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AbstrAct

The predisposition for the initiation of folliculogenesis in mammals including 
humans is programmed to start at fetal life and continues until reproductive capacity. 
The follicles grow from a pool of primordial follicles which retain the major functions in 
the entire reproductive life of a female. Anti-müllerian hormone (AMH), a glycoprotein 
belonging to the transforming growth factor-beta family, has an inhibitory effect on 
ovarian follicle development. The key regulatory target genes in primordial follicle 
development are of paramount importance in reproductive biology of female. A 
systems biology method was used to find regulatory genes performing critical role 
in primordial follicle development. A complete in-depth bioinformatics analysis was 
performed to investigate the changes in transcriptome of preantral to small antral 
mouse follicles treated for 12 h and 24 h with two different concentrations; 50 and 200 
ng/ml of AMH, and thereby identify candidate genes in time and concentration manner. 
Firstly, we found differentially expressed genes that were time and concentration 
dependent in response to AMH. The network analysis of these differentially expressed 
genes provided new candidate genes and pathways associated with inhibitory action 
of AMH on the primordial follicle development. To further emphasize the function 
of AMH, the key identified genes’ protein-protein docking was analyzed and found 
the intracellular and extracellular protein-protein interaction. This study elucidates 
one of the novel mechanisms of AMH involvement in inhibition of ovarian follicle 
development which may lead to prolong productive life in female. 
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IntroductIon

The mechanism of activation of primordial 
follicle to a healthy preantral follicle is of pronounced 
interest and their interpretation is critical requirement 
to use the primordial follicle and enhance its efficiency 
in mammals. The initiation of the follicular growth still 

needs investigation that how a follicle has a potential 
for continuing growth. It has been suggested previously 
that a follicle growth may occur due to a sophisticated 
balance between the stimulatory and inhibitory growth 
factors in ovary. Thus the activation of the follicle 
depends upon several factors in the microenvironment 
of each follicle [1]. The transition of primordial follicle 
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to primary follicle involves the change in the histology 
of granulosa cells from round to cuboidal epithelial and 
increase in the oocytes diameter. With growth of follicle 
the granulosa and theca cell layers also increases, until 
ultimately a fluid filled antrum forms [2, 3]. With gradual 
development of the primary follicle it leaves the arrested 
pool of reproductive lifespan. The follicle depletion 
carries the female into cessation of reproductive life [4, 
5]. The proportion of primordial follicle is fixed in pre 
reproductive life and the ovarian follicle pool is the major 
element for determining the reproductive life in mammals 
[6, 7]. The transition of primordial pool to primary follicle 
is regulated by certain paracrine and/or autocrine growth 
factors. The extracellular hormones/proteins have been 
investigated and found of critical importance in primordial 
follicular pool in female reproduction, Anti-müllerian 
hormone (AMH) performs inhibitory role in follicle 
transition [8] and chemokine which binds to functionally 
signaling G-protein-coupled receptors and complete their 
action [9]. It is also reported that oocytes of primordial and 
primary follicles express stromal derived factor -1 (SDF-1) 
(chemokine) and when ovaries were cultured with stromal 
derived factor-1 reveal decrease in follicular diameter as 
compared with control, suggesting an inhibitory effect of 
primordial to primary follicle transition [10].

Anti-müllerian hormone (AMH) is a member of 
transforming growth factor-β super family of growth 
factors and binds to its receptor-II (AMHRII). Initially it 
was known for the role of regression of Müllerian ducts 
in early fetal development in male embryo [11]. It is 
expressed in postnatal granulosa cells and helps in selection 
of developing follicles; it inhibits the development of 
primordial follicle into primary follicle pool and reduces 
the response of FSH to growing follicles [12]. The 
inhibitory role of primordial follicle transition needs further 
clarification and here we will focus on this study.

Anti-Müllerian hormone (AMH) plays an 
imperative role in folliculogenesis. It is one of the factors 
which regulate the kinetics of follicular development and 
inhibit the follicular transition for primordial to mature 
follicles [13]. Its exposure can decrease the expression 
of stimulatory factors and increase the expression of 
inhibitory factors and regulate the cellular signaling 
pathway resulting in the slowing down of primordial 
follicle development [14]. In AMH deficient mice large 
number of follicle development and high rate of oocyte 
degradation and atresia of follicle was observed due to 
low level of FSH which sustain the development of pre-
ovulatory follicles demonstrating that AMH is critical for 
small-growing follicles [15]. It is a putative regulator of 
follicular atresia showing a time restrained expression 
which gives a platform for progression of normal 
folliculogenesis. It may affect some folliculogenesis 
affecting growth factors and enzymes. We speculate that 
AMH could be a crucial factor that can alter the normal 
mode of follicular atresia.

