells, we hypothesized 
that this gene could also be involved in piRNA metabolism 
in somatic MDA-MB-231 cells, where piRNA synthesis 
was proved to be active [10]. By shRNA-mediated gene 
silencing we showed that although GPAT2 knockdown did 
not change significantly the total amounts of piRNAs, a 
shift in small RNA read length distribution was observed 
and specific piRNAs were deregulated. The most relevant 
finding lies in the group of downregulated piRNAs, 

Figure 5: miRNAs. (A) Heatmap representation of deregulated miRNAs in SC vs SH cells. (B) Functional enrichment of the targets of 
upregulated miRNAs (red) and downregulated miRNAs (light blue).
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whose genomic characteristics are homogeneous and 
clearly distinguishable from the upregulated group. First, 
82% of them have a single copy in the human genome, 
of which, 81% - with 100% identity- are in the body of 
snoRNA genes. Second, we found a high tissue-specific 
correlation between the piRNA-snoRNA pairs, suggesting 
the co-expression of both RNAs. These results refer to the 
mechanism of the primary biogenesis of piRNAs, in which 
piRNAs precursors are transcribed from piRNAs clusters, 
and then processed into piRNA intermediates, which 
subsequently are trimmed and modified by methylation 
to led to mature piRNAs [22]. Considering that snoRNA 
genes are 65-300 nt long, it is possible to speculate that 
they may be precursors or intermediates in the production 
of certain class of piRNAs, and that GPAT2 is directly 
involved in this process. In this respect, it has been shown 
that certain piRNAs are derived from snoRNAs [15], and 
that these play specific roles in transcriptional and post-
transcriptional regulation of gene expression [23, 24]. It 
is also worth mentioning that among the downregulated 
piRNAs it was found piR-36011. This piRNA is encoded 
in multiple sites in the genome and each copy maps in one 
of the 14 copies of the small NF90- associated RNA A 

genes (SNAR-A1 to 14). SnaRs are transcribed by RNA 
polymerase III and display restricted tissue distribution, 
with high expression in normal testis and discrete areas 
of the brain, and in many immortalized human cell 
lines compared to their pre-immortal counterpart [25]. 
Moreover, snaR genes are predominantly located in three 
clusters on chromosome 19 and have been duplicated as 
part of a larger genetic element. Like snoRNA derived 
piRNAs, piR-36011 could be originated from the 
processing of a precursor or intermediate SNAR.

We also searched for potential targets of the 
deregulated piRNAs, based on sequence complementarity. 
According to the parameters of the E-value, nucleotide 
match, mismatches, score and the orientation of the 
targeting strand, we identified a few potential target genes. 
Functional enrichment analysis revealed that the products 
of these RNAs are involved in lipid metabolism.

Another relevant finding is that deregulated piRNAs 
correlate with the less tumorigenic SH phenotype. For 
instance, many of the downregulated piRNAs (piR-31636, 
piR-57125, piR-35548 and piR-57125) were previously 
found upregulated in breast cancer growing cells and/
or in breast tumors compared to their normal tissues, 

Figure 6: Deregulated miRNAs and breast cancer tumors. (A) Comparison of differentially expressed miRNAs in SC vs SH 
cells with differentially expressed miRNAs in normal vs breast cancer tumors indicates a significant association. Venn diagrams of opposite 
groups (Up vs Down) also showed a significant association (B) Nine of the 22 miRNA downregulated in SH cells and activated in breast 
cancer are associated with poor prognosis in breast cancer. Figure (C) shows the Kaplan Meier curves of 6 of them. BC: breast cancer. HR: 
Hazard ratio.
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whereas many of the upregulated piRNAs were previously 
associated to a breast cancer growth arrested phenotype 
(piR-36743, piR-36318, piR-36249, piR-43772, piR-
36041) [10].

