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ABSTRACT

Background: Natural killer (NK) cells are lymphocytes of the innate immune 
system that have potent cytotoxic activity against tumor cells. NK cell recognition 
and activity towards cancer cells are regulated by an integrated interplay between 
numerous inhibitory and activating receptors acting in concert to eliminate tumor cells 
expressing cognate ligands. Despite strong evidence supporting the role of NK cells in 
breast cancer (BC) control, BC still develops and progresses to form large tumors and 
metastases. A major mechanism of BC escape from NK immunity is the alteration of 
the expression of NK receptor ligands. The aim of this study was to determine whether 
NK receptor ligands’ mRNA expression might influence prognosis in BC patients and 
whether these effects differ by molecular subtypes and clinicopathological features.

Methods: We used the KM plotter platform to analyze the correlation between 
mRNA expression of 32 NK receptor ligands and relapse-free survival (RFS) and 
overall survival (OS) in 3951 and 1402 BC patients, respectively. The association 
with tumor subtypes and clinicopathological features was determined. BC samples 
were split into high and low expression groups according to the best cutoff value and 
the two patient cohorts were compared by Kaplan–Meier survival plots. The hazard 
ratios with 95% confidence intervals and log rank P values were calculated and FDR-
adjusted for multiple testing correction. The data was considered to be statistically 
significant when FDR-adjusted P value < 0.05.

Results: High mRNA expression of around 80% of ligands for NK activating and 
inhibitory receptors associated with better RFS, which correlated with longer OS for 
only about half of the NK-activating ligands but for most NK-inhibitory ligands. Also, 
five NK-activating ligands correlated with worse prognosis. These prognostic values 
were differentially associated with the BC clinical criteria. In addition, the favorable 
prognostic influence of NK-activating ligands’ upregulation, as a whole, was mainly 
significantly associated with HER2-positive and basal-like subtypes, lymph node 
positive phenotype, and high-grade tumors. 

Conclusions: NK receptor ligands appear to play an important role in defining 
BC patient prognosis. Identification of a group of patients with worse prognosis 
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expressing high levels of NK-activating ligands and low levels of NK-inhibitory ligands 
makes them ideal potential candidates for NK-based immunotherapy to eliminate 
residual tumor cells, prevent relapse and improve patient survival.

INTRODUCTION

Breast cancer (BC) treatment has experienced 
several changes in the past decades due to the discovery 
of specific prognostic and predictive biomarkers that 
allowed its classification and enabled the application of 
more individualized therapies to the different molecular 
subgroups [1–4]. Among these biomarkers, steroid 
hormone receptors such as estrogen receptor (ER) and 
progesterone receptor (PR) in concert with the oncogene 
ErbB-2/human epidermal growth factor receptor 2 (HER-
2) are critical determinants of the four main molecular 
subtypes of BC. Tumors of luminal A and luminal B 
subtypes are hormone receptor-positive (ER and/or 
PR-positive) and represent around 70% of all BCs [5]. 
Luminal A tumors are often low grade with slow tumor 
growth and have the best prognosis. Luminal B cancers 
generally grow slightly faster than luminal A cancers and 
have a slightly worse prognosis. Both luminal types are 
treated with endocrine therapy [5]. On the other hand, 
HER2-positive subtypes (around 15% of BCs) overexpress 
HER2, tend to grow faster than luminal cancers and can 
have a worse prognosis. But, they are often successfully 
treated with HER2-targeted therapies [6]. Triple negative 
(also called basal-like) tumors are ER negative, PR 
negative, and HER-2 negative. Although the basal-like 
subtype is only found in about 15% of BC diagnoses, 
it has been shown to be aggressive, unresponsive to 
treatment and, ultimately, indicative of a poor prognosis 
[7–11]. These classical molecular biomarkers (i.e. ER, PR, 
and HER2) are generally complemented with traditional 
clinicopathological factors (including tumor grade, lymph-
node metastases and p53 status) and conventionally used 
for patient prognosis and management [12]. Recently, 
with the introduction of high-throughput technologies, 
numerous multigene tests such as urokinase plasminogen 
activator (uPA)-PAI-1, Oncotype DX, MammaPrint, 
EndoPredict, Breast Cancer Index (BCI) and Prosigna 
(PAM50), may be performed in specific subgroups of 
BC patients to predict outcome and aid adjunct therapy 
decision-making [2]. Current prospective clinical trials 
are seeking evidence for their definitive role in BC. 
The advances in molecular biomarkers and the progress 
in treatment modalities have together contributed to 
improvements in overall survival of BC patients. However, 
in many cases tumors do not respond to the currently 
available treatments or relapse after initial response [13]. 
Therefore, new biomarkers are needed to quantify the 
residual risk of BC patients and to indicate the potential 
value of additional treatment strategies to eliminate these 
resistant tumors.

Recent major scientific advances have demonstrated 
the importance of the immune system in malignant 

diseases including BC. Both innate and adaptive immune 
cells actively prevent neoplastic development in a process 
called ‘cancer immunosurveillance’ [14–16]. However, 
due to their genetic instability, malignant cells can 
develop several mechanisms to evade immunosurveillance 
[17, 18]. Therefore, strategies designed to harness the 
immune system are the focus of several recent promising 
therapeutic approaches for cancer patients [19, 20]. 
Natural killer (NK) cells are lymphocytes of the innate 
immune system that play a critical role in host immune 
responses against tumor growth and metastasis [21–23]. 
Following the progress in NK cell biology field and in 
understanding NK function, these lymphocytes have 
recently become a powerful cancer immunotherapy tool 
that presents several advantages [24]. Furthermore, a 
significant piece of experimental and clinical evidence 
supports the role of NK cells in BC control [22, 25–33], 
suggesting that NK cell-based therapy may become a 
potent strategy for the eradication of residual BC cells, 
prevention of relapse and improvement of patient survival. 

NK cells recognize their target through a complex 
array of regulatory receptors that monitor cell surfaces of 
autologous or host cells for an aberrant expression of major 
histocompatibility complex (MHC) class I molecules and 
cell stress markers, which frequently occur in cancer cells 
[34, 35]. In fact, upon cellular transformation, MHC class 
I expression on the cell surface is often reduced or lost to 
evade recognition by antitumor T cells. When NK cells 
encounter transformed cells lacking MHC class I, their 
inhibitory receptors are not engaged, and the unsuppressed 
activating signals, in turn, can trigger cytokine secretion 
and targeted attack of the transformed cells [36, 37]. In 
parallel, cellular stress and DNA damage (occurring 
in malignant transformation) result in upregulation of 
“stress ligands” that can be recognized by activating NK 
receptors [38]. Thus, human tumor cells that have lost 
self-MHC class I expression or bear “altered-self ” stress-
inducible proteins are ideal targets for NK recognition 
and cytotoxicity [36, 39, 40]. However, during cancer 
progression, tumor cells deregulate the expression of these 
ligands by several mechanisms in order to escape from NK 
detection and elimination [41–48]. Thus, analysis of the 
expression of NK receptor ligands in BCs may allow the 
determination of new biomarkers to quantify the residual 
risk of patients and to indicate the potential value of 
additional NK-based treatment strategies.

The “Kaplan–Meier plotter” (KM plotter) is an 
online platform (http://kmplot.com/analysis/) that can 
be used to assess the effect of 54,675 genes on patient 
survival using 10,461 cancer samples (including breast, 
ovarian, lung and gastric cancers). This platform is 
established by using gene expression data and patient 
survival information downloaded from Gene Expression 
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Omnibus (GEO) (Affymetrix microarrays only), European 
Genome-phenome Archive (EGA), and The Cancer 
Genome Atlas (TCGA). The database is handled by a 
PostgreSQL server, which integrates gene expression and 
clinical data simultaneously. The KM plotter was validated 
and widely used in many studies to identify a number of 
genes, as prognostic markers or potential drug targets in 
BC [49–54], lung cancer [51, 55–57], ovarian cancer [58–
60] and gastric cancer [51, 61–63]. 

The aim of the present study was to determine the 
prognostic roles of mRNA expression of NK receptor 
ligands in BC patients and their association with different 
BC molecular subtypes and clinicopathological features. 
Therefore, we performed systematic literature screening 
to select and ascertain all NK-regulatory ligands for NK 
receptors identified to date. Then, we utilized to KM 
plotter to analyze their effect on BC patient relapse-free 
and overall survivals.

RESULTS

Prognostic values of the mRNA expression of NK 
receptor ligands in BC patients 

First, we systematically screened the literature to 
identify ligands for NK receptors that regulate NK activity 
and cytotoxicity towards the target cells that express these 
ligands. In total, we selected 39 NK-regulatory ligands for 
NK receptors [64–133] (Table 1). Among these, 27 ligands 
for 17 NK receptors that induce the cytotoxic activity of 
NK cells towards the target cells (NK-activating ligands), 
8 ligands for 8 NK receptors whose interaction inhibits the 
NK activity (NK-inhibitory ligands) and 4 ligands that can 
bind different NK receptors to either activate or inhibit NK 
activity (NK-activating and inhibitory ligands).

Next, we used the KM plotter platform to determine 
the influence of the mRNA expression level of 32 ligands 
from the identified genes (Table 1) on the survival of BC 
patients. The other 7 ligands (Table 1, Probe ID = N/A) 
could not be analyzed because they were not available 
on the KM plotter (viral genes, Fcγ fragment of IgG, 
heparan sulfate and three other genes that had no related 
probe set). The analysis results of the correlation between 
mRNA expression of the 21 NK-activating ligands for NK 
receptors and survival are presented in Figure 1A (Red) 
for RFS and Figure 1B (Red) for OS. Patients with high 
mRNA expression of the NK-activating ligands B7-1 
(HR = 0.77, 95% CI = 0.65–0.92, p = 0.0053), B7-2 (HR 
= 0.86, 95% CI = 0.77–0.96, p = 0.0081), CD27 (HR = 
0.66, 95% CI = 0.59–0.73, p = 0.00000000000033), CD48 
(HR = 0.72, 95% CI = 0.65–0.8, p = 0.0000000071), 
CD70 (HR = 0.84, 95% CI = 0.75–0.94, p = 0.0027), 
KMT2E (HR = 0.53, 95% CI = 0.45–0.61, p = 
0.0000000000000011), MICA (HR = 0.87, 95% CI = 
0.78–0.97, p = 0.013), MICB (HR = 0.7, 95% CI = 0.62–
0.78, p = 0.00000000032), NECL2 (HR = 0.86, 95% CI = 

0.76–0.96, p = 0.0089), SLAMF6 (HR = 0.56, 95% CI = 
0.47–0.66, p = 0.0000000000064), SLAMF7 (HR = 0.66, 
95% CI = 0.55–0.81, p = 0.000067), TNFSF9 (HR = 0.69, 
95% CI = 0.61–0.77, p = 0.00000000029), ULBP1 (HR 
= 0.71, 95% CI = 0.63–0.79, p = 0.0000000015), ULBP3 
(HR = 0.81, 95% CI = 0.68–0.96, p = 0.015), ULBP4 (HR 
= 0.83, 95% CI = 0.7–0.98, p = 0.032) and VIM (HR = 
0.86, 95% CI = 0.76–0.97, p = 0.012) had significantly 
longer RFS than patients with lower mRNA expression 
of these ligands (Figure 1A, Red). The longer RFS in the 
patients expressing high levels of the above-mentioned 16 
NK-activating ligands significantly was associated with 
longer OS for only 7 ligands; CD27, CD48, KMT2E, 
NECL2, SLAMF6, SLAMF7 and VIM (Figure 1B, Red). 
However, despite the longer RFS, MICA (HR = 1.27, 95% 
CI = 1.02–1.58, p = 0.048) and ULBP3 (HR = 1.66, 95% 
CI = 1.19–2.31, p = 0.0075) were associated with shorter 
OS, while B7-1, B7-2, CD70, MICB, TNFS9, ULBP1 and 
ULBP4 didn’t significantly correlate with OS (Figure 1B, 
Red).