In vitro addition of recombinant AMH can preserve 
the primordial pool and shows inhibitory effect on the 
early follicular development by depressing the growth of 
follicular development in human as well as in mouse ovaries 
[16, 17]. It demonstrates that AMH acts as a negative 
paracrine response on the initiation of adjacent primordial 
pool and acts as a gatekeeper in controlling the initiation and 
depletion of primordial follicle pool [18]. A detailed in-silico 
bioinformatics analysis of the factors and cellular pathways 
altered by AMH can provide a clear understanding about the 
molecular control of primordial follicle development and is 
carried out in the present study to provide further evidence 
of AMH’s role in primordial follicle development. The 
genes and pathways identified can be of profound interest 
in answering long standing questions regarding primordial 
follicle development that lays the foundation of female 
reproductive life throughout. Furthermore, the use of AMH 
identifies its importance as a therapeutic agent as and when 
it is required. The present study can be used as an engine in 
any further studies focusing AMH and its role in primordial 
follicle development.

results

data processing and deGs screening

We firstly normalized the dataset, see the 
preprocessing before and after box figures in Figure 1, 
and normalized expression data can be found in 
Supplementary Table 1. Based on the cut-off criteria, 
we screened 598, 571, 536 and 607 DEGs in group a, 
b, c and d, respectively. Volcano plots that illustrate the 
inclusion criteria for each region were shown in Figure 
2. DEGs under a set of defined conditions lead us to the 
proposition of genes working in network to carry out a 
certain function, hence we figured out DEGs to further 
illustrate its role primordial follicle development. (DEGs 
list can be found in Supplementary Table 2).

Hierarchical clustering and comparison analysis 
of selected deGs in different groups

The DEGs networking explains how genes work 
together to bring out a certain phenotype under a set 
of defined conditions. It also leads towards the cellular 
signaling pathways that are important to carry out these 
functions. For this purpose we extracted DEG expressions 
from four different groups and drew hierarchical clustering 
heatmaps, as shown in Figure 3. It was clear that the 
samples in each group were divided into two types (AMH 
treated and control), which indicating that DEGs in each 
group had obvious different expression patterns. Then, we 
compare DEGs in four different groups, result was shown 
in Figure 4. When compared group a and b, they shared 
121 DEGs, they had the same differential expression 
patterns in a and b, with a significant correlation coefficient 
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Figure 1: Boxplot of GSE56737 data preprocessing before (A) and after normalization (b). Grey boxes mean control samples of different 
time point and concentrations, hotpink and lightpink boxes mean 50 and 100 ng/ml AMH treated for 24 hours, orange and yellow boxes 
mean 50 and 100 ng/ml AMH treated for 12 hours.

Figure 2: Volcano plot of DEGs in group a (A), b (b), c (c) and d (d), regions. Red horizontal dot line means FDR = 0.05 cutoff line, 
two red vertical dot lines mean logFC = 1 and logFC = -1 cutoff line.
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of 0.809 (p < 2.2e-16); group c and d shared 162 DEGs, 
which had the same differential expression patterns in c 
and d with a significant correlation coefficient of 0.913  
(p < 2.2e-16). We defined the 283 (121+162) DEGs as 
genes set 1, which were connected with time points. At the 
same time, when compared group a and c, they shared 56 
DEGs, they had the same differential expression patterns 
in a and c, with a significant correlation coefficient of 
0.807 (p = 5.795e-14); group c and d shared 63 DEGs, 
which had the same differential expression patterns in c 
and d with a significant correlation coefficient of 0.778 
(p < 6.173e-14). We defined the 118 (56 + 63) DEGs as 

genes set 2, which were connected with concentration 
of AMH. DEGs related to time points (Gene set 1) and 
concentration of AMH (Gene set 2) were further analyzed. 
(Four parts of comparison overlapped between a and b, c 
and d, a and c, b and d, as well as DEGs in geneset 1 and 
2, were listed in Supplementary Table 3).