In previous studies we have shown that GPAT2 
promotes cell proliferation and its expression is inversely 
correlated with cell differentiation status in cancerous 
and in 3T3L1 fibroblast cells [3, 6]. In this work, we 
observed a significant association between the subset 
‘differentiation tRNAs’ [18] and the downregulated tRF 
identified in our analysis, whereas the opposite occurred 
with the upregulated ones, with a strong association to 
the proliferation tRNAs subset. Under the assumptions 
that cellular tRNA pool constitutes a relevant prime 
factor that controls translation, and that variations in the 
expression of a given tRNA would affect the translation 
of all genes that need such tRNA, we speculate that the 
increase of tRF after GPAT2 silencing would be associated 
to a decay of specific tRNAs, affecting the synthesis of 
specific proteins. Therefore, we used the deregulated tRF 
-considered as products of tRNA degradation- to establish 
a putative profile of affected proteins. Interestingly, we 
identified proteins related to phospholipid biosynthesis 
and cell growth, two major processes previously linked 
with GPAT2.

miRNAs are the most studied ncRNAs in the context 
of cancer biology. In their processing, they markedly differ 
from piRNAs and tRNAs. Of the three classes of sncRNAs 
analyzed in this study, only miRNAs showed a significant 
variation in the total abundance of aligned reads, with 
a decrease in the SH cells, suggesting an impact in the 
overall production of miRNAs. Using bioinformatics 
analysis, we identify a set of potential targets for the 
upregulated and downregulated miRNAs. Target genes 
of miRNAs would be associated with processes linked to 
lipid biosynthesis, cell growth and proliferation.

To evaluate if the deregulated miRNAs in the MDA-
MB-231 cells might have a role in breast cancer, we used 
the YM500 database, which contains >8000 small RNA 
sequencing data sets, and integrated analysis results for 
various cancers miRNome studies. We found a significant 
overlap between the miRNAs differentially expressed in 
the comparison normal breast vs breast cancer obtained 
from YM500 database, with those found affected by 
GPAT2 silencing in the present study. We also identified 
9 miRNAs downregulated by GPAT2 silencing that are 
usually upregulated in breast cancer and are associated 
with a worse survival prognosis. Therefore, differentially 
expressed miRNAs identified here in SC vs SH cells show 
a similar pattern in normal vs breast cancer. On the other 
hand, within a cohort of PR- and ER- tumors miRNA 
expression was not correlated with overall survival. We 
speculated that there might be different reasons. First, the 
reduced number of cases with hormone receptor negative 
status and follow up data. Second, although there have 
been defined different molecular subtypes of hormone 

receptor negative tumors, particularly triple negative 
breast cancer tumors, they usually constitute a discrete 
breast cancer subgroup with a homogenous behavior in 
respect of the prognosis and overall survival. Despite this, 
we conducted an exhaustive search in the literature for 
each of the miRNAs highly correlated with survival in 
this study. It has been shown that miR-454 is associated 
with poor prognosis in triple negative breast cancer tumors 
[26]; similarly, miR-301 mediates cell proliferation in 
invasive breast cancers [27]. Overall, our data demonstrate 
that beyond the molecular subtype of the cell line 
employed, some of the miRNAs identified in our model 
could be powerful prognostic markers in breast cancer, as 
was postulated in other studies, and some of them could 
constitute new ones to further validate in future studies.

The specific characteristics of deregulated piRNAs, 
tRF and miRNAs strongly correlate with processes 
associated with GPAT2 in previous studies, indicating a 
specific cause-effect of GPAT2 silencing. The mechanisms 
by which GPAT2 deregulate the expression of small non-
coding RNAs remains unknown, but in this study, we 
show that GPAT2 modifies the abundance and length of 
specific piRNAs, tRF and miRNAs. The involvement of 
outer mitochondrial membrane proteins in primary piRNA 
processing was previously described [28, 29, 30]. It was 
demonstrated that a member of the Drosophila glycerol-
3phosphate acyl-transferase (GPAT) family proteins, 
named Minotaur, collaborates with Zucchini in primary 
piRNA processing near the mitochondrial membrane 
[31]. This protein is homologous to the mouse GPAT2, 
and its role in piRNA metabolism is independent of its 
acyltransferase motif. In this sense, we and others have 
previously postulated that GPAT2 protein contains 
intrinsically disordered regions [32, 33]; hence it is 
possible to speculate that GPAT2 could act as a scaffold 
protein to function in the processing of specific small 
ncRNAs that eventually control lipid biosynthesis and cell 
proliferation.