On the other hand, patients with high mRNA 
expression of the NK-activating ligand ULBP2 had 
significantly worse OS (HR = 1.67, 95% CI = 1.21–2.31, 
p = 0.0054) and RFS (HR = 1.52, 95% CI = 1.3–1.79, 
p = 0.00000044). In addition, patients with high mRNA 
expression of the NK-activating ligands BAT3 (HR = 1.17, 
95% CI = 1.04–1.29, p = 0.01), AICL (HR = 1.18, 95% CI 
= 1.05–1.32, p = 0.0057) and CD58 (HR = 1.23, 95% CI = 
1.1–1.39, p = 0.00073) had shorter RFS but not OS. CD72 
didn’t show any significant effect on OS or RFS.

The correlation between mRNA expression of 7 
NK-inhibitory ligands for NK receptors and survival 
(RFS and OS) in BC patients was also analyzed (Figure 
1A and 1B, Blue). Except for COL3A1 (HR = 1.16, 
95% CI = 1.04–1.21, p = 0.01) that associated with 
shorter RFS, patients with high mRNA expression 
of CEACAM1 (HR = 0.79, 95% CI = 0.7–0.88, p = 
0.000046), CLEC2D (HR = 0.5, 95% CI = 0.42–0.58, 
p < 0.000000000000001), HLA-A (HR = 0.74, 95% CI = 
0.66–0.82, p = 0.00000012), HLA-B (HR = 0.69, 95% CI 
= 0.62–0.77, p = 0.0000000001), PDL1 (HR = 0.58, 95% 
CI = 0.5–0.68, p = 0.000000000045) and PDL2 (HR = 
0.78, 95% CI = 0.7–0.88, p = 0.000054) had significantly 
higher RFS than do patients with lower mRNA expression 
of these ligands (Figure 1A, Blue), which also associated 
with longer OS for CLEC2D, HLA-A, HLA-B and PDL1 
(Figure 1B, Blue).

The four ligands that can bind activating and 
inhibitory NK receptors; HLA-C, HLA-E, NECL5 and 
NECTIN2 all associate with better RFS and OS, except 
for NECL5 that only significantly associated with better 
RFS (Figure 1A and 1B, Green).

Taken together, these results indicate that the high 
mRNA expression of most (around 80%) ligands for 
NK activating and inhibitory receptors associate with 
better RFS in BC patients. However, while the longer 
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Table 1: Activating and Inhibitory ligands for NK receptors

Ligand Corresponding NK receptor(s) References Probe ID
NK-activating ligands
AICL NKp80 [76] 209732_at
B7-1, CD80 Unknown [68, 71, 77] 1554519_at
B7-2, CD86 Unknown [71, 77] 205685_at
B7-H6 NCR3, NKp30 [66] N/A
BAT3 NCR3, NKp30 [73] 210208_x_at
CD27 CD70 [64] 206150_at
CD48 2B4, CD244 [67, 69, 70] 204118_at
CD58 CD2 [132, 133] 205173_x_at
CD70 CD27 [74] 206508_at
CD72 CD100 [72] 215925_s_at
Fcγ fragment of IgG Fcγ receptor III, CD16 [75] N/A
Heparan sulfate 1. NCR1, NKp46

2. NCR2, NKp44
3. NCR3, NKp30

1. [65, 88]
2. [88]

3. [65, 88]

N/A

KMT2E, NKp44L NCR2, NKp44 [80] 226100_at
MICA NKG2D [79] 205904_at
MICB NKG2D [79, 83] 206247_at
NECL2 CRTAM [81] 209031_at
SLAMF6, NTB-A SLAMF6, NTB-A [85] 1552497_a_at
SLAMF7, CS1 SLAMF7, CS1 [91] 222838_at
TNFSF9, 4-1BBL, CD137L TNFRSF9, 4-1BB, CD137 [86, 89, 90, 93] 206907_at
ULBP1 NKG2D [83] 221323_at
ULBP2 NKG2D [83] 238542_at
ULBP3 NKG2D [83] 231748_at
ULBP4 NKG2D [78, 82] 1552777_a_at
ULBP5 NKG2D [78] N/A
ULBP6 NKG2D [84] N/A
VIM NCR1, NKp46 [87] 201426_s_at
Viral HA, HN 1. NCR1, NKp46

2. NCR2, NKp44
1. [92]
2. [94]

N/A

NK-activating and inhibitory ligands
HLA-C 1. CD160 (activating)

2. KIR2DS1, p50.1 (activating)
3. KIR2DS4, NKAT8 (activating)
4. KIR2DL1, p58.1 (inhibitory)
5. KIR2DL2, p58.2 (inhibitory)
6. KIR2DL3, p58 (inhibitory)

1. [104]
2. [95, 107]
3. [97, 103]

4.5.6. [100, 108, 109]

216526_x_at

HLA-E 1. NKG2A (inhibitory)
2. NKG2B (inhibitory)
3. NKG2C (activating)
4. NKG2E (activating)

1. [96, 98, 101, 102, 105, 106]
2. [96,98]

3. [96, 101, 102]
4. [102]

200904_at

NECL5, PVR 1. CD96 (activating)
2. CD226, DNAM1 (activating)

3. TIGIT (inhibitory)

1. [99, 115, 123]
2. [112]
3. [124]

214443_at
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RFS correlates with longer OS for most NK-inhibitory 
ligands, in only about half of the NK-activating ligands it 
significantly correlates with longer OS. On the other hand, 
six NK-activating ligands (AICL, BAT3, CD58, MICA, 
ULBP2 and ULBP3) correlated with worse prognosis 
(shorter RFS and/or OS) in BC patients (Figure 1C).

Association between the prognostic role of the 
mRNA expression of NK receptor ligands and 
the BC subtypes

In BC, the treatment selection and clinical outcome 
are mainly defined by molecular subtypes. Therefore, 
we next checked whether the prognostic influence of 
NK receptor ligands might be dependent on any specific 
BC subtype(s) (luminal A, luminal B, HER2-type and/or 
basal-like) (Table 2 and Figure 2). 

Among the NK-activating ligands that were 
associated with longer RFS in all BC patients (Figure 1), 
the prognostic values of only CD27, MICB, SLAMF6, 
TNFSF9, and ULBP1 were found to be independent of 
the BC subtype as their high expression was associated 
with longer RFS in all BC subtypes (Table 2). Other 
ligands were associated with longer RFS in all subtypes 

but one; luminal A subtype for B7-1, B7-2, CD48, CD72, 
and SLAMF7 or basal-like subtype for KMT2E (Table 2). 
However, the prognostic value of the other NK-activating 
ligands was subtype specific. Particularly, ULBP4 
associated with longer RFS specifically in luminal B and 
basal-like subtypes, CD70 associated with longer RFS 
specifically in luminal B and HER2-positive subtypes 
while the favorable prognostic significance of VIM was 
specifically dependent on luminal A and B subtypes 
(Table 2). On the other hand, AICL and ULBP2 were 
associated with shorter RFS specifically in luminal A/B 
and basal-like subtypes, respectively (Table 2). Contrarily, 
NECL2, MICA, and BAT3 had opposing prognostic 
significance depending on the BC subtype (Table 2). 

Among the NK-activating ligands that were 
associated with longer OS in all BC patients, the 
prognostic values of only CD48 and CD27 were found to 
be independent of the BC subtype as their expression was 
associated with longer OS in all BC subtypes (Table 2). 
Furthermore, SLAMF7 and VIM were associated with 
longer OS in HER2-positive/basal-like subtypes and 
luminal A/HER2-positive subtypes, respectively (Table 2). 
Contrarily, ULBP2 was associated with worse prognosis 
specifically in basal-like subtype (Table 2).

NECTIN2, CD112, PVRL2 1. CD226, DNAM1 (activating)
2. PVRIG, CD112R (inhibitory)

3. TIGIT (inhibitory)

1. [112]
2. [125]

3. [124, 125]

203149_at

NK-inhibitory ligands
CEACAM1 CEACAM1 [118, 119] 209498_at
CLEC2D, LLT1 CD161, NKRP1A [110, 122] 235522_at
COL3A1 LAIR1, CD305 [117, 120] 211161_s_at
hCMV PP65 NCR3, NKp30  [111] N/A
HLA-A 1. KIR3DL2, p140

2. LILRB1, ILT2
1. [114, 116, 121, 126]

2. [113]
215313_x_at

HLA-B 1. KIR3DL1, NKB1
2. LILRB1, ILT2

1. [128]
2. [113]