Go and KeGG pathway enrichment analysis for 
the co-regulated deGs

The DEGs identified were further enriched to a 
total of 19 (5 BP, 5 CC, 9 MF) and 13 (4 BP, 5 CC, 4 

Figure 3: Hierarchical clustering of DEGs group a (A), b (b), c (c) and d (d).

Figure 4: (A) Venn diagram of DEGs in a vs b and c vs d. Scatter-plot on the top means correlation between logFC of a and b; Scatter-plot 
on the bottom means correlation between logFC of c and d. (b) Venn diagram of DEGs in a vs c and b vs d. Scatter-plot on the top means 
correlation between logFC of a and c; Scatter-plot on the bottom means correlation between logFC of b and d. In the scatter-plot, cor refers 
to Pearson correlation coefficient, p refers to significance p value.
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MF) significant related GO annotations were found for 
gene sets 1 and 2, respectively, listed in Tables 1 and 2.  
In gene set 1, enriched GO BPs were related to cell 
adhesion, biological adhesion, innate immune response 
and etc. Some genes, such as AZGP1, PODXL2, DSG1A, 
PCDHB18, CDH18, etc. were participated in term cell 
adhesion, which had the most enrichment significant 
p value and with the largest number of genes (23 genes 
were involved). At the same time, 4 pathways were 
enriched, there were 8 genes (GRM3, GABRR1, CHRM4, 
LTB4R1, DRD2, NMUR2, GALR2, HTR6) participating 
in the same pathway called Neuroactive ligand-receptor 
interaction. And CCR7 and CXCR2 were involved in two 
pathways: Chemokine signaling pathway and Cytokine-
cytokine receptor interaction. The pathways altered due to 
AMH treatment at time point is shown in Figure 5A. While 
in gene set 2, KCNK15, SLC34A1, KCTD16, SLC30A8, 
1300017J02RIK showed the same trend of taking part in 
three BP terms at the same time: metal ion transport, ion 

transport and cation transport (No significantly enriched 
pathways were found for DEGs in gene set 2). Using 
ggplot2 package in R, significant related GO annotations 
in gene set 1 and 2 were displayed in Figure 5. 

co-expression network analysis for deGs in 
gene set 1 and 2

In a biological system several genes co-express 
along with each other and influencing the related 
functions, hence is important to screen out such genes 
for further functional studies, hence we developed a co-
expression network for DEGs in gene set 1 and gene set 
2. We calculated gene expression PCCs between every 
two genes, and kept gene pairs whose PCC score were 
over 0.8 to construct co-expression network of DEGs in 
gene set 1 and 2, respectively. We finally got 720 and 
460 pairs of genes which meet 0.8 cutoff value as co-
expression gene pairs in gene set 1 and 2 (gene pairs and 

table 1: enriched Gos and KeGG pathways for deGs in gene set 1

term count P Value

(BP)GO:0007155~cell adhesion 12 0.0061064

(BP)GO:0022610~biological adhesion 12 0.0061862
(BP)GO:0002220~innate immune response activating cell surface 
receptor signaling pathway 2 0.0322812