MATERIALS AND METHODS

Cell lines and culture conditions

The human MDA-MB-231 cell line, derived from 
mammary adenocarcinoma, was purchased from ATCC 
and maintained in DMEM supplemented with 10% FBS, 
100 U/ml penicillin, 100 mg/ml streptomycin and 2 
mM glutamine. Cells were grown at 37°C in a 5% CO2 
atmosphere with 98% relative humidity.

GPAT2 silencing

For human GPAT2 silencing, MDA-MB-231 cells 
were transfected using Lipofectamine 2000 Reagent (Life 
Technologies) with HuSH-29 plasmid (OriGene) coding 
for shRNA against human GPAT2 mRNA and selected 
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for puromycin resistance to generate the respective MDA-
MB-231 silenced cell line (SH). A non-effective scrambled 
sequence shRNA plasmid was used to create a negative 
control (SC). Both plasmids also contain a sequence coding 
for green fluorescent protein driven by a CMV promoter.

Small RNA sequencing

Total RNA was extracted from the cell line using the 
standard RNA extraction method with QIAIzol (Qiagen), 
quantitated with NanoDrop-1000 spectrophotometer 
(Thermo Fisher Scientific) before integrity assessment 
with an Agilent 2100 Bioanalyzer (Agilent Technologies). 
For small RNA-seq, 1 μg of total RNA from SH and SC 
cells was used for library preparation with Illumina TruSeq 
small RNA sample preparation Kit. Three independent 
experiments (two clones per cell line) for each condition, 
were sequenced (10 pM) on HiSeq2500 (Illumina) with 
single read for 51 cycles. Small RNA sequencing data 
was analyzed using iSmaRT [34] to identify the sncRNA 
families studied, i.e. miRNAs (miRBase v21), PIWI-
interacting RNAs (piRNABank), and tRNA-derived 
fragments (tRF, Human genome assembly, GRCh37/hg19) 
with Minimum Read Count of 3. Rfam and RefGene 
correspond to reads mapped to Rfam [35] and Refgene 
(known human protein-coding and non-protein-coding 
genes) databases.

Bioinformatics analysis

To identify differentially expressed miRNAs, 
piRNAs or tRF between SH and SC samples, we utilized 
the DESeq2 algorithm based on the normalized number of 
counts mapped to each sncRNA transcript [36]. Functional 
enrichment analyses were performed using the databases 
DAVID, http://david.abcc.ncifcrf.gov/), Enrichr (http://
amp.pharm.mssm.edu/Enrichr/) and FunRich (www.
funrich.org), based on the list of genes associated to 
the deregulated sncRNAs (P-adj. ≤0.05; FC ≥|1.5|). 
Data integration, heatmap visualization of differentially 
expressed transcripts and functional enrichment plots 
were done with R/Bioconductor packages and the Multi 
Experiment Viewer software (MeV v4.9) [37]. To validate 
the bioinformatic analysis of small RNA-seq experiments, 
we compared the global miRNA expression profile of SC 
from our study with the global miRNA expression profile 
of the MDA-MB-231 and MCF10 cell lines obtained from 
the study of Zhou et al., 2014 [14], in which the authors 
profiled the cellular small RNAs isolated from these two 
cell lines by Solexa deep sequencing. Briefly, normalized 
data were downloaded from GEO (ID#GSE50429) and 
the miRNAs in common to our libraries were selected 
(n=228). The comparison was made using a linear 
regression model in R.

The name or GenBank ID, chromosome number, 
genomic position, strand orientation and sequence length 
of piRNAs was obtained from piRNAbank (http://

pirnabank.ibab.ac.in/simple_search.html), and validated 
with the NCBI Nucleotoide Database (https://www.
ncbi.nlm.nih.gov/nuccore/). The number of copies in 
the genome and the genomic loci was obtained from 
the UCSC Genome Browser. To identify potential target 
genes of relevant piRNAs, we employed the NCBI 
database (Human Genomic plus Transcript) based on 
sequence complementarity using the reverse complement 
of the piRNA sequence as input. The HomoloGene tool 
from the NCBI database was employed to evaluate the 
grade of conservation of the selected putative mRNA 
targets among different mammalian species. For miRNA 
target prediction and functional annotations, we used the 
miRDB online resource (http://www.mirdb.org/miRDB/). 
To evaluate differences in the abundance of each species 
of tRF among the upregulated and downregulated group, 
we used Fisher Test to compare their frequencies with the 
expected frequencies according to the Genomic tRNA 
database (http://gtrnadb.ucsc.edu/). For the identification 
of putative proteins based on amino acids composition, 
we employed the AAcompIdent tool (http://web.expasy.
org/aacompident/). For piRNA and snoRNA expression 
levels across human tissues and cell lines we employed 
the DASHR database (http://lisanwanglab.org/DASHR/
smdb.php).