209140_x_at

PDL1 PD-1 [127, 130] 227458_at
PDL2 PD-1 [127, 129] 220049_s_at
Abbreviations: AICL, activation-induced C-type lectin; B7-1/2, B-lymphocyte activation antigen B7-1/2; B7-H6, B7 
homolog 6; BAT3, HLA-B-associated transcript 3; CD, cluster of differentiation; CEACAM1, carcinoembryonic antigen-
related cell adhesion molecule 1; CLEC2D, C-type lectin domain family 2 member D; COL3A1, collagen type 3 alpha 
1; CRTAM, class I-restricted T-cell-associated molecule; CS1, CD2 subset 1; DNAM1, DNAX accessory molecule-1; 
HA, haemagglutinin; hCMV PP65, human cytomegalovirus pp65; HLA-A/B/C/E, human leukocyte antigen-A/B/C/E; 
HN, haemagglutinin neuramidase; ILT2, Ig-like transcript 2; KIRxDLy, killer cell immunoglobulin like receptor “x” Ig 
domains and long cytoplasmic tail “y”; KLRG1, killer cell lectin like receptor G1; KMT2E, lysine methyltransferase 
2E; LAIR1, leukocyte associated immunoglobulin like receptor 1; LILRB1, leukocyte immunoglobulin like receptor 
B1; LLT1, Lectin-Like Transcript-1; MICA/B, MHC class I polypeptide-related sequence A/B; NCR1/2/3, natural 
cytotoxicity triggering receptor 1/2/3; NECL2/5, nectin-like protein 2/5; NECTIN2, nectin cell adhesion molecule 2; 
NKG2A/B/C/D/E, natural-killer group 2 member A/B/C/D/E; NKRP1A, NK receptor-P1A; NTB-A, NK-, T-, and B-cell 
antigen; N/A, not available; PD-1/2, programmed death receptor-1/2; PDL1, programmed death ligand 1; PVR, poliovirus 
receptor; PVRIG, PVR related immunoglobulin domain containing); PVRL2, poliovirus receptor related 2; SLAMF6/7, 
signaling lymphocytic activation molecule family member 6/7; TIGIT, T-cell immunoreceptor with Ig and ITIM domains; 
TNFSF9, tumor necrosis factor superfamily member 9; ULBP1-6, UL16 binding protein 1-6; VIM, vimentin.
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Figure 1: Prognostic values of the mRNA expression of NK receptor ligands in all breast cancer patients. The correlation 
of the individual expression of 32 NK receptor ligands’ mRNA to RFS (A) and OS (B) was analyzed, in 3951 and 1402 breast cancer 
patients, respectively, on the KM plotter database. For each ligand, the bar represents the HR (95% CI). The p value is indicated next to 
each bar when the data is statistically significant (p value < 0.05). The bar color (red, blue or green) represents the effect of the ligand on 
NK activity (activation, inhibition or both depending on the receptor type, respectively). The line at HR = 1 separates the ligands according 
to the prognostic influence of their high mRNA expression; better survival (HR < 1) and worse survival (HR > 1). (C) Kaplan–Meier 
survival plots of RFS (upper plots) and OS (lower plots) durations in BC patients with the expression levels of the NK-activating ligands 
that specifically correlated with poor prognosis. The “n” values represent the number of BC patients in each cohort.
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Table 2: Association between the prognostic role of mRNA expression of NK receptor ligands and BC subtypes
RFS OS

Ligand Luminal A Luminal B HER2-positive Basal-like Luminal A Luminal B HER2-positive Basal-like

N
K

-a
ct

iv
at

in
g 

lig
an

ds

AICL
HR (95%CI)
p-value

1.3 (1.09–1.56)
0.0098

1.31 (1.05–1.62)
0.017

0.73 (0.49–1.09)
0.14

1.25 (0.97–1.61)
0.092

0.71 (0.5–1.01)
0.11

0.73 (0.48–1.1)
0.17

0.34 (0.18–0.65)
0.0048

0.56 (0.34–0.94)
0.046

B7-1
HR (95%CI)
p-value

1.16 (0.9–1.48)
0.25

0.65 (0.48–0.89)
0.008

0.51 (0.32–0.82)
0.008

0.41 (0.29–0.57)
0.000000087

1.5 (0.9–2.49)
0.16

0.78 (0.35–1.73)
0.54

0.42 (0.19–0.95)
0.056

0.23 (0.12–0.45)
0.000012

B7-2
HR (95%CI)
p-value

1.16 (0.97–1.39)
0.11

0.72 (0.6–0.88)
0.0014

0.56 (0.38–0.82)
0.0052

0.46 (0.36–0.6)
0.0000000099

1.39 (0.93–2.09)
0.16

0.73 (0.5–1.05)
0.13

0.45 (0.24–0.87)
0.041

0.42 (0.25–0.69)
0.0011

BAT3
HR (95%CI)
p-value

1.27 (1.06–1.52)
0.018

1.38 (1.13–1.68)
0.0019

0.56 (0.38–0.83)
0.0058

0.87 (0.67–1.14)
0.32

1.79 (1.25–2.58)
0.014

1.36 (0.85–2.17)
0.20

0.43 (0.2–0.92)
0.053

0.55 (0.3–1.01)
0.070

CD27
HR (95%CI)
p-value

0.69 (0.58–0.82)
0.00015

0.55 (0.46–0.67)
0.000000051

0.39 (0.26–0.57)
0.000016

0.38 (0.3–0.5)
5.60E–13

0.58 (0.4–0.84)
0.017

0.53 (0.37–0.77)
0.014

0.25 (0.12–0.54)
0.0017

0.36 (0.22–0.58)
0.000076

CD48
HR (95%CI)
p-value

0.86 (0.72–1.02)
0.091

0.58 (0.47–0.71)
0.0000009

0.42 (0.28–0.62)
0.00012

0.43 (0.33–0.55)
3.91E–11

0.59 (0.41–0.86)
0.021

0.52 (0.35–0.78)
0.014

0.36 (0.18–0.69)
0.0074

0.27 (0.16–0.44)
0.00000023

CD58
HR (95%CI)
p-value

1.26 (1.04–1.52)
0.027

1.28 (1.05–1.56)
0.016

0.57 (0.39–0.85)
0.008

1.42 (1.08–1.85)
0.015

0.71 (0.48–1.03)
0.12

0.64 (0.42–0.99)
0.12

0.29 (0.14–0.6)
0.004

0.65 (0.39–1.08)
0.11

CD70
HR (95%CI)
p-value

0.85 (0.71–1.01)
0.089

0.69 (0.57–0.84)
0.00032

0.39 (0.24–0.65)
0.00071

0.76 (0.57–1)
0.062

1.27 (0.89–1.83)
0.24

0.78 (0.53–1.12)
0.20

2.28 (1–5.21)
0.068

0.7 (0.42–1.18)
0.19

CD72
HR (95%CI)
p-value

1.17 (0.96–1.43)
0.11

0.65 (0.51–0.83)
0.00089

0.49 (0.33–0.73)
0.00076

0.51 (0.37–0.72)
0.00015

1.56 (1.01–2.4)
0.1

0.65 (0.4–1.06)
0.13

0.47 (0.24–0.92)
0.053

0.4 (0.23–0.71)
0.0032

KMT2E
HR (95%CI)
p-value

0.48 (0.37– 
0.61)

0.000000036
0.46 (0.34–0.64)

0.0000044
0.56 (0.33–0.95)

0.04
0.74 (0.54–1.03)

0.086
0.32 (0.19–0.54)

0.00016
0.62 (0.31–1.21)

0.17
4.5 (1.06–19.14)

0.053
0.69 (0.34–1.43)

0.32

MICA
HR (95%CI)
p-value

0.77 (0.64–0.93)
0.012

1.23 (1.01–1.49)
0.043

0.75 (0.49–1.14)
0.18

1.28 (0.97–1.69)
0.086

1.27 (0.87–1.86)
0.24

1.64 (1.13–2.39)
0.064

1.68  (0.88–3.21)
0.14

1.85 (1.13–3.03)
0.025

MICB
HR (95%CI)
p-value

0.74 (0.62–0.89)
0.0021

0.69 (0.57–0.84)
0.00038

0.47 (0.31–0.7)
0.00064

0.51 (0.4–0.66)
0.00000045

0.76 (0.53–1.1)
0.20

0.7 (0.48–1.02)
0.13

0.57 (0.3–1.1)
0.12

0.38 (0.23–0.63)
0.00025

NECL2
HR (95%CI)
p-value

0.7 (0.59–0.83)
0.00016

1.28 (1.03–1.59)
0.029

1.34 (0.89–2.03)
0.17

1.36 (1.04–1.77)
0.033

0.47 (0.33–0.67)
0.00036

1.58 (1.01–2.49)
0.12

1.83 (0.96–3.52)
0.093

1.37 (0.82–2.29)
0.23

SLAMF6
HR (95%CI)
p-value

0.59 (0.45–0.77)
0.00022

0.3 (0.19–0.48)
0.00000075

0.42 (0.26–0.7)
0.0011

0.28 (0.2–0.39)
1.42E–14

0.65 (0.38–1.11)
0.16

0.32 (0.12–0.82)
0.076

0.59 (0.22–1.59)
0.29

0.38 (0.2–0.73)
0.0059

SLAMF7
HR (95%CI)
p-value

0.8 (0.61–1.05)
0.11

0.5 (0.33–0.74)
0.00075

0.41 (0.26–0.65)
0.00057

0.29 (0.21–0.4)
1.03E–13

0.76 (0.45–1.27)
0.33

0.41 (0.19–0.88)
0.077

0.14 (0.03–0.61)
0.0092

0.17 (0.08–0.34)
0.00000023

TNFSF9
HR (95%CI)
p-value

0.68 (0.56–0.81)
0.0001

0.69 (0.57–0.84)
0.00038

0.47 (0.31–0.71)
0.00075

0.58 (0.45–0.75)
0.000052

0.57 (0.39–0.83)
0.017

1.53 (0.99–2.35)
0.12

2.52 (1.05–6.03)
0.056

0.55 (0.33–0.91)
0.036

ULBP1
HR (95%CI)
p-value

0.68 (0.57–0.81)
0.000088

0.49 (0.38–0.63)
0.00000015

0.45 (0.29–0.7)
0.00076

0.72 (0.56–0.93)
0.016

0.63 (0.44–0.9)
0.035

1.52 (0.97–2.38)
0.13

2.08 (1.06–4.09)
0.056

1.48 (0.9–2.43)
0.13

ULBP2
HR (95%CI)
p-value

1.33 (0.98–1.8)
0.089

0.82 (0.61–1.12)
0.22

0.68 (0.42–1.12)
0.14

1.77 (1.27–2.46)
0.0011

1.78 (1.07–2.97)
0.064

0.53 (0.21–1.39)
0.20

1.5 (0.68–3.29)
0.31

3.23 (1.69–6.16)
0.00054

ULBP3
HR (95%CI)
p-value

0.78 (0.61–1)
0.075

1.26 (0.93–1.72)
0.14

0.68 (0.42–1.08)
0.12

0.77 (0.56–1.07)
0.12

1.34 (0.77–2.32)
0.33

3.16 (1.53–6.52)
0.014

1.7 (0.76–3.8)
0.23

1.72 (0.91–3.26)
0.11

ULBP4
HR (95%CI)
p-value

1.15 (0.88–1.5)
0.3

0.66 (0.48–0.93)
0.017

0.73 (0.46–1.15)
0.18

0.61 (0.43–0.86)
0.0072

0.63 (0.38–1.05)
0.13

0.53 (0.25–1.12)
0.13

2.86 (1.29–6.31)
0.024

0.69 (0.36–1.31)
0.25

VIM
HR (95%CI)
p-value

0.79 (0.67–0.94)
0.015

0.8 (0.65–0.98)
0.032

0.7 (0.47–1.03)
0.087

1.25 (0.97–1.61)
0.089

0.58 (0.4–0.84)
0.017

1.22 (0.81–1.83)
0.36

0.36 (0.19–0.69)
0.0074

0.59 (0.36–0.98)
0.058
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s HLA-C
HR (95%CI)
p-value