(BP)GO:0016337~cell-cell adhesion 6 0.0441598

(BP)GO:0007626~locomotory behavior 6 0.0461861

(CC)GO:0005886~plasma membrane 21 6.75E-04

(CC)GO:0016021~integral to membrane 11 0.0191657

(CC)GO:0005576~extracellular region 23 0.0259966

(CC)GO:0031224~intrinsic to membrane 12 0.0272382

(CC)GO:0034702~ion channel complex 5 0.0465984

(MF)GO:0043565~sequence-specific DNA binding 14 3.22E-04

(MF)GO:0042165~neurotransmitter binding 5 0.0044747

(MF)GO:0030594~neurotransmitter receptor activity 5 0.0044747

(MF)GO:0003700~transcription factor activity 14 0.0063171

(MF)GO:0005529~sugar binding 6 0.0127776

(MF)GO:0020037~heme binding 5 0.0248372

(MF)GO:0046906~tetrapyrrole binding 5 0.0289048

(MF)GO:0030528~transcription regulator activity 16 0.0416291

(MF)GO:0005506~iron ion binding 7 0.0484739

mmu04080:Neuroactive ligand-receptor interaction 8 6.79E-04

mmu04062:Chemokine signaling pathway 3 0.0293552

mmu04060:Cytokine-cytokine receptor interaction 3 0.0427581

mmu00230:Purine metabolism 2 0.0461171

BP: Biology Process; CC: Cellular Component; MF: Molecular Function.
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their co-expression score were listed in Supplementary 
Table 4). Networks were shown in Figure 6. A total of 
222 nodes (1down and 87 up regulated gene nodes from 
a and b overlap; 78 down and 56 up regulated gene nodes 
from c and d overlap) and 720 edges (59 negative and 661 
positive connection) were included in Figure 6A network. 
While in co-expression network of gene set 2 shown in 
Figure 6B, there were 109 nodes (19 down and 30 up 
regulated gene nodes from a and c overlap; 10 down and 
50 up regulated gene nodes from b and d overlap) and 460 
edges (24 negative and 436 positive connection) involved.

mirnA- deGs-tF regulatory network 
construction

Micro RNAs affect the expression of genes and play 
critical role in its regulation. We screened totally, 16 and 
14 miRNA and target regulatory relationships (involved 5 
and 4 miRNAs), which were significantly related to DEGs 
in co-expression networks, were found in gene set 1 and 2 
co-expression networks, related miRNAs of each network 
were listed in Table 3-1 and 3-2. At the same time, 56 and 
33 TFs and target regulatory relationships (involved 6 and 
6 TFs), which were significantly related to DEGs in co-
expression networks, were found in gene set 1 and 2 co-
expression networks, related TFs of each network were 
listed in Table 4-1 and 4-2. We then integrated miRNA and 
TF regulatory relationships and construct miRNA-DEGs- 
TFs regulatory network, which were shown in Figure 7. 
Figure 7A was consisted of 38 gene nodes (2 down and 13 
up regulated gene nodes from a and b overlap; 10 down 
and 13 up regulated gene nodes from c and d overlap),  

5 miRNAs and 6 TFs; while Figure 7B had 22 gene nodes 
(2 down and 8 up regulated gene nodes from a and c 
overlap; 2 down and 10 up regulated gene nodes from b 
and d overlap), 4miRNAs and 6 TFs. The Supplementary 
Table 5 shows the detail list of gene set 1 and 2 
microRNA- TF network.

Hydrophobicity profiling of protein

Gene functional part is protein, and the localization 
of proteins determines its functional fate. Hence we carried 
out the hydrophobicity profiling and their localization 
profile. Therefore, to figure out the mechanistic 
grounds for the interacting genes we firstly performed 
hydrophobicity profiling of proteins. For this purpose 
we used ExPASy (http://web.expasy.org/protparam/) to 
calculate the Grand average of hydropathicity (GRAVY) 
for CCR7, CXCR2, KCNK15, SLC34A1, KCTD16, 
results were listed in Table 5. Furthermore, we find 
Primary, secondary and tertiary structure, did homology 
modeling, figure out important protein localization 
predictions and finally performed cytoplasmic vs 
nuclear protein-protein docking and displayed in the 3D 
structure of selected proteins (CCR7, CXCR2, KCNK15, 
SLC34A1, KCTD16), and found the ligands (if they have) 
which can dock and bind to the protein active sites as 
shown in Figure 8.

dIscussIon

AMH suppress the growth of follicle development 
by inhibiting the development of primordial follicle 

table 2: enriched Gos and KeGG pathways for deGs in gene set 2

term count P Value

(BP)GO:0030001~metal ion transport 5 0.043398

(BP)GO:0006811~ion transport 6 0.046156

(BP)GO:0006812~cation transport 5 0.046858

(BP)GO:0007586~digestion 2 0.047563

(CC)GO:0005576~extracellular region 13 0.00493

(CC)GO:0005886~plasma membrane 17 0.013229

(CC)GO:0044459~plasma membrane part 11 0.029641

(CC)GO:0005887~integral to plasma membrane 5 0.04884

(CC)GO:0031226~intrinsic to plasma membrane 5 0.049853

(MF)GO:0004993~serotonin receptor activity 2 0.042361

(MF)GO:0005179~hormone activity 3 0.047403

(MF)GO:0016291~acyl-CoA thioesterase activity 2 0.045998

(MF)GO:0016289~CoA hydrolase activity 2 0.047441

BP: Biology Process; CC: Cellular Component; MF: Molecular Function.
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to primary follicles transition [16, 17]. And it was also 
found that it can inhibit the primordial follicle transition 
stimulated by different growth factors in rats [14]. 