To evaluate and compare differentially expressed 
miRNAs found in this study with miRNAs deregulated 
in breast cancer tumors, we used the YM500v3 database 
(http://driverdb.tms.cmu.edu.tw/ym500v3) which employ 
TCGA data to contrast normal vs cancer tissue. We 
selected the comparison of 1096 primary solid breast 
cancer tumors against 104 samples of normal breast tissue 
[38]. Survival section of YM500 database was employed 
to survival analysis of common deregulated miRNAs.

qPCR and semiquantitative RT-PCR 
experiments

Total RNA was isolated from SC and SH cell lines 
using QIAzol (Qiagen). 1 μg RNA was used for cDNA 
synthesis employing High Capacity Reverse Transcription 
Kit (Applied Biosystems). A cDNA dilution (1/10) was 
used for the qPCR reactions with IQ Sybr Green Super 
Mix (Bio-Rad). Primers were designed to amplify 
GPAT2 (forward: ATCCTACTGCTGCTGCACCT; 
reverse: ACAGCAGCTTTGCACTCAGA), ACSS3 
(forward: CGTCCCAGGATACAATGTTATGAT; 
reverse AAAAAGCCCCAGGTGGCAAT), APPL1 
(forward: AGCGGGAGAAGTGAAAGTAAT; reverse: 
GGCTACTGCTAAGGACAACAA), SPRED1 
(forward: TCTCAAGGATGCCCCGAATC; reverse: 
GGCTCACTGGTAACAACTGTCT), and TBP 
(forward: TATAATCCCAAGCGGTTTG; reverse 
GCTGGAAAACCCAACTTCT). An AriaMx Real-
Time PCR System (Agilent Technologies) was used 
for measurements. RNA expression was quantified in 
triplicate using the ΔCt method and normalized to TBP 
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(TATA binding protein) expression level using Qbase 
software.

To assess pre-miRNA expression by 
semiquantitative RT-PCR, 500 ng of total RNA was 
used for cDNA synthesis employing High Capacity 
Reverse Transcription Kit (Applied Biosystems) 
and used to amplify with primers for pre-miR-34a 
(forward: TGTTTCTTTGGCAGTGTCTTAGC; 
reverse: TGCAGCACTTCTAGGGCAGTAT), pre-
miR-5100 (forward: CATGAGGAGCTGGCAGTGG; 
reverse: GTCCTGTGGCCAGTTAGAGG) and TBP 
(forward: TATAATCCCAAGCGGTTTG; reverse 
GCTGGAAAACCCAACTTCT), using a Veriti 96-well 
Thermal Cycler (Applied Biosystems) with the following 
cycling program: 0:30 min at 98°C; 35 cycles of 0:10 min 
98°C, 0:40 min at 58°C and 2:00 min at 72°C, and a final 
hold of 7 min at 72°C. Amplification products were run 
on Ethidium Bromide stained 1.5% agarose gel along with 
a 1 kbp DNA ladder (Life Technologies) to confirm the 
expected molecular weight of the amplification products. 
Quantification of the band intensities was performed by 
Image J program normalizing the intensity value to that 
of TBP.

Western blot

One-hundred μg of total protein from SC and SH 
cells was separated on 10% SDS-PAGE, transferred to a 
polyvinylidene difluoride membrane (BioRad) and probed 
with 1/1000 anti-GPAT2 antibody (Sigma HPA036841). 
Anti-β-actin antibody (Abcam ab8227) at a dilution 
1:2500 was used as a gel-loading control. Membranes 
were then washed extensively and probed with horseradish 
peroxidase-conjugated goat anti-rabbit or anti-mouse 
IgG antibody (Thermo-Pierce). For chemiluminescent 
detection, membranes were incubated with Super Signal 
detection kit (Thermo-Pierce).
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