0.7 (0.59–0.84)
0.00032

0.6 (0.49–0.72)
0.00000083

0.49 (0.33–0.73)
0.00075

0.41 (0.31–0.52)
3.14E–12

0.7 (0.49–0.99)
0.1

0.73 (0.5–1.07)
0.15

0.53 (0.28–1.02)
0.08

0.26 (0.16–0.43)
0.00000023

HLA-E
HR (95%CI)
p-value

0.86 (0.72–1.03)
0.11

0.7 (0.56–0.89)
0.0045

0.54 (0.37–0.79)
0.0032

0.57 (0.44–0.73)
0.000029

0.79 (0.55–1.13)
0.24

0.64 (0.44–0.92)
0.077

0.24 (0.12–0.46)
0.000089

0.48 (0.29–0.78)
0.0059

NECL5
HR (95%CI)
p-value

0.58 (0.47–0.71)
0.0000013

0.74 (0.6–0.9)
0.0043

0.45 (0.29–0.69)
0.00071

0.7 (0.54–0.9)
0.0086

0.85 (0.6–1.21)
0.38

0.57 (0.34–0.97)
0.11

1.71 (0.86–3.41)
0.15

0.61 (0.35–1.09)
0.11

NECTIN2
HR (95%CI)
p-value

0.71 (0.6–0.84)
0.00032

0.6 (0.49–0.72)
0.00000075

0.6 (0.41–0.89)
0.013

0.77 (0.58–1.02)
0.086

1.32 (0.92–1.92)
0.18

0.72 (0.5–1.04)
0.13

0.65 (0.33–1.26)
0.23

1.48 (0.9–2.44)
0.13
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Taking into account all 21 NK-activating ligands as 
a whole (Figure 2), we observed that 43%, 66.5%, 66.5% 
and 52.4% of these ligands correlated with longer RFS in 
BC patients with tumors of luminal A, luminal B, HER2-
positive and basal-like subtypes, respectively (Figure 
2A, left graph). When analyzing the percentage of NK-
activating ligands whose high expression was associated 
with longer OS, it dropped to 33.3%, 9.6%, 33.3% and 
47.7%, respectively (Figure 3A, right graph). The degree 
of the loss of the favorable prognostic influence of NK-
activating ligands, on OS relative to RFS, varied depending 
on the BC subtype: slight drop for basal-like subtype 
(9%), moderate drop for luminal A and HER2-positive 
subtypes (22.5% and 50% respectively) and dramatic drop 
for luminal B subtype (85.5% less NK-activating ligands 
associated with longer OS than with longer RFS) (Figure 
2A). Interestingly, when comparing the effect of high 
mRNA expression of the NK-activating ligands on OS, 
the HR values appeared to be lower in the basal-like and 
HER2-positive subtypes in comparison to those of luminal 
A and B subtypes. In fact, the median HR values were 
0.55, 0.57, 0.74, and 0.73 for basal-like, HER2-positive, 
luminal A and luminal B, respectively (Figure 2B). In other 
word, patients with HER2-positive or basal-like tumors 
expressing high mRNA levels of NK-activating ligands 
were 42–45% less likely to die than patients with low 
expression levels of these ligands, whereas patients with 
luminal A/B tumors were 26–27% less likely to die. Thus, 
high mRNA expression of NK-activating ligands, as a 
whole, is associated with 16–18% more chance of survival 
in patients with HER2-positive or basal-like BC than in 
patients with luminal A or luminal B BC.

On the other hand, except for COL3A1 that 
correlated with worse RFS in all BC subtypes, all the 
ligands that bind NK-inhibitory receptors were associated 
with better RFS mainly in a subtype-independent manner 
(Table 2). However, the association between these ligands 
and OS is more variable and subtype-dependent (Table 2).

Taken together, these results indicate that NK 
receptor ligands, whether activating or inhibitory, are 
mainly associated with favorable RFS. When taken 

individually, the prognostic value of some NK receptor 
ligands is independent of BC subtypes while for 
others it is more subtype-specific. Interestingly, the 
favorable prognostic influence of NK-activating ligands’ 
upregulation, as a whole, is higher in HER2-positive and 
basal-like BC subtypes.

Association between the prognostic role of the 
mRNA expression of NK receptor ligands and 
the lymph node status of BC patients

The most significant prognostic indicator for 
patients with early-stage BC is the presence (lymph node 
positive) or absence (lymph node negative) of axillary 
lymph node involvement [134]. Therefore, we next 
checked whether the prognostic influence of NK receptor 
ligands might be dependent on the lymph node status in 
BC patients (Table 3 and Figure 3).

Among all 21 NK-activating ligands, only CD27 
was associated with longer RFS in both lymph node 
negative and positive BC patients (Table 3) while three 
ligands (AICL, MICB and SLAMF6) were associated 
with longer RFS specifically in lymph node positive BC 
patients but not in lymph node negative patients (Table 3). 
However, none of the NK-activating ligands specifically 
associated with better RFS in only lymph node negative 
BC patients (Table 3). On the other hand, three ligands: 
BAT3 (only in lymph node negative BCs), CD70 (only 
in lymph node positive BCs) and ULBP2 (in both lymph 
node negative and positive BCs) correlated with shorter 
RFS (Table 3). The prognostic significance observed for 
RFS correlated with OS for AICL, CD27, CD70, and 
MICB ligands but not for SLAMF6, ULBP2, and BAT3 
ligands (Table 3).

Regarding the NK-inhibitory ligands, HLA-B 
and PDL1 on the one hand and CLEC2D, COL3A1 and 
HLA-A on the other hand were associated with longer 
RFS specifically in lymph node negative and lymph node 
positive BCs, respectively (Table 3). Among these, the 
association with RFS of only HLA-B correlated with OS 
(Table 3).
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CEACAM1
HR (95%CI)

p-value
0.78 (0.65-0.93)

0.012
0.7 (0.58-0.86)

0.00085
0.79 (0.51-1.2)

0.26
0.73 (0.57-0.94)

0.022
1.52 (1.06-2.16)

0.061
0.69 (0.47-1.01)

0.12
1.5 (0.75-2.98)

0.27
0.6 (0.36-0.97)

0.058

CLEC2D
HR (95%CI)

p-value
0.46 (0.35- 0.58)
0.0000000083

0.47 (0.34-0.64)
0.0000042

0.62 (0.39-1.01)
0.069

0.33 (0.23-0.46)
1.76E-11

0.6 (0.35-1.01)
0.10

0.61  (0.31-1.21)
0.17

0.62 (0.28-1.4)
0.27

0.48 (0.25-0.93)
0.046

COL3A1
HR (95%CI)

p-value
1.24 (1.04-1.48) 

0.022
1.65 (1.29-2.12) 

0.00015
1.82 (1.17-2.82)

0.01
1.59 (1.23-2.05) 

0.00069
0.61 (0.42-0.89)

0.031
1.74 (1.05-2.86)

0.099
1.42 (0.74-2.74)

0.29
1.71 (1.02-2.86)

0.058

HLA-A
HR (95%CI)

p-value
0.84 (0.69-1.02)

0.091
0.62 (0.51-0.75)

0.000004
0.45 (0.3-0.68)

0.00058
0.41 (0.32-0.54)

3.52E-11
1.2 (0.81-1.78)

0.38
0.64 (0.44-0.93)

0.08
0.38 (0.16-0.92)

0.053
0.29 (0.18-0.48)

0.0000014

HLA-B
HR (95%CI)

p-value
0.8 (0.68-0.95)

0.022
0.61 (0.5-0.74)

0.0000016
0.45 (0.31-0.67)

0.00038
0.41 (0.32-0.53)

2.06E-11
1.18 (0.8-1.73)

0.41
0.73 (0.5-1.06)

0.14
0.52 (0.27-0.99)

0.068
0.27 (0.16-0.44)

0.00000023

PDL1
HR (95%CI)

p-value
0.57 (0.44-0.74)

0.000089
0.45 (0.32-0.63)

0.0000066
0.41 (0.26-0.65)

0.00057
0.27 (0.19-0.37)

< 3.2E-15
0.5 (0.3-0.85)

0.031
0.55 (0.28-1.08)

0.13
0.37 (0.17-0.83)

0.041
0.23 (0.12-0.43)

0.000003

PDL2
HR (95%CI)

p-value
0.8 (0.67-0.95)

0.022
0.63 (0.52-0.77)

0.000014
0.57 (0.38-0.86)

0.01
0.57 (0.42-0.78)

0.00069
0.8 (0.56-1.14)

0.24
0.76 (0.53-1.1)

0.17
0.38 (0.2-0.72)

0.0092
0.55 (0.31-0.98)

0.058
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Regarding the ligands that can bind both NK-
activating and inhibitory receptors, they all significantly 
associated with longer RFS in lymph node negative BCs 
but this was also true in lymph node positive BCs for only 
NECTIN2 (Table 3). The association between the mRNA 
expression of these ligands and OS was more variable 
depending on the lymph node status (Table 3).

Overall, although the median HR values for all 
NK-activating ligands were similar between lymph node 
positive and lymph node negative BCs for both RFS 
and OS (Figure 3B), more NK activating ligands were 
associated with better prognosis in lymph node positive 
BC patients (4–8/21, 19–38%) than in lymph node 
negative BC patients (1–6/21, 4.7–28.1%), for RFS-OS, 

Figure 2: Prognostic values of the mRNA expression of NK-activating ligands depending on the BC molecular subtype. 
(A) Percentages of the NK-activating ligands whose high mRNA expression significantly associated (Favorable and Worse) or not (N.S.) 
with RFS (Left graph) or OS (Right graph) in the different BC subtypes. “Favorable“ indicates the association of high mRNA expression 
with longer RFS/OS, representing good prognosis. “Worse” indicates the association of the high mRNA expression with shorter RFS/
OS, representing bad prognosis. “N.S.” indicates no significant association with prognosis. (B) Individual value plots visualizing the 
distribution of the hazard ratio (HR) values of the NK-activating ligands in the different BC subtypes. The bars represent the median, lower 
and higher HR values for all ligands in each subtype.
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Table 3: Association between the prognostic role of mRNA expression of NK receptor ligands and lymph-node status
RFS OS

Ligand Lymph node negative Lymph node positive Lymph node negative Lymph node 
positive
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AICL
HR (95%CI)

p-value
0.89 (0.73–1.08)

0.24
0.74 (0.60–0.91)

0.028
1.52 (1.05–2.20)

0.069
0.44 (0.30–0.66)

0.0011

B7-1
HR (95%CI)

p-value
1.36 (0.89–2.07)

0.18
0.71 (0.52–0.96)

0.064
0.40 (0.15–1.04)

0.12
0.48 (0.28–0.84)

0.021

B7-2
HR (95%CI)

p-value
1.16 (0.96–1.40)

0.18
1.19 (0.97–1.44)

0.12
0.78 (0.54–1.13)

0.26
0.83 (0.55–1.24)

0.39

BAT3
HR (95%CI)

p-value
1.44 (1.21–1.70)

0.00099
0.81 (0.67–1.00)

0.081
1.32 (0.87–2.02)

0.26
1.50 (1.02–2.21)

0.073

CD27
HR (95%CI)

p-value
0.73 (0.62–0.87)

0.0018
0.7 (0.57–0.85)