A computational biology research was used to 
elucidate the understanding of genes expression that 
could play important role in the transition of primordial 
to primary follicles in ovaries. In the present network 
analysis, we aimed to investigate the changes in 
transcriptome profile of preantral and small antral mouse 

follicles after culturing with AMH and thereby identify 
candidate genes and pathways to be involved. As AMH 
show inhibitory function in the recruitment of primordial 
follicular development, the female AMH treated model 
can give the useful information about the recruitment of 
follicles and the linkages between follicular dynamics and 
reproductive capabilities of ovaries [19]. In the current 
research mice ovaries were cultured with two time points 
(12 h and 24 h) and at two concentrations of AMH (50 

Figure 5: (A) The histogram of the category of enriched GO terms and KEGG pathways for the DEGs in gene set 1. (b) The histogram 
of the category of enriched GO terms and KEGG pathways for the DEGs in gene set 2. The horizontal axis represents the number of genes, 
red, yellow, green and blue mean Biology Process, Cellular Component, Molecular Function and pathways, respectively. 
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Figure 6: (A) Co-expression network of gene set 1. Vee and triangle nodes mean down and up regulated genes, green nodes mean gene 
nodes from overlap DEGs of a and b, blue ones mean gene nodes from overlap DEGs of c and d. (b) Co-expression network of gene set 2. 
Vee and triangle nodes mean down and up regulated genes, red nodes mean gene nodes from overlap DEGs of a and c, orange ones mean 
gene nodes from overlap DEGs of b and d. Green edges mean negative PCC connection, red edges mean positive PCC connection.
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ng/ml and 200 ng/ml) and the downstream gene were 
checked. In this duration there was no morphological 
change in the ovarian tissues in treated and –untreated 
groups indicating that the changes in the downstream 
transcriptome were due to the change in mRNAs which 
were affected by different time and concentration of AMH 
in cultured ovaries. Four sets of DEGs were identified 
from four groups, which were divided according to 
AMH treated time points and AMH concentrations. We 

showed specific gene expression patterns in each group by 
clustering genes and samples, then defined two gene sets 
by comparing among groups that are; DEGs connected 
with time points and DEGs connected with concentration 
of AMH. The further analysis were based on these two 
gene sets.

Gene set 1 which contained DEGs connected with 
time points, most of them were significantly related 
to cell adhesion, 23 AMH treated time points related 

table 3-1: related mirnAs of deGs in Figure 6A
micrornA P-value Fdr Gene

mmu_TGTTTAC,MIR-30 0.001378 0.02149 Grm3,Slc7a10,Stac,Hoxa11

mmu_AAGCACA,MIR-218 0.001612 0.03149 Sfrp2,Kctd16,Lmo3

mmu_CTACCTC,LET-7 0.001431 0.02149 Sfrp2,Kctd16,Lmo3

mmu_CTACCTC,MIR-98 0.001131 0.0149 Hoxd1,B3gnt6,Col24a1

mmu_TGAATGT,MIR-181 0.00223 0.0423 Six2,Lmo3,Hoxa11

table 3-2: related mirnAs of deGs in Figure 6b
micrornA P-value Fdr Gene

mmu_AAAGACA,MIR-511 0.0004 0.0016 Abcg8,Nhlh2,Khdrbs2,Neurod6

mmu_TGTTTAC,MIR-30 0.0177 0.0354 Nhlh2,Slc7a10,Neurod6,Stac

mmu_CTACCTC,LET-7 0.028 0.0373 B3gnt6,Col24a1,Htr4

mmu_TGCTGCT,MIR-15 0.0841 0.0841 Bmx,Col24a1,Htr4

table 4-1: related tFs of deGs in Figure 6A
tF P-value Fdr Gene

OCT_1 3.90E-05 0.0002 Nrl,Sfrp2,Apobec4,Sucnr1,Lmo3,Pou2f3,Blnk

OCT 3.00E-05 0.0002 Nrl,Sfrp2,Apobec4,Sucnr1,Lmo3,Pou2f3,Blnk

CHX10 0.0004 0.0014 Rgs8,Tgm6,Krt73,Fam71f1,Popdc3,Hoxa11,Nrl,Gpr65,Stac,Lmo3

TATA 0.0041 0.0118 Ampd1,Clcn1,Krt73,Abcc6,Gkn2,Tnmd,Hoxa11,Krtap21-
1,Stac,Lect2,Enthd1