0.0024
0.62 (0.42–0.9)

0.045
0.46 (0.31–0.68)

0.0011

CD48
HR (95%CI)

p-value
0.87 (0.74–1.03)

0.18
0.79 (0.65–0.96)

0.058
0.71 (0.49–1.04)

0.16
0.47 (0.32–0.70)

0.0011

CD58
HR (95%CI)

p-value
0.79 (0.64-0.96)

0.057
1.2 (1-1.44)

0.081
0.58 (0.39-0.86)

0.044
1.36 (0.9-2.07)

0.18

CD70
HR (95%CI)

p-value
1.16 (0.96–1.40)

0.18
1.30 (1.07–1.59)

0.032
1.25 (0.86–1.81)

0.27
1.66 (1.10–2.49)

0.034

CD72
HR (95%CI)

p-value
0.86 (0.71–1.04)

0.18
1.09 (0.87–1.37)

0.47
0.82 (0.57–1.19)

0.30
0.52 (0.33–0.81)

0.012

KMT2E
HR (95%CI)

p-value
0.7 (0.44–1.1)

0.18
1.15 (0.89–1.48)

0.30
0.19 (0.06–0.59)

0.043
1.28 (0.76–2.16)

0.39

MICA
HR (95%CI)

p-value
1.12 (0.93–1.34)

0.24
0.83 (0.67–1.03)

0.12
1.35 (0.91–2.02)

0.24
1.19 (0.81–1.76)

0.39

MICB
HR (95%CI)

p-value
0.88 (0.74–1.06)

0.22
0.66 (0.54–0.81)

0.00065
0.77 (0.50–1.20)

0.27
0.49 (0.33–0.72)

0.0018

NECL2
HR (95%CI)

p-value
0.85 (0.72–1.01)

0.13
0.81 (0.66–1.00)

0.081
0.57 (0.40–0.83)

0.043
0.71 (0.46–1.10)

0.16

SLAMF6
HR (95%CI)

p-value
0.64 (0.43–0.94)

0.057
0.70 (0.54–0.90)

0.028
1.72 (0.68–4.37)

0.27
0.80 (0.46–1.39)

0.44

SLAMF7
HR (95%CI)

p-value
0.58 (0.35–0.94)

0.057
0.70 (0.51–0.96)

0.066
0.72 (0.28–1.84)

0.49
0.33 (0.17–0.65)

0.0045

TNFSF9
HR (95%CI)

p-value
0.85 (0.72–1.01)

0.12
1.09 (0.90–1.33)

0.39
0.57 (0.39–0.84)

0.043
0.76 (0.50–1.15)

0.22

ULBP1
HR (95%CI)

p-value
0.85 (0.71–1.03)

0.18
1.22 (0.97–1.55)

0.12
0.62 (0.42–0.91)

0.046
1.34 (0.91–1.98)

0.17

ULBP2
HR (95%CI)

p-value
2.14 (1.45–3.17)

0.001
1.81 (1.40–2.35)

0.00015
2.75 (1.10–6.89)

0.069
1.78 (1.05–3.03)

0.062

ULBP3
HR (95%CI)

p-value
1.38 (0.89–2.13)

0.18
1.25 (0.95–1.63)

0.12
1.99 (0.66–6.00)

0.27
2.55 (1.49–4.34)

0.0023

ULBP4
HR (95%CI)

p-value
0.72 (0.47–1.10)

0.18
1.28 (0.96–1.72)

0.12
0.44 (0.16–1.23)

0.20
1.62 (0.90–2.93)

0.15

VIM
HR (95%CI)

p-value
0.9 (0.76–1.06)

0.22
0.83 (0.67–1.03)

0.12
1.3 (0.89–1.88)

0.26
0.53 (0.35–0.79)

0.0064
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respectively (Figure 3A). However, no tendency could 
be observed for the ligands that can bind NK-inhibitory 
receptors.

Association between the prognostic role of the 
mRNA expression of NK receptor ligands and 
the BC pathological grade

In addition to the molecular subtype and lymph node 
status, the tumor pathological grade is another factor that 
affects treatment choice and cancer patient prognosis. In 
BC, grades I, II and III are ascending indicators of how 
quickly a tumor is likely to grow and spread by describing 
the abnormality of the tumor tissue based on the tubular 
differentiation, nuclear features and mitotic activity of 
tumor cells. Therefore, we also checked whether the 
prognostic influence of NK receptor ligands might be 
affected by the breast tumor grade  (Table 4 and Figure 4).

The NK-activating ligands B7-1, B7-2, CD48, 
CD58, CD72, MICB, SLAMF6, SLAMF7 and TNFSF9 
were associated with longer RFS specifically in grade III 
tumors while AICL and CD27 were associated with longer 
RFS in grade II and grade III tumors. None of the NK-
activating ligands was of favorable prognostic value in 
grade I tumors. The longer RFS that was associated with 
high mRNA expression of NK-activating ligands strongly 
correlated with longer OS for AICL (grade III only), B7-1, 

B7-2, CD27 (grade III only), CD48, CD72, MICB, 
SLAMF7 and TNFSF9 (Table 4). On the other hand, high 
mRNA expression of MICA associated with shorter RFS 
and OS specifically in grade III tumors, whereas ULBP2 
was associated with shorter OS specifically in grade III 
tumors (Table 4).

Overall, 11–10/21 (52.5–47.7%) NK-activating 
ligands were associate with favorable RFS-OS in grade 
III BCs, 2–0/21 (9.5–0%) in grade II and 0–0/20 (0–0%) 
in grade I (Figure 4A). 

Among the NK-inhibitory ligands, HLA-B was 
significantly associated with shorter RFS in grade I tumors 
but with longer RFS in grade III tumors. On the contrary, 
COL3A1 was significantly associated with shorter RFS 
and OS in grade III tumors but with longer RFS and OS 
in grade II tumors. On the other hand, HLA-A, PDL1, and 
PDL2 associated with longer RFS and OS specifically in 
grade III tumors (Table 4).

The NK-activating and inhibitory ligands were 
significantly associated with longer RFS in grade II and/
or grade III tumors (Table 4).

Taken together, as per NK-activating ligands, the 
favorable prognostic values of most NK-inhibitory and 
NK-activating and inhibitory ligands were associated 
with high grade BCs; 0–0%, 36.4–9% and 72.7–54.5% of 
these ligands associated with longer RFS-OS specifically 
in grade I, II and III BCs, respectively (Figure 4B).
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s HLA-C
HR (95%CI)

p-value
0.77 (0.64–0.92)

0.022
0.82 (0.66 -1.02)

0.10
0.60 (0.41–0.87)

0.044
0.54 (0.37–0.81)

0.0088

HLA-E
HR (95%CI)

p-value
0.72 (0.61–0.86)

0.0012
0.84 (0.68–1.04)

0.12
0.74 (0.51–1.07)

0.20
0.58 (0.39–0.86)

0.017

NECL5
HR (95%CI)

p-value
0.78 (0.65–0.94)

0.032
1.26 (0.99–1.59)

0.092
1.27 (0.85–1.88)

0.27
0.62 (0.38–0.99)

0.074

NECTIN2
HR (95%CI)

p-value
0.71 (0.60–0.85)

0.001
0.65 (0.53–0.79)

0.00019
0.57 (0.37–0.88)

0.045
0.70 (0.45–1.07)

0.15
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CEACAM1
HR (95%CI)

p-value
0.82 (0.69–0.97)

0.057
0.83 (0.68–1.01)

0.10
1.34 (0.89–2.02)

0.26
0.62 (0.41–0.95)

0.062

CLEC2D
HR (95%CI)

p-value
0.85 (0.57–1.28)

0.44
0.71 (0.55–0.92)

0.032
0.60 (0.23–1.59)

0.30
1.21 (0.69–2.15)

0.51

COL3A1
HR (95%CI)

p-value
0.9 (0.76–1.07)

0.24
0.78 (0.64–0.95)

0.044
0.79 (0.54–1.17)

0.27
0.65 (0.44–0.96)

0.062

HLA-A
HR (95%CI)

p-value
0.81 (0.68–0.97)

0.057
0.75 (0.61–0.93)

0.032
0.70 (0.47–1.03)

0.16
0.71 (0.47–1.08)

0.15

HLA-B
HR (95%CI)

p-value
0.79 (0.65–0.94)

0.034
0.79 (0.63–0.98)

0.068
0.61 (0.41–0.90)

0.046
0.66 (0.44–0.99)

0.074

PDL1
HR (95%CI)

p-value
0.51 (0.34–0.77)

0.0052
0.75 (0.58–0.99)

0.081
0.55 (0.22–1.36)

0.26
0.45 (0.26–0.79)

0.013

PDL2
HR (95%CI)

p-value
0.87 (0.73–1.03)

0.18
0.83 (0.65–1.05)

0.13
1.62 (1.10–2.39)

0.048
0.72 (0.49–1.06)

0.15
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Association between the prognostic role of the 
mRNA expression of NK receptor ligands and 
the p53 status in BC patients

In BC, mutations in the tumor suppressor gene p53 
are present in 18–25% of primary BCs and are associated 

with more aggressive disease and worse prognosis 
[135, 136]. In order to test whether the prognostic value 
of NK receptor ligands might be affected by the p53 
status, the association between mRNA expression of these 
ligands and survival were analyzed in patients with p53 
wild-type and p53 mutated BCs (Table 5).

Figure 3: Prognostic values of the mRNA expression of NK-activating ligands depending on the lymph node status. 
(A) Percentages of the NK-activating ligands whose high mRNA expression significantly associated (Favorable and Worse) or not (N.S.) 
with RFS (Left graph) or OS (Right graph) in the different lymph node (LN) statuses. “Favorable“ indicates the association of high mRNA 
expression with longer RFS/OS, representing good prognosis. “Worse” indicates the association of the high mRNA expression with shorter 
RFS/OS, representing bad prognosis. “N.S.” indicates no significant association with prognosis. (B) Individual value plots visualizing the 
distribution of the hazard ratio (HR) values of the NK-activating ligands in LN negative and LN positive BC patients. The bars represent 
the median, lower and higher HR values for all ligands in each subtype.



Oncotarget27183www.oncotarget.com

Table 4: Association between the prognostic role of mRNA expression of NK receptor ligands and tumor grade 

Ligand
RFS OS

I II III I II III
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AICL
HR (95%CI)
p-value

0.69 (0.39–1.22)
0.29

0.71 (0.56–0.90)
0.039

0.77 (0.62–0.96)
0.0303

1.73 (0.66–4.56)
0.33

0.49 (0.27–0.87)
0.076

0.64 (0.46–0.89)
0.016

B7-1
HR (95%CI)
p-value

1.72 (0.60–4.97)
0.34

0.70 (0.42–1.17)
0.209

0.53 (0.39–0.72)
0.00018

0.14 (0.01–1.64)
0.17

0.47 (0.15–1.48)
0.22

0.33 (0.18–0.58)
0.00022

B7-2
HR (95%CI)
p-value

0.62 (0.37–1.05)
0.24

0.83 (0.66–1.06)
0.209

0.74 (0.57–0.95)
0.032

0.76 (0.31–1.90)
0.56

0.72 (0.47–1.10)
0.19

0.68 (0.48–0.95)
0.040

BAT3
HR (95%CI)
p-value

1.38 (0.80–2.37)
0.33

1.40 (1.08–1.82)
0.054

1.23 (0.95–1.58)
0.12

2.48 (0.72–8.55)
0.22

1.62 (1.04–2.52)
0.099

1.38 (0.94–2.04)
0.13

CD27
HR (95%CI)
p-value

0.63 (0.37–1.06)
0.24

0.72 (0.56–0.91)
0.039

0.58 (0.46–0.73)
0.000016

0.31 (0.11–0.88)
0.15

0.69 (0.45–1.05)
0.14

0.44 (0.32–0.61)
0.0000061

CD48
HR (95%CI)
p-value

0.71 (0.42–1.18)
0.29

0.74 (0.58–0.94)
0.056

0.60 (0.46–0.77)
0.00022

0.45 (0.18–1.11)
0.17

0.74 (0.48–1.14)
0.22

0.44 (0.31–0.61)
0.0000061

CD58
HR (95%CI)
p-value

0.71 (0.42-1.19)
0.29

0.75 (0.56-0.99)
0.102

0.74 (0.59-0.92)
0.014

2.29 (0.92-5.7)
0.17

0.59 (0.38-0.92)
0.076

0.74 (0.54-1.03)
0.11

CD70
HR (95%CI)
p-value

0.76 (0.44–1.31)
0.34

0.81 (0.60–1.09)
0.209

0.78 (0.60–1.02)
0.088

0.40 (0.11–1.37)
0.22

1.81 (1.17–2.78)
0.076

0.78 (0.55–1.12)
0.21

CD72
HR (95%CI)
p-value

1.71 (1.01–2.90)
0.22

0.88 (0.69–1.11)
0.28

0.70 (0.53–0.91)
0.018

2.21 (0.90–5.43)
0.17

0.74 (0.48–1.14)
0.22

0.52 (0.35–0.77)
0.0028

KMT2E
HR (95%CI)
p-value

4.18 (0.55–31.97)
0.27

0.65 (0.38–1.09)
0.18

1.49 (1.09–2.04)
0.0207

0 (0–inf)
0.17

0.13 (0.02–0.98)
0.076

1.42 (0.78–2.58)
0.27

MICA
HR (95%CI)
p-value

1.30 (0.76–2.23)
0.35

1.16 (0.92–1.48)
0.23

1.57 (1.26–1.97)
0.00022

2.09 (0.80–5.43)
0.22

0.67 (0.43–1.05)
0.14

1.97 (1.41–2.75)
0.00022

MICB
HR (95%CI)
p-value

0.71 (0.41–1.20)
0.29

0.76 (0.58–0.99)
0.102

0.73 (0.59–0.91)
0.0105

0.57 (0.23–1.43)
0.32

0.75 (0.49–1.15)
0.22

0.64 (0.46–0.89)
0.017

NECL2
HR (95%CI)
p-value

0.47 (0.28–0.80)
0.065

0.75 (0.59–0.96)
0.074

1.21 (0.97–1.51)
0.107

0.25 (0.07–0.86)
0.15

0.60 (0.39–0.93)
0.078

1.26 (0.90–1.75)
0.209

SLAMF6
HR (95%CI)
p-value

0.42 (0.14–1.20)
0.24

0.67 (0.40–1.12)
0.209

0.52 (0.38–0.71)
0.00012

0 (0–inf)
0.17

5.84 (0.75–45.29)
0.11

0.76 (0.45–1.28)
0.309

SLAMF7
HR (95%CI)
p-value

1.84 (0.58–5.86)
0.34

0.68 (0.41–1.13)
0.209

0.51 (0.37–0.70)
0.00012

0.21 (0.02–2.29)
0.22

0.47 (0.15–1.50)
0.22

0.31 (0.18–0.55)
0.00012

TNFSF9
HR (95%CI)
p-value

0.73 (0.43–1.22)
0.32

0.83 (0.64–1.07)
0.209

0.75 (0.60–0.94)
0.0207

0.57 (0.21–1.52)
0.33

1.56 (0.99–2.46)
0.11

0.67 (0.47–0.95)
0.0404

ULBP1
HR (95%CI)
p-value

0.65 (0.34–1.23)
0.29

0.84 (0.66–1.07)
0.209

0.84 (0.67–1.05)
0.12

0.47 (0.17–1.34)
0.22

1.36 (0.88–2.11)
0.22

0.80 (0.54–1.19)
0.28

ULBP2
HR (95%CI)
p-value

0.49 (0.17–1.47)
0.29

1.80 (1.06–3.06)
0.081

1.46 (1.04–2.05)
0.037

7.04 (0.61–81.25)
0.17

0.24 (0.05–1.11)
0.11

2.05 (1.20–3.48)
0.016

ULBP3
HR (95%CI)
p-value

0.69 (0.23–2.07)
0.51

1.22 (0.73–2.04)
0.44

1.28 (0.93–1.75)
0.13

0.24 (0.01–3.78)
0.33

3.65 (1.17–11.39)
0.076

2.07 (1.05–4.08)
0.052

ULBP4
HR (95%CI)
p-value

0.39 (0.12–1.23)
0.24

1.43 (0.86–2.37)
0.209

0.77 (0.55–1.09)
0.14

0 (0–inf)
0.15

0.54 (0.16–1.81)
0.33

1.43 (0.81–2.52)
0.25

VIM
HR (95%CI)
p-value

0.76 (0.44–1.31)
0.34

1.2 (0.91–1.58)
0.23

0.83 (0.65–1.05)
0.12

2.18 (0.89–5.35)
0.17

0.66 (0.43–1.03)
0.12

0.64 (0.46–0.91)
0.022
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HLA-C
HR (95%CI)
p-value

1.83 (1.08–3.10)
0.18

0.76 (0.59–0.97)
0.081

0.54 (0.44–0.67)
0.000000768

0.62 (0.25–1.59)
0.37

1.25 (0.78–2.01)
0.36

0.42 (0.30–0.58)
0.0000025

HLA-E
HR (95%CI)
p-value

0.65 (0.39–1.09)
0.24

0.72 (0.56–0.92)
0.042

0.67 (0.54–0.84)
0.00088

0.54 (0.22–1.35)
0.26

0.65 (0.42–1.00)
0.11

0.50 (0.36–0.69)
0.00012

NECL5
HR (95%CI)
p-value

1.33 (0.77–2.30)
0.34

0.68 (0.52–0.88)
0.039

0.79 (0.63–0.98)
0.041

0.67 (0.25–1.77)
0.43

1.8 (1.1–2.95)
0.076

0.72 (0.5–1.05)
0.12

NECTIN2
HR (95%CI)
p-value

0.62 (0.32–1.19)
0.29

0.64 (0.50–0.81)
0.008

0.82 (0.65–1.03)
0.11

1.64 (0.52–5.12)
0.43

0.70 (0.46–1.09)
0.18

1.28 (0.92–1.79)
0.17
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The prognostic values of individual NK-activating 
ligands differentially associated with the p53 status 
(Table 5). For example, AICL, CD48, and MICB were 
associated with longer RFS in both p53 wild-type and 
p53 mutated BCs (Table 5) which correlated with longer 
OS for only CD48 (p53 mutated). However, B7-1, B7-2, 
CD27, CD72, SLAMF6 and SLAMF7 were associated 
with longer RFS specifically in p53 mutated BCs, which 
correlated with OS for all except for B7–1 and SLAMF6. 
In contrast, high mRNA expression of MICA correlated 
with longer RFS specifically in p53 wild-type BCs without 
any significant association with OS. As for the NK-
activating ligands that correlated with worse prognosis, 
ULBP3 on the one hand and ULBP2 on the other hand 
were associated with shorter RFS specifically in p53 
wild-type or p53 mutated BCs, respectively (Table 5). 
Regarding the ligands that can bind NK-inhibitory 
receptors, they were mostly associated with longer RFS in 
p53 mutated BCs (Table 5).

DISCUSSION

Despite a significant piece of experimental and 
clinical evidence supporting the role of NK cells in 
BC control, BC still develops and progresses to form 
large tumors and metastases [22, 25–33]. Several 
mechanisms of cancer escape from NK immunity were 
proposed [137]. Among these, BC cells modulate their 
immunogenicity mainly by altering the expression of 
ligands for NK cell activating and inhibitory receptors; 
thereby stimulating a state of immunological tolerance 
by rendering themselves invisible to NK cells. This 
mechanism of cancer cell escape from NK immunity is 
frequently observed in solid tumors including BC [137], 
which suggests that NK receptor ligands’ expression may 
have prognostic significance in BC patients and may 
help identify candidates for NK-based immunotherapies. 
Therefore, in the present study, we firstly performed 
systematic literature screening to identify and select all 
NK-regulatory ligands for NK receptors known to date. 
In total, we identified 39 ligands for NK activating and 

inhibitory receptors. Then, we utilized the KM plotter 
platform to investigate whether the expression of these 
ligands may influence RFS and OS, and predict prognosis 
in BC patients and whether these effects may differ by 
molecular subtypes and other clinicopathological features.

Among the 21 analyzed NK-activating ligands, 
the high expression of 16 (80%) ligands significantly 
correlated with better RFS in all BCs, suggesting a 
protective role of these ligands against cancer progression. 
However, while the longer RFS correlated with longer OS 
for about half of these NK-activating ligands, the results 
showed no significant difference in the OS between the 
two groups of patients with different expression levels 
of B7-1, B7-2, CD70, MICB, TNFSF9, ULBP1, and 
ULBP4 or showed worse OS for high expression of 
MICA and ULBP3 ligands. This absence of correlation 
between better RFS and OS can be the consequence of 
the limited efficacy of the second line therapy in the 
group of patients with high expression of these ligands. 
This limited treatment efficacy can also be the result of a 
first line therapy-induced selective advantage of recurrent 
tumors that are resistant to the subsequent treatments, 
thereby accelerating cancer progression and patient death. 
Therefore, patient management should be optimized 
after relapse or even before to prevent later recurrence of 
more aggressive tumor. In this regard, NK-based therapy 
such as the adoptive transfer of NK cells expressing 
(endogenously or by genetic engineering) the activating 
receptors for these ligands might be a potential strategy to 
improve OS of these patients. However, if the treatment is 
considered after relapse, the maintenance of the expression 
of the NK receptor ligands in the secondary tumor should 
be tested. Furthermore, as mRNA expression does not 
necessarily correlate with protein expression in all cases, 
the expression of a considered ligand should also be tested 
at the protein level to predict a potential response to an 
NK-based treatment.