FOXO4 0.0099 0.0223 Grm3,Htr3b,Hoxb13,Hoxd1,Krt85,Popdc3,Tsga13,Tnmd,Mcf2,Hoxa
11,Clec7a,Apobec4,Spata4,Lmo3

NF1 0.0118 0.0236 Six2,Htr3b,Sfrp2,Stac,Lmo3,Mesp1,Gip

table 4-2: related tFs of deGs in Figure 6b
tF P-value Fdr Gene

TAL1ALPHAE47_01 6.67E-05 0.0005 Gfi1,Nhlh2,Neurod6,Itgbl1,Fam19a1

TAL1BETAITF2_01 6.81E-05 0.0005 Gfi1,Nhlh2,Neurod6,Itgbl1,Fam19a1

TATA_01 0.0058 0.0203 Krt73,Neurod6,Insl5,Stac,Smad9,Slc34a1,Fam19a1

FREAC2_01 0.005 0.0203 Pcsk1,Neurod6,Smad9,Slc30a8,Tmprss15,Fam19a1

CHX10_01 0.0116 0.0325 Krt73,Itgbl1,Stac,Fam71f1,Fam19a1

MYOD_Q6 0.0207 0.047 Ppp1r17,Gfi1,Nhlh2,Neurod6,Fam71f1
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Figure 7: (A) miRNA-DEG-TF regulatory network of DEGs in gene set 1 co-expression network. Vee and triangle nodes mean down 
and up regulated genes, green nodes mean gene nodes from overlap DEGs of a and b, blue ones mean gene nodes from overlap DEGs of c 
and d. (b) miRNA-DEG-TF regulatory network of DEGs in gene set 1 co-expression network. Vee and triangle nodes mean down and up 
regulated genes, red nodes mean gene nodes from overlap DEGs of a and c, orange ones mean gene nodes from overlap DEGs of b and d. 
Black arrow lines mean TF-DEGs regulatory relationships, red arrow lines mean miRNA-DEGs regulatory relationships.
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DEGs directly participated in cell adhesion, such as 
AZGP1, PODXL2, DSG1A, PCDHB18, CDH18, etc. 
Cell adhesion is the process by which cells interacts and 
attach to a surface, substrate or another cell, mediated 
by interactions between molecules of the cell surface. 
Cell adhesion occurs from the action of transmembrane 
glycoproteins [20, 21]. As anti-Müllerian hormone (AMH) 
is a glycoprotein hormone structurally related to inhibin 
and activin belongs to the transforming growth factor beta 

superfamily. The primordial to primary follicle transition 
requires extensive changes in cell shape and size as the 
flattened pre-granulosa cells proliferate and become 
cuboidal, and the oocyte starts to enlarge. It is expected 
that cell adhesion molecules are involved in this process, 
and that the inhibitory actions of AMH would results 
in changes in cell adhesion gene activity compared to 
untreated controls. In addition, it is possible that AMH 
may be gradually transported into cells through targeting 

table 5: GrAVY list of ccr7, cXcr2, KcnK15, slc34A1, Kctd16

Gene GrAVY

CCR7 0.613

CXCR2 0.647

KCNK15 0.027

SLC34A1 0.397

KCTD16 -0.677

Figure 8: 3d structure of four selected proteins. Words in the yellow boxes were the information about the active binding sites. In 
the 3D structures, red ones mean α-helix, the orange ones mean β-fold. (A–e) represents CCR7, CXCR2, KCNK15, SLC34A1, KCTD16.
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the DEGs which were related to cell adhesion. Among 
four enriched pathways, the cytokine-cytokine receptor 
interaction (mmu04060) and Chemokine signaling 
pathway (mmu04062) take our attention, which shared 2 
genes: CCR7, CXCR2. AMH regulates these receptors, 
upon which, after a series of putative conformational 
changes and phosphorylation steps, gene expression 
is regulated in the cell [22, 23]. Chemokines are small 
peptides that act through limited number of receptors and 
play an important role to maintain the normal physiology 
of different organs [9]. CCR7, CXCR2 belong to 
chemokine receptors, and AMH regulates these receptors 
and change the downstream gene expressions and cell 
physiology. Cytokine-cytokine receptor and neuroactive 
ligand-receptor pathways were also reported when rat 
ovaries were treated with 50 ng/ml of AMH [24] indicating 
that different genes are using the same pathways to affect 
the follicle development in different species.

Set 2 genes contained DEGs connected with 
concentrations of AMH, DEGs: KCNK15, SLC34A1, 
KCTD16, SLC30A8, 1300017J02RIK showed the same 
trend of taking part in three BP terms at the same time: 
metal ion transport, ion transport and cation transport. 
These genes involved in process of ion transportation have 
a predominant role in development of an organism and are 
believed to be putative target of AMH. The present study 
provided a new group of genes to be investigated in the 
development of follicular growth by interacting the ion 
transport pathways of an organism which could change 
the cell shape or physiology. Moreover, some important 
genes in TF-miRNA networks were up regulated or down 
regulated i.e., SMAD9 node (Figure 6B) which belong to 
TGF-β signaling, and are regulated in response to AMH 
treatment which validate our network results. 

Furthermore, the potential of inhibition or 
stimulation of primordial follicle in a therapeutic 
treatment shows several clinical applications. An 
interval in the primordial follicle development and 
preservation of the primordial follicles could play a 
critical role in the prolongation of the reproductive life 
of a female. Moreover, the remedial inhibitory potential 
on the primordial follicle development could be used 
as a treatment for the premature ovarian failure, when 
the ovaries lost the primordial follicle pool resulting in 
early female infertility. In this process a complex cellular 
interaction is required for the balanced transition of 
primordial to primary follicle. The molecular control of 
primordial pool and the transition of primordial to primary 
follicle contribute the information about the regulation of 
ovarian function and may lead to treatments of ovarian 
diseases [25]. The stimulation of primordial follicle 
development could also cause loss in the primordial 
follicular pool and induce sterility. A number of pathways 
and gene interaction may contribute towards induced 
sterility. The computational analysis and intra-cellular 
and extra-cellular protein docking was performed in the 

present study to provide mechanistic grounds for such 
events and provide therapeutic targets for further research 
to prevent induced sterility.

MAterIAls And MetHods 

data set and description

We downloaded the gene expression profiles from 
GEO (Gene Expression Omnibus, http://www.ncbi.nlm.
nih.gov/geo/) with the accession number GSE56737, 
which contained 18 samples in total (platform: GPL1261 
[Mouse430_2] Affymetrix Mouse Genome 430 2.0 Array). 
Microarray was the first high throughput technology that 
was developed to measure more than twenty thousand 
genes at the same time in a given sample [26].

For the initial studies that produced these datasets, 
preantral to small antral follicles were collected from 
dissected ovaries of seven to eight weeks old female 
C57BL/6Tac mice. In each experiment, follicles were 
pooled to obtain single biological sample and for each 
set three physiological replicates were used. Twelve hour 
as well as 24 hour experiments were performed with two 
different AMH concentrations. Human recombinant anti- 
müllerian hormone (rh-AMH) (R & D Systems, USA) at 
a concentration range of 0, 50 and 200 ng/ml was used 
in this research. In addition, the cultured medium was 
also supplemented with 80 IU/L Follicular stimulating 
hormone (FSH) and 10 IU/L of Luteinizing hormone 
(LH) (Sigma, USA). The same procedure was used in all 
experiment.

The total RNA was extracted by RNAasy micro kit 
and the concentration and quality of RNA of each sample 
was checked by Bioanalyzer 2100. Later on, 3.7 ug of 
fragmented cRNA was loaded on the Affy MG 430 2.0 
probe array cartridge and was hybridized according to 
standard protocol, and arrays were scanned at 560 nm by 
using confocal laser scanning microscope (Affy Scanner 
3000 7G).

data processing and deGs screening

Raw CEL files and the probe annotation files were 
downloaded, and the gene expression data of all samples 
were preprocessed via background correction, quantile 
normalization and probe summarization using the Robust 
Multi-array Average (RMA) algorithm in Affy software 
package of Bioconductor (available at http://www.
bioconductor.org/packages/release/bioc/html/affy.html) 
[27]. Here, we divided samples into different groups and 
defined them as follows: group a. AMH 200 ng/ml 12 h; 
group b: AMH 50 ng/ml 12 h; group c. AMH 200 ng/ml 
24 h; group d. AMH 50 ng/ml 24 h. The Linear Models for 
Microarray Data (LIMMA) package [28] of Bioconductor 
was used (http://www.bioconductor.org/packages/release/
bioc/html/limma.html) to identify differentially expressed 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.bioconductor.org/packages/release/bioc/html/affy.html
http://www.bioconductor.org/packages/release/bioc/html/affy.html
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genes (DEGs) in each group compared to their respective 
0 ng/ml controls (a and b compared to 0 ng/ml 12 h; c 
and d compared to 0 ng/ml 24 h). We compared group a 
DEGs vs b, group c DEG’s vs d, group a DEGs vs c, and 
group b DEGs vs d. In each group, only the genes meeting 
FDR < 0.05 and|log2FC (fold change)|>1were chosen as 
DEGs. (graphical display for different group and gene set 
definition was shown in Figure 4).