On the other hand, other NK-activating ligands (i.e. 
BAT3, CD58, and ULBP2) were unexpectedly associated 
with worse prognosis suggesting that these ligands are 
markers of more aggressive tumors. Although the high 
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CEACAM1
HR (95%CI)
p-value

1.79 (1.03–3.13)
0.22

1.23 (0.96–1.57)
0.18

0.77 (0.61–0.97)
0.037

1.51 (0.60–3.80)
0.42

1.37 (0.87–2.16)
0.22

0.76 (0.53–1.08)
0.17

CLEC2D
HR (95%CI)
p-value

1.90 (0.53–6.81)
0.34

1.50 (0.87–2.58)
0.209

0.76 (0.54–1.07)
0.12

0 (0–inf)
0.17

0.58 (0.17–1.94)
0.37

1.25 (0.70–2.21)
0.45

COL3A1
HR (95%CI)
p-value

0.45 (0.25–0.82)
0.076

0.71 (0.56–0.91)
0.039

1.55 (1.24–1.93)
0.00023

0.33 (0.12–0.91)
0.15

0.5 (0.32–0.76)
0.038

1.66 (1.18–2.34)
0.0085

HLA-A
HR (95%CI)
p-value

1.59 (0.93–2.73)
0.24

0.81 (0.64–1.03)
0.18

0.56 (0.45–0.70)
0.0000035

0.67 (0.26–1.78)
0.43

1.32 (0.83–2.10)
0.26

0.49 (0.35–0.68)
0.000096

HLA-B
HR (95%CI)
p-value

2.36 (1.41–3.95)
0.025

0.77 (0.60–0.98)
0.082

0.58 (0.46–0.72)
0.000011

2.16 (0.87–5.41)
0.18

0.58 (0.37–0.9)
0.076

0.51 (0.36–0.71)
0.00023

PDL1
HR (95%CI)
p-value

0.40 (0.14–1.15)
0.24

0.75 (0.45–1.25)
0.28

0.46 (0.34–0.63)
0.0000075

0 (0–inf)
0.15

0.53 (0.17–1.68)
0.29

0.33 (0.18–0.60)
0.00032

PDL2
HR (95%CI)
p-value

1.53 (0.91–2.57)
0.25

1.19 (0.92–1.53)
0.22

0.76 (0.61–0.95)
0.024

2.40 (0.94–6.09)
0.17

1.75 (1.02–3.02)
0.11

0.67 (0.48–0.93)
0.0301
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expression of these ligands is expected to enhance tumor 
cell elimination by NK cells, these lymphocytes might 
be either absent in these tumors or unresponsive to these 
ligands. The possible unresponsiveness of NK cells to these 
ligands expressed by cancer cells can be the consequence 
of tumor-induced deregulation of the expression of their 
cognate receptors on the surface of the NK cells. In fact, 
BC cells can release immunosuppressive molecules such 
as transforming growth factor-β1 (TGF- β1) and soluble 
MICAs that can downregulate the activating receptors 

and upregulate the inhibitory receptors on NK cells, as 
a mechanism of tumor escape from immune surveillance 
[137]. Another hypothesis might be that in addition to their 
role as ligands for NK-activating receptors, these genes 
might also have another NK-independent pro-oncogenic 
function, which confers increased aggressiveness to the 
tumor cells. Accordingly, BAT3 has been shown to play 
a role in the induction of the cell cycle progression by 
regulating p21 protein [138] and protection from apoptosis 
by inducing the anti-apoptotic YWK-II/APLP2 protein 

Figure 4: Prognostic values of the mRNA expression of NK-activating ligands depending on the tumor pathological 
grade. (A) Percentages of the NK-activating ligands whose high mRNA expression significantly associated (Favorable and Worse) or 
not (N.S.) with RFS (Left graph) or OS (Right graph) in the different tumor grades. “Favorable“ indicates the association of high mRNA 
expression with longer RFS/OS, representing good prognosis. “Worse” indicates the association of the high mRNA expression with 
shorter RFS/OS, representing bad prognosis. “N.S.” indicates no significant association with prognosis. (B) Same as in panel “a” but for 
NK-inhibitory ligands together with the ligands that can bind both NK-activating and inhibitory receptors (i.e. NK-activating/inhibitory 
ligands).
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Table 5: Association between the prognostic role of mRNA expression of NK receptor ligands and p53 status 

RFS OS

Ligand Wild-type Mutated Wild-type Mutated
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AICL
HR (95%CI)
p-value

0.50 (0.32–0.78)
0.042

0.51 (0.31–0.83)
0.016

0.42 (0.22–0.81)
0.068

0.44 (0.2–0.94)
0.073

B7-1
HR (95%CI)
p-value

0.66 (0.27–1.66)
0.38

0.37 (0.20–0.66)
0.0026

N/A
N/A

0.29 (0.07–1.16)
0.14

B7-2
HR (95%CI)
p-value

1.35 (0.85–2.13)
0.26

0.46 (0.28–0.77)
0.0092

0.65 (0.33–1.30)
0.24

0.37 (0.17–0.79)
0.028

BAT3
HR (95%CI)
p-value

1.27 (0.81–1.98)
0.35

0.63 (0.36–1.11)
0.15

0.60 (0.31–1.14)
0.23

2.06 (0.71–5.96)
0.23

CD27
HR (95%CI)
p-value

0.71 (0.45–1.12)
0.23

0.39 (0.24–0.65)
0.0012

0.67 (0.35–1.28)
0.24

0.29 (0.13–0.61)
0.0081

CD48
HR (95%CI)
p-value

0.55 (0.36–0.84)
0.042

0.52 (0.31–0.85)
0.019

0.63 (0.32–1.24)
0.24

0.32 (0.15–0.69)
0.011

CD58
HR (95%CI)
p-value

0.55 (0.36-0.85)
0.042

0.66 (0.4-1.09)
0.14

0.48 (0.25-0.92)
0.11

0.5 (0.22-1.12)
0.15

CD70
HR (95%CI)
p-value

1.41 (0.84–2.38)
0.26

0.76 (0.46–1.25)
0.29

1.65 (0.84–3.24)
0.24

0.51 (0.24–1.10)
0.15

CD72
HR (95%CI)
p-value

0.81 (0.52–1.26)
0.37

0.35 (0.18–0.69)
0.0064

1.53 (0.80–2.92)
0.24

0.29 (0.14–0.63)
0.0081

KMT2E
HR (95%CI)
p-value

2.05 (0.87–4.8)
0.22

0.7 (0.38–1.31)
0.28

N/A
N/A

1.66 (0.44–6.18)
0.45

MICA
HR (95%CI)
p-value

0.59 (0.39–0.90)
0.048

1.33 (0.83–2.15)
0.26

0.55 (0.28–1.08)
0.19

2.76 (1.21–6.32)
0.038

MICB
HR (95%CI)
p-value

0.55 (0.35–0.86)
0.042

0.55 (0.33–0.91)
0.033

0.41 (0.21–0.82)
0.068

0.52 (0.23–1.17)
0.17

NECL2
HR (95%CI)
p-value

0.62 (0.38–1.01)
0.16

1.26 (0.78–2.02)
0.35

0.47 (0.24–0.92)
0.11

0.71 (0.33–1.53)
0.39

SLAMF6
HR (95%CI)
p-value

2.01 (0.73–5.52)
0.25

0.36 (0.17–0.74)
0.012

N/A
N/A

2.01 (0.54–7.49)
0.34

SLAMF7
HR (95%CI)
p-value

0.54 (0.20–1.47)
0.28

0.22 (0.11–0.45)
0.000088

N/A
N/A

0.19 (0.05–0.72)
0.025

TNFSF9
HR (95%CI)
p-value

1.74 (1.01–2.99)
0.15

1.20 (0.71–2.03)
0.5

1.82 (0.76–4.36)
0.24

0.64 (0.26–1.54)
0.35

ULBP1
HR (95%CI)
p-value

0.64 (0.40–1.03)
0.19

1.64 (0.95–2.84)
0.12

0.62 (0.32–1.19)
0.24

1.96 (0.91–4.25)
0.15

ULBP2
HR (95%CI)
p-value

1.99 (0.81–4.92)
0.23

2.29 (1.27–4.12)
0.013

N/A
N/A

17.36 (2.17–139.12)
0.0073

ULBP3
HR (95%CI)
p-value

5.76 (1.34–24.78)
0.042

0.64 (0.33–1.22)
0.21

N/A
N/A

1.66 (0.43–6.38)
0.45

ULBP4
HR (95%CI)
p-value

3.19 (0.75–13.66)
0.22

0.61 (0.31–1.20)
0.2

N/A
N/A

0.25 (0.03–2.04)
0.23

VIM
HR (95%CI)
p-value

0.71 (0.46–1.10)
0.23

1.5 (0.81–2.80)
0.24

0.52 (0.27–1.00)
0.13

0.64 (0.29–1.41)
0.34
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stability [139]. Furthermore, CD58 can promote the self-
renewal of tumor-initiating cells by upregulating the Wnt/
β-catenin pathway [140]. However, to our knowledge, no 
NK-independent oncogenic function of ULBP2 has been 
identified to date. Whatever the mechanism involved, the 
association of these NK-activating ligands with shorter 
time to relapse and survival suggests that BC patients 
expressing high levels of BAT3, CD58, or ULBP2 may 
be favorable candidates for NK-cell based therapy. A 
possible therapy would be the adoptive transfer of NK 
cells expressing receptors for these ligands (i.e. NKp30, 
CD2, or NKG2D) to induce the elimination of residual 
tumor cells, prevent relapse and improve patient survival. 

Since the activity of NK cells is negatively regulated 
by the engagement of their inhibitory receptors, high 
expression of the NK-inhibitory ligands (CEACAM1, 
CLEC2D, HLA-A, HLA-B, PDL1, and PDL2) was 
expected to be associated with worse prognosis. However, 
except for COL3A1, the NK-inhibitory ligands were 
associated with favorable prognosis, suggesting that these 
ligands might have a cancer-protective role in addition 
to their function as NK-inhibitory ligands. Indeed, the 
expression of MHC class I molecules (HLA-A, HLA-B, 
and HLA-C) on cancer cells allows their detection and 
destruction by T cell lymphocytes [141]. Accordingly, 
downregulation or loss of these molecules in BC and 
other cancers increases metastasis to the lymph nodes 
and other organs [142]. Furthermore, CEACAM1 is an 

adhesion molecule that is regarded as a tumor suppressor 
and was found to regulate tumor growth and apoptosis in 
many types of cancer including BC [143, 144]. On the 
other hand, although PDL1 expression by tumor cells is 
believed to mediate inhibition of local immune response 
by down-modulating tumor-infiltrating lymphocyte 
(TIL), including NK and T cell, function, survival, and 
expansion [145], our study defines high PDL1 expression 
as a positive prognostic biomarker in BC, in agreement 
with other studies [146, 147]. This survival result might be 
due to the presence of a strong antitumor immune response 
leading to PDL1 expression. In fact, it has been shown 
that TILs can release cytokines including interferon-γ 
that upregulate PDL1 expression on tumor cells 
[145, 146, 148–150]; thus indicating a strong anti-tumor 
immune response.

Importantly, our finding that high expression of 
most ligands for NK-inhibitory receptors is associated 
with favorable prognosis and accordingly low expression 
of these ligands is associated with worse prognosis is of 
high therapeutic interest. In fact, this finding suggests 
that in patients with worse prognosis, the low expression 
of NK-inhibitory ligands would reduce the inhibitory 
signals for NK cell activation and enhance their cytotoxic 
potential towards tumor cells; thereby increasing the 
chances of response to NK-based therapy. Accordingly, 
we suggest that BC patients with tumors expressing high 
levels of the NK-activating ligands that would mark worse 
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s HLA-C
HR (95%CI)
p-value

0.78 (0.50–1.23)
0.35

0.47 (0.29–0.76)
0.0064

0.64 (0.33–1.22)
0.24

0.33 (0.15–0.73)
0.017

HLA-E
HR (95%CI)
p-value

0.56 (0.36–0.85)
0.042

0.40 (0.24–0.67)
0.0019

0.49 (0.25–0.96)
0.13

0.32 (0.15–0.68)
0.011

NECL5
HR (95%CI)
p-value

0.80 (0.49–1.28)
0.37

1.75 (0.92–3.33)
0.13

0.49 (0.24–1.01)
0.13

1.58 (0.71–3.51)
0.34

NECTIN2
HR (95%CI)
p-value

0.73 (0.48–1.11)
0.23

0.72 (0.42–1.23)
0.26

1.69 (0.86–3.34)
0.24

1.58 (0.68–3.68)
0.34
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CEACAM1
HR (95%CI)
p-value

1.37 (0.88–2.14)
0.25

0.53 (0.31–0.90)
0.033

1.57 (0.76–3.24)
0.24

0.52 (0.24–1.13)
0.15

CLEC2D
HR (95%CI)
p-value

2.31 (0.90–5.91)
0.19

0.43 (0.19–0.96)
0.0604

N/A
N/A

4.87 (1.01–23.45)
0.073

COL3A1
HR (95%CI)
p-value

0.57 (0.37–0.88)
0.045

1.69 (0.9–3.15)
0.14

0.32 (0.16–0.62)
0.0078

0.53 (0.21–1.33)
0.23

HLA-A
HR (95%CI)
p-value

1.21 (0.79–1.88)
0.38

0.56 (0.34–0.90)
0.033

0.74 (0.37–1.50)
0.4

0.52 (0.24–1.13)
0.15

HLA-B
HR (95%CI)
p-value

0.75 (0.49–1.15)
0.26

0.40 (0.25–0.65)
0.00106

0.57 (0.30–1.12)
0.22

0.32 (0.15–0.68)
0.011

PDL1
HR (95%CI)
p-value

0.45 (0.15–1.33)
0.23

0.20 (0.11–0.37)
0.00000064

N/A
N/A

0.22 (0.06–0.82)
0.0407

PDL2
HR (95%CI)
p-value

0.79 (0.49–1.28)
0.37

0.56 (0.35–0.91)
0.033

0.73 (0.38–1.40)
0.36

0.61 (0.23–1.64)
0.35
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prognosis or limited OS (such as BAT3, CD58, ULBP2, 
MICA, ULBP3, B7-1, B7-2, CD70, MICB, TNFSF9, 
ULBP1 and ULBP4), would probably have tumors with 
low expression of NK-inhibitory ligands (which should 
be tested and confirmed in the tumor), making them ideal 
candidates for a successful NK-based immunotherapy. 

Analysis of the association between the prognostic 
role of the mRNA expression of NK receptor ligands and 
the different BC subtypes showed that the prognostic 
influence of CD27, CD48, MICB, SLAMF6, TNFSF9, 
ULBP1, HLA-C, NECL5, COL3A1, HLA-B, PDL1, 
and PDL2 is independent of the BC molecular subtype 
whereas the effect of the other NK receptor ligands 
on patient relapse and survival may vary between the 
different BC subtypes. Interestingly, the favorable 
prognostic influence of NK-activating ligands, as a whole, 
is higher in basal-like and HER2 types in comparison to 
luminal A/B. This is probably due to the different types 
of conventional therapeutics used in the different BC 
subtypes. In fact, chemotherapy (by further enhancing 
the expression of NK-activating ligands or reducing the 
expression of NK-inhibitory ligands on tumor cells) [151] 
and HER2-targeted therapy (by Trastuzumab-induced NK 
cell-based antibody-dependent cell-mediated cytotoxicity, 
i.e. ADCC) [152] were shown to increase cancer cell 
sensitivity to NK-mediated cytotoxicity which could act 
synergistically with the basal high expression of NK-
activating ligands in basal-like and/or HER2-positive BCs. 
In contrast, tamoxifen, which is widely used in endocrine 
therapy for ER-positive (luminal A and B) BCs, was 
shown to inhibit NK-mediated BC cell death by inducing 
the expression of the granzyme B inhibitor (serpentinB9/
proteinase inhibitor 9), making these cells less responsive 
to NK despite the high expression of NK-activating 
ligands on their surface [153]. Furthermore, we could 
observe that the favorable prognostic influence of NK-
activating ligands was significantly higher in lymph node 
positive and grade III BCs than in lymph node negative 
and lower grades BCs. This could be the consequence 
of a higher NK cell infiltration of lymph node positive 
and grade III BCs than in lymph node negative and lower 
grades BCs [154, 155]. Thus, therapeutic approaches that 
can harness the cytotoxic potential of these lymphocytes 
might improve tumor management and survival in BC 
patients with lymph node involvement and/or grade III 
tumors that are; therefore, initially classed as having a 
poor prognosis.

In BC, NK cell-based immunotherapy can have 
four main approaches [24]: 1) direct administration of 
these immune cells genetically modified and/or stimulated 
ex vivo. 2) administration of drugs, mainly cytokines, to 
stimulate NK cells in patients themselves. 3) targeting 
therapies with monoclonal antibodies (such as trastuzumab 
for HER2-positive breast cancer that triggers NK cell-
mediated ADCC. 4) use of immunomodulatory drugs such 
as TGF- β1 or TGF- β1 receptors inhibitors or blocking 
antibodies for NK-inhibitory receptors. 

An increasing number of research studies trying 
to harness NK cell function against cancer cells were 
recently performed [24, 31, 32, 156, 157]. However, to 
date, in contrast to other types of cancer such as leukemia, 
neuroblastoma and glioblastoma, clinical trials using 
NK cell-based immunotherapy in BC failed to improve 
clinical outcomes [24]. Therefore, in order to develop 
effective anti-BC immunotherapy approaches and benefit 
from the high anti-tumoral potential of NK cells and their 
safety towards healthy tissues, it’s crucial to determine 
and consider predictive biomarkers for NK-therapy 
responsiveness in BC patients. 

In conclusion, in BC, all NK receptor ligands were 
found to be of valuable potential prognostic biomarkers, 
that can or cannot be affected by the different BC subtypes 
or clinicopathological features depending on the individual 
ligand considered. The favorable prognostic influence 
of NK-activating ligands’ upregulation, as a whole, was 
mainly significantly associated with HER2-positive and 
basal-like subtypes, lymph node positive phenotype and 
high-grade tumors. Furthermore, we identified two groups 
of BC patients with specific expressions of NK-activating 
ligands as potential candidates for NK-based therapy such 
as adoptive transfer of NK cells expressing receptors for 
these ligands. Those include patients with tumors whose 
NK-activating ligand is associated with higher RFS but 
no effect or worse OS as well as those with tumors whose 
NK-activating ligand is associated with worse RFS and/or 
OS. In addition to the high expression of the specific NK-
activating ligand, these tumors of worse prognosis would 
be more likely to express low levels of NK-inhibitory 
ligands; thus, reducing the inhibitory signals for NK cell 
activation and enhancing their cytotoxic potential towards 
tumor cells. These tumor characteristics might increase the 
chances for successful NK-based immunotherapy in BC 
patients by eliminating residual tumor cells, preventing 
relapse and improving patient survival; thus highlighting 
the importance of further exploration of the prognostic 
and therapeutic implications of NK cells in BC in both 
research and clinical settings.

MATERIALS AND METHODS

Identification of the NK-regulatory ligands for 
NK receptors by literature screening

NK-regulatory receptors (expressed on NK 
cells) and their respective ligands (expressed on target 
cells) discovered to date, in humans, were identified 
by systematic literature screening in Pubmed. First, the 
keywords “NK” or “natural killer” and “receptor” were 
used to identify the potential NK receptors and ligands. 
Then, further literature search was performed, using the 
keywords “NK” or “natural killer” and “potential NK 
receptor name” and “potential ligand name” to select all 
ligands for which articles containing original research data 
confirming both their interaction with the NK receptor 
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and their regulatory effect on NK activity and cytotoxicity 
towards the target cell. The exclusion criteria are the 
ligands that would have been found to bind specific NK 
receptors without confirmation of their regulatory effect 
on NK cell activity towards the target cells because these 
ligands might interfere with the overall conclusions of the 
study independently of the potential role of NK activity. 
The selected NK-regulatory ligands for NK receptors are 
presented in Table 1 and grouped into NK-activating, 
NK-inhibitory, or NK-activating and inhibitory ligands 
depending on the biological effect of their interaction with 
their receptors on NK cells (i.e. activation or inhibition of 
NK cytotoxic activity towards target cells).

Analysis of the prognostic values of individual 
NK receptor ligands in BC patients by using the 
KM plotter

The correlation between NK receptor ligand 
members’ mRNA expression and BC patient survival 
(RFS and OS) was analyzed by KM plotter platform. The 
analysis included 3955 BC patients for RFS and 1402 BC 
patients for OS. The BC patients were followed up for 20 
years. The prognostic value of each ligand was evaluated 
either on all the BC tumors or by using several clinical 
BC criteria and classifications including intrinsic subtypes 
(luminal A, luminal B, HER2-positive and basal-like) and 
clinicopathological features (lymph node status, tumor 
grade, and p53 status). Briefly, individual members of 
the NK receptor ligands were entered by using their gene 
symbol into the KM plotter platform. The probe set with 
the estimated excellent quality (green) was used (the probe 
set ID for each ligand is indicated in Table 1). “Auto select 
best cutoff” was chosen in the analysis [158]. Different 
clinical parameters were selected. Thus, BC samples were 
split into high and low expression groups according to the 
cutoff value and the two patient cohorts were compared 
by Kaplan–Meier survival plots. The hazard ratio (HR) 
with 95% confidence intervals (CI) and log rank P value 
were calculated then were adjusted using false discovery 
rate (FDR) for multiple testing correction. All p values 
indicated in the manuscript are FDR-adjusted. HR < 1 
implies better survival for high expression group, HR > 1 
implies worse survival for high expression group, and HR 
= 1 implies no effect of ligand mRNA level on survival. 
The data is considered to be statistically significant when 
FDR-adjusted p value < 0.05.
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false discovery rate; EGA: European genome-phenome 
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