Hierarchical clustering and comparison analysis 
of selected deGs in different groups

The expression of selected DEGs between different 
versus groups were used to generate hierarchical clustering 
images by pheatmap package in R [29], respectively 
(https://cran.r-project.org/web/packages/pheatmap/). 
Then, we compared selected DEGs in group a, b, c and 
d groups, and got overlapped genes in each group by 
drawing VENN diagram, using VennDiagram package 
(https://cran.r-project.org/web/packages/VennDiagram/) 
in R [30]. Here, we defined two gene sets which would 
be further analyzed: Gene set 1: contained overlapped 
DEGs between a and b plus overlapped DEGs between 
c and d, defined as DEGs connected with time points. 
Gene set 2: contained overlapped DEGs between a and c 

plus overlapped DEGs between b and d, defined as DEGs 
connected with concentrations of AMH (graphical display 
for different group and gene set definition was shown in 
Figure 4).

enrichment analysis for deGs in gene set 1 and 2

To explore the functions of DEGs in gene set 1 and 2,  
the DAVID (Database for Annotation, Visualization and 
Integrated Discovery, https://david.ncifcrf.gov/) database 
[31, 32] was used to perform GO (Go Ontology) [33] and 
KEGG (Kyoto Encyclopedia of Genes and Genomes) 
[34] pathway enrichment analyses for co-regulated 
DEGs. The p-value < 0.05 and gene count ≥2 were 
set as the cut-off criteria. Furthermore, the category of 
enriched GO, KEGG terms and the gene number were 
displayed as a histogram which was constructed by 
ggplot2 package in R [35] (https://cran.r-project.org/
web/packages/ggplot2/). 

co-expression network analysis for deGs in 
gene set 1 and 2

We used cor function in R language to calculate 
co-expression Pearson Correlation Coefficient (PCC) 

Figure 9: schematic illustration of the analysis strategy.
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[36] among DEGs in gene set 1 and set 2, respectively. 
We kept gene pairs whose PCC score were over than 0.8 
as co-expression gene pairs, and displayed co-expression 
network by utilizing Cytoscape3.2.0 [37] (http://www.
cytoscape.org/). 

mirnA-deGs-tF target regulatory network 
analysis

WebGestalt (WEB-based Gene SeT AnaLysis 
Toolket) (http://www.webgestalt.org/option.php) [38] 
database, which is a functional enrichment analysis 
web tool, to predict TFs and miRNAs which regulated 
the DEGs in co-expression networks of gene set 1 and 
2. P-value < 0.05 was set as the significance cut-off 
criteria. We then integrated results of TFs and miRNAs, 
constructed miRNA-DEGs-TF regulatory network. The 
regulatory network consisting of DEGs, miRNAs and 
TFs were then visualized by Cytoscape3.2.0 [37] (http://
www.cytoscape.org/). A schematic diagram of the overall 
procedure for analysis is presented in Figure 9.

conclusIons

In summary, we figured out DEGs influenced 
by AMH from two different aspects: treatment time 
and AMH concentration. They may help us in the 
understanding about the AMH action in the regulation 
of gene expressions in ovarian follicles. It was assumed 
that different treatment time may affect cell adhesion 
related gene expressions, and so affect follicular changes 
in cell shape or AMH transmembrane transport with 
receptors. Different concentrations of AMH may change 
ion transport capacities of genes. This analysis research 
demonstrates some potential mechanism which may 
inhibit the transition of primordial follicle to primary 
follicles. The DEGs results show previously unidentified 
pathways and signaling factors that could regulate the 
transition of primordial to primary follicles. Additional 
investigations are required to find the mechanism which 
these factors follow for the follicular regulation. The new 
finding may give some new insights that could lead to 
prolong the reproductive life of humans and can cure some 
infertility problems.
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